1
|
Erkan GN, Tekin U, Boyacıoğlu Ö, Korkusuz P, Orhan K, Kırman B, Önder ME. Does dexmedetomidine induce bone regeneration in cranial defects in rabbits? Biotech Histochem 2025; 100:83-88. [PMID: 40017441 DOI: 10.1080/10520295.2025.2470625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Dexmedetomidine has been shown to exert protective and curative effects on various tissues and organs in different pathological processes. This study aimed to investigate the effect of dexmedetomidine on the regeneration process after making holes in the parietal bones of rabbits. Twenty-four male Oryctolagus cuniculus rabbits were allocated to three groups, and an 8-mm circular parietal critical-sized bone defect was induced in each animal. Group_C (control) received saline; Group_LD (low dose) was given dexmedetomidine 2.75 µg/kg; Group_HD (high dose), dexmedetomidine 5.5 µg/kg; all were administered intraperitoneally for 7 days. After 8 weeks the bones were examined by micro-computed tomography (micro-CT) and histomorphometry. The results indicated that regeneration was improved in both the dexmedetomidine-treated groups. The lower dose increased the bone volume ratio (BV/TV) more than the higher dose. Trabecular thickness, connectivity value, and connectivity density were also higher in Group_LD than in Group_HD. Significant intramembranous ossification was observed in the dexmedetomidine-treated groups, and active osteoblasts were seen at the margins of new bone trabeculae. We conclude that dexmedetomidine, especially at the lower dosage, increases osteoblastic activity and regeneration quality.
Collapse
Affiliation(s)
- Gözde Nur Erkan
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Anesthesiology and Reanimation, Kırıkkale University, Kırıkkale, Turkey
| | - Umut Tekin
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, University of Health Sciences, Ankara, Turkey
| | - Özge Boyacıoğlu
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Medical Biochemistry, Atılım University, Ankara, Turkey
| | - Petek Korkusuz
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
- METU MEMS Center, Ankara, Turkey
| | - Kaan Orhan
- Faculty of Dentistry, Department of Oral and Maxillofacial Radiology, Ankara University, Ankara, Turkey
| | - Betül Kırman
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Kırıkkale University, Kırıkkale, Turkey
| | - Mustafa Ercüment Önder
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
2
|
Miao Y, Lu T, Cui S, Xu Z, Liu X, Zhang Y. Engineering natural DNA matrices with halloysite nanotubes to fabricate injectable therapeutic hydrogels for bone regeneration. J Orthop Translat 2024; 49:218-229. [PMID: 39507323 PMCID: PMC11538604 DOI: 10.1016/j.jot.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Background Injectable hydrogels are widely used in drug delivery and the repair of irregular tissue defects due to their advantages such as convenient and minimally invasive operation. Although the existing injectable hydrogels have excellent biocompatibility and osteoconduction, they still face clinical challenges such as low osteogenic activity. The key requirements for improved injectable hydrogels as repair materials for non-load bearing bone defects are optimal handling properties, the ability to fill irregular defects and provide osteoinductive stimulation. Methods We developed an approach to construct injectable hydrogels through a two-step gelation process. In the first step of gelation, the denaturation and rehybridization mechanism of natural biopolymer DNA was utilized to form interconnected structure through hydrogen bonding between complementary base pairs between the DNA strands. In the second step of gelation, the introduction of halloysite nanotubes (HNTs) loaded with osteogenic model drug dexamethasone (Dex) provided additional crosslinking sites through non-covalent interactions with the DNA backbone, including electrostatic interaction and hydrogen bonding interaction. Results The DNA-based nanocomposite hydrogel material developed in our work can be used as an injectable filling material for the repair of non-load bearing bone defect and can be loaded with osteogenic model drug dexamethasone (Dex) for improved osteoinductivity, promoting new bone regeneration in vivo. Translational potential of this article This article highlights the potential of using nanocomposite hydrogels to repair non-load bearing bone defects, which are common injuries in the clinic. This study provides a deeper understanding of how to optimize the properties of hydrogels to regulate cell differentiation and tissue formation.
Collapse
Affiliation(s)
- Yali Miao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Teliang Lu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Shangbin Cui
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ziyang Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Xiao Liu
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, Guangdong, 511300, China
| | - Yu Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
3
|
Doorandish Yazdi S, Hedayat D, Asadi A, Abouei Mehrizi A. Impacts of post-operation loading and fixation implant on the healing process of fractured tibia. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3870. [PMID: 39323240 DOI: 10.1002/cnm.3870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/04/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024]
Abstract
Healing of tibia demonstrates a complex mechanobiological process as it is stimulated by the major factor of strains applied by body weight. The effect of screw heads and bodies as well as their pressure distribution is often overlooked. Hence, effective mechanical conditions of the healing process of tibia can be categorized into the material of the plate and screws, post-operation loadings, and screw type and pressure. In this paper, a mathematical biodegradation model was used to simulate the PGF/PLA plate-screw device over 8 weeks. The effect of different post-operation loading patterns was studied for both locking and non-locking screws. The aim was to reach the best configuration for the most achievable healing using FEA by computing the healing pattern, trend, and efficiency with the mechano-regulation theory based on deviatoric strain. The biodegradation process of the plate and screws resulted in 82% molecular weight loss and 1.05 GPa decrease in Young's modulus during 8 weeks. The healing efficiency of the cases ranged from 4.72% to 14.75% in the first week and 18.64% to 63.05% in the eighth week. Finally, an optimal case was achieved by considering the prevention of muscle erosion, bone density reduction, and nonunion, according to the obtained results.
Collapse
Affiliation(s)
- Shima Doorandish Yazdi
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Dorna Hedayat
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Amir Asadi
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ali Abouei Mehrizi
- Faculty of New Sciences and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Changbao W, Sanjun G, Haifeng L, Jingyi M. Prospective study of femoral neck system fixation combined with enhanced recovery after surgery for the treatment of unstable intracapsular femoral neck fracture. Acta Orthop Belg 2024; 90:389-395. [PMID: 39851008 DOI: 10.52628/90.3.12044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Prospective study of femoral neck system (FNS) vs. cannulated compression screw (CCS) fixation has not been appropriately reported. We prospectively investigate the efficacy of FNS vs. CCS fixation combined with ERAS in the treatment of unstable intracapsular FNF. 70 consecutive patients with unstable intracapsular femoral neck fracture met the inclusion criteria were randomly divided into FNS group and CCS group (each 35 cases). ERAS was applied in both groups. The perioperative period and follow-up results were compared. The operation time, fluoroscopy time, fracture reduction quality and follow-up time were not significantly different between the two groups (P > 0.05). The blood loss in the FNS group was significantly more than that in CCS group whereas the time to start weight-bearing, fracture healing time, internal fixation failure in the FNS group were significantly less than those in the CCS group (P < 0.05). The neck shortening and revision surgery of the FNS group showed a trend of superiority to CCS group but the difference was not significantly different (P > 0.05). The AVN in the two groups was similar. At the last follow-up, the Harris hip score in the FNS group was higher than that in the CCS group (P < 0.05). Hence, FNS fixation with ERAS for FNF can provide earlier weight-bearing, fewer complications related to the implant, faster healing and better functional recovery than CCS fixation with ERAS, which is consistent with the better biomechanical properties of FNS.
Collapse
|
5
|
Tipan N, Pandey A, Mishra P. Material synthesis and design optimization of biomaterials for biomedical implant applications. BIOIMPACTS : BI 2024; 15:30010. [PMID: 40161937 PMCID: PMC11954756 DOI: 10.34172/bi.30010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/20/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2025]
Abstract
Introduction In the modern era, the use of biomaterials in orthopaedics has revolutionised the healthcare sector. Traditionally, some non-biodegradable materials such as titanium and stainless steel are used as biomaterials. However, issues such as toxicity, poor tissue adhesion, and stress-shielding effect can occur with non-biodegradable materials for bone fracture fixation. Several biodegradable materials have been developed to resolve these issues but have not yet been appropriately industrialized for implant applications. These substances can be classified into metals, ceramics, and polymers, which can be blended to create composites that enhance biocompatibility and biomechanical characteristics. Methods This study began by contrasting the biocompatibility and mechanical compatibility among various alloys: biodegradable low entropy (BLE) alloys, biodegradable medium entropy (BME) alloys, biodegradable high entropy (BHE) alloys, and non-biodegradable medium entropy (NBME) alloys. Additionally, the design morphology of bio-implants like plates, screws, and others was inspected. Moreover, a meta-analysis was conducted to optimize the design of biomaterials, ensuring appropriate biocompatibility and degradation rate. A subsequent statistical analysis was executed to determine the optimal material concentration for bio-implant alloy creation. Results Initially, in this paper, the advantages of biodegradable materials over conventional non-biodegradable materials are discussed and bibliometric analysis is done to show recent research contributions in the field of biomedical implant application. Then compared biocompatibility and mechanical compatibility among BLE alloys, BME alloys, BHE alloys, NBME alloys. Furthermore, investigated the design morphology of bio-implants such as plates and screws. Also presented a meta-analysis for design optimization of biomaterials to meet suitable biocompatibility and biodegradation rates and presented a statistical analysis among them, which helps to select the appropriate material concentration for bio-implant alloy formation. Conclusion It was observed that in biodegradable materials, tensile strength is in the pattern of NBME > BHE > BME > BLE, and the degradation rate is in the pattern of BME > NBME > BHE > BLE. This study suggests that biodegradable materials (BLE and BME) are a much better choice than non-biodegradable materials in orthopaedic applications. It was also observed that a Biodegradable locking compression plate (BLCP) can provide the necessary strength and performance. Further, the systematic meta-analysis presented herein furnishes crucial data to researchers, guiding them in enhancing the efficiency of diverse biomaterials and optimizing their designs.
Collapse
Affiliation(s)
- Nilesh Tipan
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal (M.P.), India, 462003
| | - Ajay Pandey
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal (M.P.), India, 462003
| | - Pushyamitra Mishra
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal (M.P.), India, 462003
| |
Collapse
|
6
|
Wang M, Jiang G, Yang H, Jin X. Computational models of bone fracture healing and applications: a review. BIOMED ENG-BIOMED TE 2024; 69:219-239. [PMID: 38235582 DOI: 10.1515/bmt-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Fracture healing is a very complex physiological process involving multiple events at different temporal and spatial scales, such as cell migration and tissue differentiation, in which mechanical stimuli and biochemical factors assume key roles. With the continuous improvement of computer technology in recent years, computer models have provided excellent solutions for studying the complex process of bone healing. These models not only provide profound insights into the mechanisms of fracture healing, but also have important implications for clinical treatment strategies. In this review, we first provide an overview of research in the field of computational models of fracture healing based on CiteSpace software, followed by a summary of recent advances, and a discussion of the limitations of these models and future directions for improvement. Finally, we provide a systematic summary of the application of computational models of fracture healing in three areas: bone tissue engineering, fixator optimization and clinical treatment strategies. The application of computational models of bone healing in clinical treatment is immature, but an inevitable trend, and as these models become more refined, their role in guiding clinical treatment will become more prominent.
Collapse
Affiliation(s)
- Monan Wang
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Guodong Jiang
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Haoyu Yang
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Xin Jin
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Zhu Z, Yang Y, Li L, Zhu SJ, Zhang L. A probabilistic approach for assessing the mechanical performance of intertrochanteric fracture stabilized with proximal femoral nail antirotation. PLoS One 2024; 19:e0299996. [PMID: 38603691 PMCID: PMC11008846 DOI: 10.1371/journal.pone.0299996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/19/2024] [Indexed: 04/13/2024] Open
Abstract
Maintaining post-operative mechanical stability is crucial for successfully healing intertrochanteric fractures treated with the Proximal Femoral Nail Antirotation (PFNA) system. This stability is primarily dependent on the bone mineral density (BMD) and strain on the fracture. Current PFNA failure analyses often overlook the uncertainties related to BMD and body weight (BW). Therefore, this study aimed to develop a probabilistic model using finite element modeling and engineering reliability analysis to assess the post-operative performance of PFNA under various physiological loading conditions. The model predictions were validated through a series of experimental test. The results revealed a negative nonlinear relationship between the BMD and compressive strain. Conversely, the BW was positively and linearly correlated with the compressive strain. Importantly, the compressive strain was more sensitive to BW than to BMD when the BMD exceeded 0.6 g/cm3. Potential trabecular bone compression failure is also indicated if BMD is equal to or below 0.15 g/cm3 and BW increases to approximately 2.5 times the normal or higher. This study emphasizes that variations in the BMD significantly affect the probability of failure of a PFNA system. Thus, careful planning of post-operative physical therapy is essential. For patients aged > 50 years restrictions on high-intensity activities are advised, while limiting strenuous movements is recommended for those aged > 65 years.
Collapse
Affiliation(s)
- Zhiqi Zhu
- Department of Orthopedics, Longgang District People’s Hospital of Shenzhen, Guangdong, P. R. China
| | - Yi Yang
- Department of Infrastructure Engineering, The University of Melbourne, Victoria, Australia
| | - Lunjian Li
- Department of Infrastructure Engineering, The University of Melbourne, Victoria, Australia
| | - Shuang Jie Zhu
- Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Victoria, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Mitkovic MM, Korunovic ND, Milenkovic SS, Stojiljkovic PM, Manic MT, Trajanovic MD. Forces required to dynamize sliding screws in gamma nail and selfdynamizable internal fixator. BMC Musculoskelet Disord 2024; 25:271. [PMID: 38589829 PMCID: PMC11000330 DOI: 10.1186/s12891-024-07392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Single limb support phase of the gait-cycle in patients who are treated for a pertrochanteric fracture is characterized by transversal loads acting on the lag screw, tending to block its dynamization. If the simultaneous axial force overcomes transversal loads of the sliding screw, the dynamization can still occur. METHODS Biomechanical investigation was performed for three types of dynamic implants: Gamma Nail, and two types of Selfdynamizable Internal Fixators (SIF) - SIF-7 (containing two 7 mm non-cannulated sliding screws), and SIF-10 (containing one 10 mm cannulated sliding screw). Contact surface between the stem and the sliding screws is larger in SIF implants than in Gamma Nail, as the stem of Gamma Nail is hollow. A special testing device was designed for this study to provide simultaneous application of a controlled sliding screws bending moment and a controlled transversal load on sliding screws (Qt) without using of weights. Using each of the implants, axial forces required to initiate sliding screws dynamization (Qa) were applied and measured using a tensile testing machine, for several values of sliding screws bending moment. Standard least-squares method was used to present the results through the linear regression model. RESULTS Positive correlation between Qt and Qa was confirmed (p < 0.05). While performing higher bending moments in all the tested implants, Qa was higher than it could be provided by the body weight. It was the highest in Gamma Nail, and the lowest in SIF-10. CONCLUSIONS A larger contact surface between a sliding screw and stem results in lower forces required to initiate dynamization of a sliding screw. Patients treated for a pertrochanteric fracture by a sliding screw internal fixation who have longer femoral neck or higher body weight could have different programme of early postoperative rehabilitation than lighter patients or patients with shorter femoral neck.
Collapse
Affiliation(s)
- Milan M Mitkovic
- Clinic for Orthopaedics and Traumatology "Academician Prof. Dr. Milorad Mitkovic", University Clinical Center Nis, Nis, Serbia.
- Faculty of Medicine, University of Nis, Nis, Serbia.
| | | | - Sasa S Milenkovic
- Clinic for Orthopaedics and Traumatology "Academician Prof. Dr. Milorad Mitkovic", University Clinical Center Nis, Nis, Serbia
- Faculty of Medicine, University of Nis, Nis, Serbia
| | - Predrag M Stojiljkovic
- Clinic for Orthopaedics and Traumatology "Academician Prof. Dr. Milorad Mitkovic", University Clinical Center Nis, Nis, Serbia
- Faculty of Medicine, University of Nis, Nis, Serbia
| | - Miodrag T Manic
- Faculty of Mechanical Engineering, University of Nis, Nis, Serbia
| | | |
Collapse
|
9
|
Zhang E, Miramini S, Zhang L. The impact of osteoporosis and diabetes on fracture healing under different loading conditions. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107952. [PMID: 38039922 DOI: 10.1016/j.cmpb.2023.107952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Osteoporosis and diabetes are two prevalent conditions among the elderly population. Each of these conditions can profoundly influence the fracture healing process by disturbing the associated inflammatory process. However, the combined effects of osteoporosis and diabetes on fracture healing remain unclear. Therefore, the purpose of the present study is to investigate the role of osteoporosis and diabetes in fracture healing and the underlying mechanisms by developing numerical models. METHOD This study introduces a numerical model that consists of a three-dimensional model of a tibia fracture stabilized by a Locking Compression Plate (LCP), coupled with a two-dimensional axisymmetric model which illustrates the transport and reactions of cells and cytokines throughout the inflammatory phase in early fracture healing. First, the model parameters were calibrated using available experimental data. The model was then implemented to predict the healing outcomes of fractures under five varied conditions, consisting of both osteoporotic and non-osteoporotic bones, each subjected to different physiological loads. RESULTS The instability of the fracture callus can significantly escalate in osteoporotic fractures (e.g., when a 150 N physiological load is applied, the unstable region of the osteoporotic fracture callus can reach 26 %, in contrast to 12 % in non-osteoporotic fractures). Additionally, the mesenchymal stem cells (MSCs) proliferation and differentiation can be disrupted in osteoporotic fracture compared to non-osteoporotic fractures (e.g., on the 10th day post-fracture, the decrease in the concentration of MSCs, osteoblasts, and chondrocytes in osteoporotic fractures is nearly double that in non-osteoporotic fractures under a 150 N). Finally, the healing process of fractures can suffer significant impairment when osteoporosis coexists with diabetes (e.g., the concentration of MSCs can be drastically reduced by nearly 37 % in osteoporotic fractures under diabetic conditions when subjected to a load of 200 N) CONCLUSIONS: Fracture calluses destabilized by osteoporosis can negatively affect the fracture healing process by disrupting the proliferation and differentiation of mesenchymal stem cells (MSCs). Moreover, when osteoporosis coexists with diabetes, the fracture healing process can severely impair the fracture healing outcomes.
Collapse
Affiliation(s)
- Enhao Zhang
- Department of Infrastructure Engineering, The University of Melbourne, 700 Swanston St, Parkville, VIC 3010, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, 700 Swanston St, Parkville, VIC 3010, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, 700 Swanston St, Parkville, VIC 3010, Australia.
| |
Collapse
|
10
|
Steppe L, Megafu M, Tschaffon-Müller ME, Ignatius A, Haffner-Luntzer M. Fracture healing research: Recent insights. Bone Rep 2023; 19:101686. [PMID: 38163010 PMCID: PMC10757288 DOI: 10.1016/j.bonr.2023.101686] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 01/03/2024] Open
Abstract
Bone has the rare capability of scarless regeneration that enables the complete restoration of the injured bone area. In recent decades, promising new technologies have emerged from basic, translational and clinical research for fracture treatment; however, 5-10 % of all bone fractures still fail to heal successfully or heal in a delayed manner. Several comorbidities and risk factors have been identified which impair bone healing and might lead to delayed bone union or non-union. Therefore, a considerable amount of research has been conducted to elucidate molecular mechanisms of successful and delayed fracture healing to gain further insights into this complex process. One focus of recent research is to investigate the complex interactions of different cell types and the action of progenitor cells during the healing process. Of particular interest is also the identification of patient-specific comorbidities and how these affect fracture healing. In this review, we discuss the recent knowledge about progenitor cells for long bone repair and the influence of comorbidities such as diabetes, postmenopausal osteoporosis, and chronic stress on the healing process. The topic selection for this review was made based on the presented studies at the 2022 annual meeting of the European Calcified Tissue Society (ECTS) in Helsinki.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Germany
| | - Michael Megafu
- A.T. Still University Kirksville College of Osteopathic Medicine, USA
| | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Germany
| | | |
Collapse
|
11
|
Liu X, Liao J, Patel M, Miramini S, Qu J, Zhang L. Effect of uncertain clinical conditions on the early healing and stability of distal radius fractures. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107774. [PMID: 37651819 DOI: 10.1016/j.cmpb.2023.107774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND AND OBJECTIVES The healing outcomes of distal radius fracture (DRF) treated with the volar locking plate (VLP) depend on surgical strategies and postoperative rehabilitation. However, the accurate prediction of healing outcomes is challenging due to a range of certainties related to the clinical conditions of DRF patients, including fracture geometry, fixation configuration, and physiological loading. The purpose of this study is to investigate the influence of uncertainty and variability in fracture/fixation parameters on the mechano-biology and biomechanical stability of DRF, using a probabilistic numerical approach based on the results from a series of experimental tests performed in this study. METHODS Six composite radius sawboneses fitted with titanium VLP (VLP 2.0, Austofix) were loaded to failure at a rate of 2 N/s. The testing results of the elastic and plastic behaviour of the VLP were used as inputs for a probabilistic-based computational model of DRF, which simulated mechano-regulated tissue differentiation and fixation elastic capacity at the fracture site. Finally, the probability of success in early indirect healing and fracture stabilisation was predicted. RESULTS The titanium VLP is a strong and ductile fixation whose flexibility and elastic capacity are governed by flexion working length and bone-to-plate distance, respectively. A fixation with optimised designs and configurations is critical to mechanically stabilising the early fracture site. Importantly, the uncertainty and variability in fracture/fixation parameters could compromise early DRF healing. The physiological loading uncertainty is the most adverse factor, followed by the negative impact of uncertainty in fracture geometry. CONCLUSIONS The VRP 2.0 fixation made of grade II titanium is a desirable fixation that is strong enough to resist irreparable deformation during early recovery and is also ductile to deform plastically without implant failure at late rehabilitation.
Collapse
Affiliation(s)
- Xuanchi Liu
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - JinJing Liao
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Minoo Patel
- Centre for Limb Lengthening & Reconstruction, Epworth Hospital Richmond, Richmond, Victoria, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Ji Qu
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, UK
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
12
|
Influence of muscle loading on early-stage bone fracture healing. J Mech Behav Biomed Mater 2023; 138:105621. [PMID: 36549248 DOI: 10.1016/j.jmbbm.2022.105621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Designing weight-bearing exercises for patients with lower-limb bone fractures is challenging and requires a systematic approach that accounts for patient-specific loading conditions. However, 'trial-and-error' approaches are commonplace in clinical settings due to the lack of a fundamental understanding of the effect of weight-bearing exercises on the bone healing process. Whilst computational modelling has the potential to assist clinicians in designing effective patient-specific weight-bearing exercises, current models do not explicitly account for the effects of muscle loading, which could play an important role in mediating the mechanical microenvironment of a fracture site. We combined a fracture healing model involving a tibial fracture stabilised with a locking compression plate (LCP) with a detailed musculoskeletal model of the lower limb to determine interfragmentary strains in the vicinity of the fracture site during both full weight-bearing (100% body weight) and partial weight-bearing (50% body weight) standing. We found that muscle loading significantly altered model predictions of interfragmentary strains. For a fractured bone with a standard LCP configuration (bone-plate distance = 2 mm, working length = 30 mm) subject to full weight-bearing, the predicted strains at the near and far cortices were 23% and 11% higher when muscle loading was included compared to the case when muscle loading was omitted. The knee and ankle muscles accounted for 38% of the contact force exerted at the knee joint during quiet standing and contributed significantly to the strains calculated at the fracture site. Thus, models of bone fracture healing ought to account explicitly for the effects of muscle loading. Furthermore, the study indicated that LCP configuration parameters play a crucial role in influencing the fracture site microenvironment. The results highlighted the dominance of working length over bone-plate distance in controlling the flexibility of fracture sites stabilised with LCP devices.
Collapse
|
13
|
Irandoust S, Müftü S. On computational predictions of fluid flow and its effects on bone healing in dental implant treatments: an investigation of spatiotemporal fluid flow in cyclic loading. Biomech Model Mechanobiol 2023; 22:85-104. [PMID: 36329356 DOI: 10.1007/s10237-022-01633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/05/2022] [Indexed: 11/06/2022]
Abstract
Fluid flow in (porous) bone plays an important role in its maintenance, adaptation, and healing after an injury. Experimental and computational studies apply mechanical loading on bone to predict fluid flow development and/or to find its material properties. In most cases, mechanical loading is applied as a linear function in time. Multiple loading functions-with identical peak load and loading frequency-were used to investigate load-induced fluid flow and predict bone healing surrounding a dental implant. Implementing an instantaneous healing stimulus led to major differences in healing predictions for slightly different loading functions. Load-induced fluid flow was found to be displacement-rate dependent with complex spatial-temporal variations and not necessarily symmetrical during loading and unloading phases. Haversine loading resulted in more numerical stability compared to ramped/triangular loading, providing the opportunity for further investigation of the effects of various physiological masticatory loadings. It was concluded that using the average healing stimulus during cyclic loading gives the most robust bone healing predictions.
Collapse
Affiliation(s)
- Soroush Irandoust
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - Sinan Müftü
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Miramini S, Smith DW, Gardiner BS, Zhang L. Computational Modelling for Managing Pathways to Cartilage Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:83-93. [PMID: 37052848 DOI: 10.1007/978-3-031-25588-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Over several decades the perception and therefore description of articular cartilage changed substantially. It has transitioned from being described as a relatively inert tissue with limited repair capacity, to a tissue undergoing continuous maintenance and even adaption, through a range of complex regulatory processes. Even from the narrower lens of biomechanics, the engagement with articular cartilage has changed from it being an interesting, slippery material found in the hostile mechanical environment between opposing long bones, to an intriguing example of mechanobiology in action. The progress revealing this complexity, where physics, chemistry, material science and biology are merging, has been described with increasingly sophisticated computational models. Here we describe how these computational models of cartilage as an integrated system can be combined with the approach of structural reliability analysis. That is, causal, deterministic models placed in the framework of the probabilistic approach of structural reliability analysis could be used to understand, predict, and mitigate the risk of cartilage failure or pathology. At the heart of this approach is seeing cartilage overuse and disease processes as a 'material failure', resulting in failure to perform its function, which is largely mechanical. One can then describe pathways to failure, for example, how homeostatic repair processes can be overwhelmed leading to a compromised tissue. To illustrate this 'pathways to failure' approach, we use the interplay between cartilage consolidation and lubrication to analyse the increase in expected wear rates associated with cartilage defects or meniscectomy.
Collapse
Affiliation(s)
- Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - David W Smith
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, Australia
| | - Bruce S Gardiner
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia.
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Ismiarto YD, Prasetiyo GT, Putra EP, Prasetya WP. Aseptic non-union fracture of ulna but union fracture of radius following internal fixation procedure: A case report. INTERNATIONAL JOURNAL OF SURGERY OPEN 2022. [DOI: 10.1016/j.ijso.2022.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Huang W, Du J, Lai H, Zhang Q, Zhou C, Liu Z. Mechanical properties and mechanism of soil treated with nano-aqueous adhesive (NAA). Sci Rep 2022; 12:14711. [PMID: 36038760 PMCID: PMC9424237 DOI: 10.1038/s41598-022-19108-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
The loose structure and low mechanical strength of the surface soil make it vulnerable to damage under erosion conditions. Slope ecological protection is one of the effective methods to improve the stability of slope soil. Although it has been proved that polymer modified materials can effectively improve the soil properties and the environmental protection effect of slope, so far, the improvement mechanism has not been fully understood, especially the chemical mechanism of the material on the enhancement of soil mechanical properties is not clear. In the present study, the effects of nano-aqueous adhesive (NAA) on unconfined compressive strength, shear strength and aggregate characteristics of soil were studied by a series of laboratory experiments. The results show that NAA can increase the strength, aggregate number and stability of the soil, to effectively improve the stability of surface soil. In addition, through infrared spectroscopy and SEM test, it was found that NAA molecules were mainly distributed in the interlayer position of flaky clay minerals, mainly connected with clay minerals through hydrogen bonds, thereby effectively enhancing the cohesion of soil particles.
Collapse
Affiliation(s)
- Wei Huang
- School of Civil Engineering, Sun Yat-Sen University, No.135 XinGangXiLu, Guangzhou, 510275, China.,Guangdong Engineering Research Centre for Major Infrastructure Safety, School of Civil Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiaxin Du
- School of Civil Engineering, Sun Yat-Sen University, No.135 XinGangXiLu, Guangzhou, 510275, China.,Guangdong Engineering Research Centre for Major Infrastructure Safety, School of Civil Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haoqiang Lai
- School of Civil Engineering, Sun Yat-Sen University, No.135 XinGangXiLu, Guangzhou, 510275, China.,Guangdong Engineering Research Centre for Major Infrastructure Safety, School of Civil Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qingxiu Zhang
- School of Civil Engineering, Sun Yat-Sen University, No.135 XinGangXiLu, Guangzhou, 510275, China.,Guangdong Engineering Research Centre for Major Infrastructure Safety, School of Civil Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cuiying Zhou
- School of Civil Engineering, Sun Yat-Sen University, No.135 XinGangXiLu, Guangzhou, 510275, China. .,Guangdong Engineering Research Centre for Major Infrastructure Safety, School of Civil Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhen Liu
- School of Civil Engineering, Sun Yat-Sen University, No.135 XinGangXiLu, Guangzhou, 510275, China. .,Guangdong Engineering Research Centre for Major Infrastructure Safety, School of Civil Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
17
|
Chen X, Yu B, Wang Z, Li Q, Dai C, Wei J. Progress of Periosteal Osteogenesis: The Prospect of In Vivo Bioreactor. Orthop Surg 2022; 14:1930-1939. [PMID: 35794789 PMCID: PMC9483074 DOI: 10.1111/os.13325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022] Open
Abstract
Repairing large segment bone defects is still a clinical challenge. Bone tissue prefabrication shows great translational potentials and has been gradually accepted clinically. Existing bone reconstruction strategies, including autologous periosteal graft, allogeneic periosteal transplantation, xenogeneic periosteal transplantation, and periosteal cell tissue engineering, are all clinically valuable treatments and have made significant progress in research. Herein, we reviewed the research progress of these techniques and briefly explained the relationship among in vivo microenvironment, mechanical force, and periosteum osteogenesis. Moreover, we also highlighted the importance of the critical role of periosteum in osteogenesis and explained current challenges and future perspective.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Baofu Yu
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Zi Wang
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Chuanchang Dai
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Jiao Wei
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| |
Collapse
|
18
|
Wang F, Guo J, Wang Y, Hu Y, Zhang H, Chen J, Jing Y, Cao L, Chen X, Su J. Loss of Bcl-3 delays bone fracture healing through activating NF-κB signaling in mesenchymal stem cells. J Orthop Translat 2022; 35:72-80. [PMID: 36186660 PMCID: PMC9471962 DOI: 10.1016/j.jot.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
Background Bone fracture healing is a postnatal regenerative process in which fibrocartilaginous callus formation and bony callus formation are important. Bony callus formation requires osteoblastic differentiation of MSCs. Materials and methods The formation of callus was assessed by μCT, Safranin-O, H&E and Masson trichrome staining. Osteogenesis of MSCs was analyzed by ALP staining, ARS staining, qRT-PCR and WB. And we also used IF and TOP/FOP Flash luciferase reporter to assess the nuclear translocation of PP65. Results In this study, we found Bcl-3 showed a significant correlation with bone fracture healing. Results of μCT showed that loss of Bcl-3 delays bone fracture healing. Safranin-O, H&E and Masson trichrome staining confirmed that loss of Bcl-3 impacted the formation of cartilage and woven bone in callus. Further experiments in vitro manifested that Bcl-3-knockdown could inhibit MSCs osteoblastic differentiation through releasing the inhibition on NF-κB signaling by Co-IP, IF staining and luciferase reporter assay. Conclusions We unveiled that loss of Bcl-3 could lead to inhibited osteogenic differentiation of MSCs via promoting PP65 nuclear translocation. The translational potential of this article Our data demonstrated that overexpression of Bcl-3 accelerates bone fracture healing, which serves as a promising therapeutic target for bone fracture treatment.
Collapse
|
19
|
Liao J, Liu X, Miramini S, Zhang L. Influence of variability and uncertainty in vertical and horizontal surface roughness on articular cartilage lubrication. Comput Biol Med 2022; 148:105904. [DOI: 10.1016/j.compbiomed.2022.105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022]
|
20
|
Biomechanical evaluation on a novel design of biodegradable embossed locking compression plate for orthopaedic applications using finite element analysis. Biomech Model Mechanobiol 2022; 21:1371-1392. [PMID: 35717547 DOI: 10.1007/s10237-022-01596-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
Abstract
In orthopaedics, conventional implant plates such as locking compression plate (LCP) made from non-biodegradable materials play a vital role in the fixation to support bone fractures, but also create a complication such as stress shielding. These again require a painful surgery to remove/replace after they have healed as it does not degrade into the physiological environment (PE). Currently, there has already been enough discovery of biodegradable materials that, despite being mechanically inefficient compared to non-biodegradable materials, can completely be biodegraded in PE during and after healing to avoid such problems. While there has been insufficient research on the design of biodegradable implant plates, the implementation of which may help achieve the goal with an effort of high mechanical strength. A novel design of biodegradable embossed locking compression plate (BELCP) is designed for biodegradable materials to approach superior mechanical performance and complete degradation over time, considering all such parameters and factors. For biomechanical evaluation, four-point bending test (4PBT), axial compressive and tensile test (ACTT) and torsion test (TT) have been performed on LCP, BELCP and its continuously degraded forms made of biodegradable material (Mg-alloy) using finite element method. BELCP has found 50%, 100% and 100% higher mechanical performance and safer in 4PBT, ACTT and TT, respectively, than LCP. Moreover, BELCP has also observed safe during continuous degradation up to 6 months after implantation under these three tests, considering an approximate sustained degradation rate of about 4 mm/year. Even Mg-alloy made BELCP can be sufficient and safer to support fractured bone than SS-alloy made LCP, but not Ti-alloy made LCP. BELCP can be a successful biodegradable bone implant plate after human/animal trials in the future.
Collapse
|
21
|
Meyr AJ, Doyle MD, King CM, Kwaadu KY, Nasser EM, Ramdass R, Theodoulou MH, Zarick CS. The American College of Foot and Ankle Surgeons® Clinical Consensus Statement: Hallux Valgus. J Foot Ankle Surg 2022; 61:369-383. [PMID: 34706857 DOI: 10.1053/j.jfas.2021.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Andrew J Meyr
- Clinical Professor, Department of Surgery, Temple University School of Podiatric Medicine, Philadelphia, PA.
| | - Matthew D Doyle
- Silicon Valley Reconstructive Foot and Ankle Fellowship - Palo Alto Medical Foundation, Mountain View, CA
| | - Christy M King
- Residency Director, Kaiser San Francisco Bay Area Foot & Ankle Residency Program and Attending Surgeon, Kaiser Foundation Hospital, Oakland, CA
| | - Kwasi Y Kwaadu
- Clinical Associate Professor, Department of Surgery, Temple University School of Podiatric Medicine, Philadelphia, PA
| | | | - Roland Ramdass
- Residency Training Committee, INOVA Fairfax Medical Campus, Fairfax, VA
| | - Michael H Theodoulou
- Chief Division of Podiatric Surgery, Cambridge Health Alliance, and Instructor of Surgery, Harvard Medical School, Boston, MA
| | - Caitlin S Zarick
- Assistant Professor, Department of Plastic Surgery, MedStar Georgetown University Hospital, Washington, DC
| |
Collapse
|
22
|
Liu X, Miramini S, Patel M, Liao J, Shidid D, Zhang L. Influence of therapeutic grip exercises induced loading rates in distal radius fracture healing with volar locking plate fixation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 215:106626. [PMID: 35051836 DOI: 10.1016/j.cmpb.2022.106626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/25/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Therapeutic exercises could potentially enhance the healing of distal radius fractures (DRFs) treated with volar locking plate (VLP). However, the healing outcomes are highly dependant on the patient-specific fracture geometries (e.g., gap size) and the loading conditions at the fracture site (e.g., loading frequency) resulted from different types of therapeutic exercises. The purpose of this study is to investigate the effects of different loading frequencies induced by therapeutic exercises on the biomechanical microenvironment of the fracture site and the transport of cells and growth factors within the fracture callus, ultimately the healing outcomes. This is achieved through numerical modelling and mechanical testing. METHODS Five radius sawbones specimens (Pacific Research Laboratories, Vashon, USA) fixed with VLP (VRP2.0+, Austofix) were mechanically tested using dynamic test instrument (INSTRON E3000, Norwood, MA). The loading protocol used in mechanical testing involved a series of cyclic axial compression tests representing hand and finger therapeutic exercises. The relationship between the dynamic loading rate (i.e., loading frequency) and dynamic stiffness of the construct was established and used as inputs to a developed numerical model for studying the dynamic loading induced cells and growth factors in fracture site and biomechanical stimuli required for healing. RESULTS There is a strong positive linear relationship between the loading rate and axial stiffness of the construct fixed with VLP. The loading rates induced by the moderate frequencies (i.e., 1-2 Hz) could promote endochondral ossification, whereas relatively high loading frequencies (i.e., over 3 Hz) may hinder the healing outcomes or lead to non-union. In addition, a dynamic loading frequency of 2 Hz in combination of a fracture gap size of 3 mm could produce a better healing outcome by enhancing the transport of cells and growth factors at the fracture site in comparison to free diffusion (i.e. without loading), and thereby produces a biomechanical microenvironment which is favourable for healing. CONCLUSION The experimentally validated numerical model presented in this study could potentially contribute to the design of effective patient-specific therapeutic exercises for better healing outcomes. Importantly, the model results demonstrate that therapeutic grip exercises induced dynamic loading could produce a better biomechanical microenvironment for healing without compromising the mechanical stability of the overall volar locking plate fixation construct.
Collapse
Affiliation(s)
- Xuanchi Liu
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Minoo Patel
- Centre for Limb Lengthening and Reconstruction, Epworth Hospital Richmond, Richmond, Victoria, Australia
| | - JinJing Liao
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Darpan Shidid
- RMIT Centre for Additive Manufacture, RMIT University, Melbourne, Victoria, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
23
|
Zhang E, Miramini S, Patel M, Richardson M, Ebeling P, Zhang L. Role of TNF-α in early-stage fracture healing under normal and diabetic conditions. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 213:106536. [PMID: 34823199 DOI: 10.1016/j.cmpb.2021.106536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/14/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Inflammatory response plays a crucial role in the early stage of fracture healing. Immediately after fracture, the debris and immune cells (e.g., macrophages), recruited into the fracture callus, lead to the secretion of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), which governs the mesenchymal stem cells (MSCs) mediated healing processes. However, it is still unclear how chronic inflammatory diseases (e.g., diabetes) affect the level of TNF-α in fracture callus, ultimately the healing outcomes at the early stage of healing. Therefore, the purpose of this study is to develop a numerical model for investigating TNF-α mediated bone fracture healing. METHODS A mathematical model consisting of a system of partial differential equations that represent the reactive transport of cells and cytokines in the fracture callus is developed in this study. The model is first calibrated by using available experimental data and then implemented to study the effect of TNF-α on the early stage of fracture healing under normal and diabetic conditions. RESULTS There is a significant elevation of TNF-α level in facture callus during the first 24 h post-fracture in normal condition, and its influence in the concentration of MSCs and cell differentiation becomes significant three days post-fracture (e.g., the absence of TNF-α signaling could reduce the concentration of MSCs more than 20% in cortical callus). In addition, the excessive secretion of TNF-α induced by diabetes could decrease the concentration of MSCs at the initial stage of healing, particularly reduce the concentration of MSCs in cortical callus by around 25%. CONCLUSION The model predictions suggested that there should be an optimal concentration of TNF-α in fracture callus, which enhances the early stage of healing, and excessive or insufficient secretion of TNF-α might significantly hinder the healing process.
Collapse
Affiliation(s)
- Enhao Zhang
- Department of Infrastructure Engineering, The University of Melbourne, 700 Swanston St, Parkville, Victoria 3010, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, 700 Swanston St, Parkville, Victoria 3010, Australia
| | - Minoo Patel
- Centre for Limb Lengthening and Reconstruction, Epworth Hospital Richmond, Richmond, Victoria, Australia
| | | | - Peter Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Monash Medical Centre, Victoria, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, 700 Swanston St, Parkville, Victoria 3010, Australia.
| |
Collapse
|
24
|
Wang Y, Xiong M, Wang M, Chen H, Li W, Zhou X. Quercetin promotes locomotor function recovery and axonal regeneration through induction of autophagy after spinal cord injury. Clin Exp Pharmacol Physiol 2021; 48:1642-1652. [PMID: 34407225 DOI: 10.1111/1440-1681.13573] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Quercetin (Que), one of the flavonoids, exerts numerous actions on the central nervous system. However, the roles and underlying mechanism of Que in locomotor function recovery and axonal regeneration following spinal cord injury (SCI) have not been fully elucidated. A rat model of spinal cord injury (SCI) was established at T10 using the modified Allen's method. The results in our study indicated that Basso, Beattie and Bresnahan (BBB) locomotor scores were significantly higher after Que treatment. Additionally, Que administration cut down the latency of somatosensory evoked potentials (SEP) and motor evoked potentials (MEP), increased the amplitude of MEP and SEP following SCI. Hematoxylin-eosin (HE) staining demonstrated that Que administration reduced lesion size and cavity formation. Biotinylated dextran amine (BDA) anterograde tracing revealed that BDA positive fibres were increased by Que following SCI. Immunofluorescence staining revealed that Que elevated 5-hydroxytryptamine (5-HT) positive nerve fibres and neurofilament-200 (NF-200) positive neurons, reduced glial fibrillary acidic protein (GFAP) positive astrocytes. In addition, Que inhibited GFAP expression, increased both NeuN and NF-200 expression and facilitated the spinal cord energy metabolism. Moreover, Que increased 18 F-FDG uptake in a time-dependent manner. Furthermore, Que increased Beclin 1 and LC3 II expression, blocked the phosphorylation of Akt, mTOR and p70S6K. 3-methyladenine (3-MA) partly abolished the neuro-protective roles of Que following SCI. Taken together, our study suggested that Que might promote locomotor function recovery, axonal regeneration and energy metabolism through induction of autophagy via Akt/mTOR/p70S6K pathway.
Collapse
Affiliation(s)
- Yeyang Wang
- Department of Spine, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Man Xiong
- Department of Gastroenterology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Mingsen Wang
- Department of Orthopedic, Traditional Chinese Medicine Hospital of Puning City, Orthopaedic Hospital of Puning City, Puning, China
| | - Hongdong Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenjun Li
- Department of Joint, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaozhong Zhou
- Department of Spine, Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
25
|
Wolynski JG, Labus KM, Easley JT, Notaroš BM, Ilić MM, Puttlitz CM, McGilvray KC. Diagnostic prediction of ovine fracture healing outcomes via a novel multi-location direct electromagnetic coupling antenna. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1223. [PMID: 34532360 PMCID: PMC8421979 DOI: 10.21037/atm-21-1853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/23/2021] [Indexed: 01/15/2023]
Abstract
Background Expedient prediction of adverse bone fracture healing (delayed- or non-union) is necessary to advise secondary treatments for improving healing outcome to minimize patient suffering. Radiographic imaging, the current standard diagnostic, remains largely ineffective at predicting nonunions during the early stages of fracture healing resulting in mean nonunion diagnosis times exceeding six months. Thus, there remains a clinical deficit necessitating improved diagnostic techniques. It was hypothesized that adverse fracture healing expresses impaired biological progression at the fracture site, thus resulting in reduced temporal progression of fracture site stiffness which may be quantified prior to the appearance of radiographic indicators of fracture healing (i.e., calcified tissue). Methods A novel multi-location direct electromagnetic coupling antenna was developed to diagnose relative changes in the stiffness of fractures treated by metallic orthopaedic hardware. The efficacy of this diagnostic was evaluated during fracture healing simulated by progressive destabilization of cadaveric ovine metatarsals treated by locking plate fixation (n=8). An ovine in vivo comparative fracture study (n=8) was then utilized to better characterize the performance of the developed diagnostic in a clinically translatable setting. In vivo measurements using the developed diagnostic were compared to weekly radiographic images and postmortem biomechanical, histological, and micro computed tomography analyses. Results For all cadaveric samples, the novel direct electromagnetic coupling antenna displayed significant differences at the fracture site (P<0.05) when measuring a fully fractured sample versus partially intact and fully intact fracture states. In subsequent in vivo fracture models, this technology detected significant differences (P<0.001) in fractures trending towards delayed healing during the first 30 days post-fracture. Conclusions This technology, relative to traditional X-ray imaging, exhibits potential to greatly expedite clinical diagnosis of fracture nonunion, thus warranting additional technological development.
Collapse
Affiliation(s)
- Jakob G Wolynski
- Orthopaedic Bioengineering Research Laboratory, Departments of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Kevin M Labus
- Orthopaedic Bioengineering Research Laboratory, Departments of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jeremiah T Easley
- Preclinical Surgical Research Laboratory, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Branislav M Notaroš
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
| | - Milan M Ilić
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
| | - Christian M Puttlitz
- Orthopaedic Bioengineering Research Laboratory, Departments of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Kirk C McGilvray
- Orthopaedic Bioengineering Research Laboratory, Departments of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
26
|
Araki Y, Yamamoto N, Hayashi K, Takeuchi A, Miwa S, Igarashi K, Higuchi T, Abe K, Taniguchi Y, Yonezawa H, Morinaga S, Asano Y, Tsuchiya H. Clinical outcomes of frozen autograft reconstruction for the treatment of primary bone sarcoma in adolescents and young adults. Sci Rep 2021; 11:17291. [PMID: 34453061 PMCID: PMC8397769 DOI: 10.1038/s41598-021-96162-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 07/23/2021] [Indexed: 01/31/2023] Open
Abstract
Age affects the clinical outcomes of cancer treatment, including those for bone sarcoma. Successful reconstruction using frozen autograft after excision of bone sarcoma has been reported; however, little is known about the clinical outcomes of frozen autograft reconstruction according to age. The purpose was to evaluate the clinical outcomes of the frozen autograft reconstruction focusing on skeletally mature adolescents and young adults (AYAs) that was 15 to 39 years of age. A total of 37 AYA patients with primary bone sarcoma on the appendicular skeleton were enrolled in this study. The mean follow-up period was 89 months. The graft survival (GS), overall survival (OS), recurrence-free survival (RFS), complications and the function were retrospectively evaluated using medical records. The 10-year GS, OS, and RFS rates were 76%, 84%, and 79%, respectively. Bone union was achieved with a rate of 94% within 1 year after surgery, and nonunion (n = 1) and fracture (n = 2) were infrequently observed. Graft removal was performed in 7 cases, and the most common reason for the removal was infection (n = 5). The Musculoskeletal Tumor Society score was excellent in 23 cases of the available 29 cases. Frozen autograft reconstruction for AYAs showed excellent clinical outcomes, although the long-term follow-up is required.
Collapse
Affiliation(s)
- Yoshihiro Araki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Akihiko Takeuchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takashi Higuchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kensaku Abe
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Yuta Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hirotaka Yonezawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Sei Morinaga
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Yohei Asano
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
27
|
Ganadhiepan G, Miramini S, Mendis P, Patel M, Zhang L. A probabilistic approach for modelling bone fracture healing under Ilizarov circular fixator. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3466. [PMID: 33864429 DOI: 10.1002/cnm.3466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/27/2020] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Bone fracture treatments using Ilizarov circular fixator (ICF) involve dealing with uncertainties about a range of critical factors that control the mechanical microenvironment of the fracture site such as ICF configuration, fracture gap size, physiological loading etc. To date, the effects of the uncertainties about these critical factors on the mechanical microenvironment of the fracture site have not been fully understood. The purpose of this study is to tackle this challenge by using computational modelling in conjunction with engineering reliability analysis. Particularly, the effects of uncertainties in fracture gap size (GS), level of weight-bearing (P), ICF wire pretension (T) and wire diameter (WD) on the fracture site mechanical microenvironment at the beginning of the reparative phase of healing was investigated in this study. The results show that the mechanical microenvironment of fracture site stabilised with ICF is very sensitive to the uncertainties in P and GS. For example, an increase in the coefficient of variation of P (COVP ) from 0.1 to 0.9 (i.e., an increase in the uncertainty in P) could reduce the probability of achieving a favourable mechanical microenvironment within the fracture site (i.e., Probability of Success, PoS) by more than 50%, while an increase in the coefficient of variation of GS (COVGS ) from 0.1 to 0.9 could decrease PoS by around 30%. In contrast, an increase in the uncertainties in T and WD (COV increase from 0.1 to 0.9) has little influence on the fracture site mechanical microenvironment (PoS changes <5%).
Collapse
Affiliation(s)
- Ganesharajah Ganadhiepan
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Priyan Mendis
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Minoo Patel
- Centre for Limb Lengthening & Reconstruction, Epworth Hospital Richmond, Richmond, Victoria, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Liu X, Miramini S, Patel M, Liao J, Shidid D, Zhang L. Balance Between Mechanical Stability and Mechano-Biology of Fracture Healing Under Volar Locking Plate. Ann Biomed Eng 2021; 49:2533-2553. [PMID: 34189632 DOI: 10.1007/s10439-021-02815-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
The application of volar locking plate (VLP) is promising in the treatment of dorsally comminuted and displaced fracture. However, the optimal balance between the mechanical stability of VLP and the mechanobiology at the fracture site is still unclear. The purpose of this study is to develop numerical models in conjunction with experimental studies to identify the favourable mechanical microenvironment for indirect healing, by optimizing VLP configuration and post-operative loadings for different fracture geometries. The simulation results show that the mechanical behaviour of VLP is mainly governed by the axial compression. In addition, the model shows that, under relatively large gap size (i.e., 3-5 mm), the increase of FWL could enhance chondrocyte differentiation while a large BPD could compromise the mechanical stability of VLP. Importantly, bending moment produced by wrist flexion/extension and torsion moment produced from forearm rotation could potentially hinder endochondral ossification at early stage of healing. The developed model could potentially assist orthopaedic surgeons in surgical pre-planning and designing post-operation physical therapy for treatment of distal radius fractures.
Collapse
Affiliation(s)
- Xuanchi Liu
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Minoo Patel
- Centre for Limb Lengthening & Reconstruction, Epworth Hospital Richmond, Richmond, VIC, Australia
| | - JinJing Liao
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Darpan Shidid
- RMIT Centre for Additive Manufacture, RMIT University, Melbourne, VIC, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
29
|
Chandra G, Pandey A. Design approaches and challenges for biodegradable bone implants: a review. Expert Rev Med Devices 2021; 18:629-647. [PMID: 34041994 DOI: 10.1080/17434440.2021.1935875] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Biodegradable materials have been at the forefront of cutting-edge research and offer a truly viable option in the designing and manufacturing of bone implants in biomedical engineering. Most research regarding these materials has focused on their biological characteristics and mechanical behavior vis-à-vis nonbiodegradable (NB) materials; but the design aspects and parametric configurations of biodegradable bone implant have somehow not received as much attention as they deserved.Area covered: This review aims to develop insight into the parametrically conceptualized design of biodegradable bone implant and takes into due consideration the characteristics of bone-biodegradable implant interface (BBII), design techniques employed for conventionally used bone implants to optimize parameters using standard test methods, traditional design, and finite element analysis approaches for implant and healing behavior, manufacturing techniques, real-time surgical simulations, and so on.Expert opinion: Some successful and conventionally used NB bone implants do not dissolve or degrade with time and require removal through a complicated surgery after fulfilling the intended objectives. These bone implants should be reconceptualized and designed with an appropriate biodegradable material while paying due attention to all factors/parameters involved and striking a balance between these factors with the ultimate objective of fulfilling all desired orthopedic requirements.
Collapse
Affiliation(s)
- Girish Chandra
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Ajay Pandey
- Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| |
Collapse
|
30
|
Camal Ruggieri IN, Cícero AM, Issa JPM, Feldman S. Bone fracture healing: perspectives according to molecular basis. J Bone Miner Metab 2021; 39:311-331. [PMID: 33151416 DOI: 10.1007/s00774-020-01168-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Fractures have a great impact on health all around the world and with fracture healing optimization; this problem could be resolved partially. To make a practical contribution to this issue, the knowledge of bone tissue, cellularity, and metabolism is essential, especially cytoskeletal architecture and its transformations according to external pressures. Special physical and chemical characteristics of the extracellular matrix (ECM) allow the transmission of mechanical stimuli from outside the cell to the plasmatic membrane. The osteocyte cytoskeleton is conformed by a complex network of actin and microtubules combined with crosslinker proteins like vinculin and fimbrin, connecting and transmitting outside stimuli through EMC to cytoplasm. Herein, critical signaling pathways like Cx43-depending ones, MAPK/ERK, Wnt, YAP/TAZ, Rho-ROCK, and others are activated due to mechanical stimuli, resulting in osteocyte cytoskeletal changes and ECM remodeling, altering the tissue and, therefore, the bone. In recent years, the osteocyte has gained more interest and value in relation to bone homeostasis as a great coordinator of other cell populations, thanks to its unique functions. By integrating the latest advances in relation to intracellular signaling pathways, mechanotransmission system of the osteocyte and bone tissue engineering, there are promising experimental strategies, while some are ready for clinical trials. This work aims to show clearly and precisely the integration between cytoskeleton and main molecular pathways in relation to mechanotransmission mechanism in osteocytes, and the use of this theoretical knowledge in therapeutic tools for bone fracture healing.
Collapse
Affiliation(s)
- Iván Nadir Camal Ruggieri
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina.
| | - Andrés Mauricio Cícero
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina
| | | | - Sara Feldman
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina
- Research Council of the Rosario National University (CIUNR) and CONICET, Rosario, Argentina
| |
Collapse
|
31
|
Chavarri-Prado D, Brizuela-Velasco A, Álvarez-Arenal Á, Dieguez-Pereira M, Pérez-Pevida E, Viteri-Agustín I, Estrada-Martínez A. The Bone Buttress Theory: The Effect of the Mechanical Loading of Bone on the Osseointegration of Dental Implants. BIOLOGY 2020; 10:biology10010012. [PMID: 33379218 PMCID: PMC7823772 DOI: 10.3390/biology10010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022]
Abstract
Simple Summary The bone, as a vertebrate support tissue, is capable of adapting its structure and function to the mechanical demands resulting from the loads that are produced during the performance of its activity. This regulatory action also occurs during the healing processes of a fracture. The purpose of this study was to determine to what extent a dynamic load was capable of modulating the bone healing response around a titanium implant. The study was carried out on experimental rabbits, to which dental implants were placed in the tibiae and there were two test groups, one in which they did not undergo exercise during healing period and another that ran daily during this process on a treadmill. The trail results showed an improvement in the osseointegration process of the implant in the group in which it was subjected to load. The importance of these results is that it opens the door to a better understanding of the mechanisms that can modulate bone healing, especially around dental implants, supporting implant loading protocols that are based on efficiency. Abstract Objectives: To determine the effect of mechanical loading of bone on the stability and histomorphometric variables of the osseointegration of dental implants using an experimental test in an animal model. Materials and Methods: A total of 4 human implants were placed in both tibiae of 10 New Zealand rabbits (n = 40). A 6-week osseointegration was considered, and the rabbits were randomly assigned to two groups: Group A (Test group) included 5 rabbits that ran on a treadmill for 20 min daily during the osseointegration period; Group B (Controls) included the other 5 that were housed conventionally. The monitored variables were related to the primary and secondary stability of the dental implants (implant stability quotient—ISQ), vertical bone growth, bone to implant contact (BIC), area of regenerated bone and the percentage of immature matrix. Results: The results of the study show a greater vertical bone growth (Group A 1.26 ± 0.48 mm, Group B 0.32 ± 0.47 mm, p < 0.001), higher ISQ values (Group A 11.25 ± 6.10 ISQ, 15.73%; Group B 5.80 ± 5.97 ISQ, 7.99%, p = 0.006) and a higher BIC (Group A 19.37%, Group B 23.60%, p = 0.0058) for implants in the test group, with statistically significant differences. A higher percentage of immature bone matrix was observed for implants in the control group (20.68 ± 9.53) than those in the test group (15.38 ± 8.84) (p = 0.108). A larger area of regenerated bone was also observed for the test implants (Group A 280.50 ± 125.40 mm2, Group B 228.00 ± 141.40 mm2), but it was not statistically significant (p = 0.121). Conclusions: The mechanical loading of bone improves the stability and the histomorphometric variables of the osseointegration of dental implants.
Collapse
Affiliation(s)
- David Chavarri-Prado
- Department of Surgery and Surgical Specialties, School of Medicine and Health Sciences, University of Oviedo, 33006 Oviedo, Spain; (A.B.-V.); (Á.Á.-A.); (M.D.-P.); (A.E.-M.)
- Correspondence:
| | - Aritza Brizuela-Velasco
- Department of Surgery and Surgical Specialties, School of Medicine and Health Sciences, University of Oviedo, 33006 Oviedo, Spain; (A.B.-V.); (Á.Á.-A.); (M.D.-P.); (A.E.-M.)
| | - Ángel Álvarez-Arenal
- Department of Surgery and Surgical Specialties, School of Medicine and Health Sciences, University of Oviedo, 33006 Oviedo, Spain; (A.B.-V.); (Á.Á.-A.); (M.D.-P.); (A.E.-M.)
| | - Markel Dieguez-Pereira
- Department of Surgery and Surgical Specialties, School of Medicine and Health Sciences, University of Oviedo, 33006 Oviedo, Spain; (A.B.-V.); (Á.Á.-A.); (M.D.-P.); (A.E.-M.)
| | - Esteban Pérez-Pevida
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
- Faculty of Health Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain
| | - Iratxe Viteri-Agustín
- Department of Pharmacology and Physiology, School of Medicine, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Alejandro Estrada-Martínez
- Department of Surgery and Surgical Specialties, School of Medicine and Health Sciences, University of Oviedo, 33006 Oviedo, Spain; (A.B.-V.); (Á.Á.-A.); (M.D.-P.); (A.E.-M.)
| |
Collapse
|
32
|
Galindo-Moreno P, Gutierrez-Garrido L, Lopez-Chaichio L, Guerra-Lorenzo C, Rodriguez-Alvarez R, Padial-Molina M. Crestal bone changes around early vs. conventionally loaded implants with a multi-phosphonate coated surface: A randomized pilot clinical trial. Clin Oral Implants Res 2020; 32:75-87. [PMID: 33210771 DOI: 10.1111/clr.13681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/04/2020] [Accepted: 11/08/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To compare the marginal bone level around implants with a thin multi-phosphonate coated surface after either an early or conventional loading protocol. MATERIAL AND METHODS A randomized pilot clinical trial was conducted. Dental impressions were obtained after either 4 (test) or 8 weeks (control) and single crowns screwed-in 2 weeks later. Several variables were evaluated including radiographical marginal bone level (MBL), patient's level variables, and those related to the restoration and surrounding tissues. These data were obtained at several time points up to a 1-year follow-up. RESULTS Thirty-four patients were included in the study, 18 assigned to the test group. No differences at implant placement were detected for tissue thickness, keratinized mucosa, nor any other clinical or radiological variable. At the time of impressions, tissue was thinner in the test group (2.30 (0.46) versus 2.78 (0.66) mm, test versus control, respectively; p = .012) so shorter abutments were used in this group. Regardless, no significant changes in marginal bone level were detected neither within group along time nor between groups. The average MBL at the 1-year follow-up was -0.15 (0.32) versus -0.22 (0.37) (p = .443) (test versus control, respectively). None of the clinical or radiological variables evaluated had a determinant influence on the MBL at any visit nor group. CONCLUSION The use of implants with a multi-phosphonate coated surface for early loading offers successful radiographical outcomes 1 year after loading. MBL over time was not affected by taking the impressions 4 or 8 weeks after implant placement and loading them 2 weeks later.
Collapse
Affiliation(s)
- Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Lourdes Gutierrez-Garrido
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Lucia Lopez-Chaichio
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Claudia Guerra-Lorenzo
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Roque Rodriguez-Alvarez
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| |
Collapse
|
33
|
Ghimire S, Miramini S, Edwards G, Rotne R, Xu J, Ebeling P, Zhang L. The investigation of bone fracture healing under intramembranous and endochondral ossification. Bone Rep 2020; 14:100740. [PMID: 33385019 PMCID: PMC7772545 DOI: 10.1016/j.bonr.2020.100740] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/08/2023] Open
Abstract
After trauma, fractured bone starts healing directly through bone union or indirectly through callus formation process. Intramembranous and endochondral ossification are two commonly known mechanisms of indirect healing. The present study investigated the bone fracture healing under intramembranous and endochondral ossification by developing theoretical models in conjunction with performing a series of animal experiments. Using experimentally determined mean bone densities in sheep tibia stabilized by the Locking Compression Plate (LCP) fixation system, the research outcomes showed that intramembranous and endochondral ossification can be described by Hill Function with two unique sets of function parameters in mechanical stimuli mediated fracture healing. Two different thresholds exist within the range of mechanical simulation index which could trigger significant intramembranous and endochondral ossification, with a relatively higher bone formation rate of endochondral ossification than that of intramembranous ossification. Furthermore, the increase of flexibility of the LCP system and the use of titanium LCP could potentially promote uniform bone formation across the fracture gap, ultimately better healing outcomes.
Collapse
Affiliation(s)
- Smriti Ghimire
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Glenn Edwards
- School of Animal & Veterinary Sciences, Charles Sturt University, NSW 2678, Australia
| | - Randi Rotne
- School of Animal & Veterinary Sciences, Charles Sturt University, NSW 2678, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, WA 6009, Australia
| | - Peter Ebeling
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
34
|
Frank A, Brianza S, Plecko M, Raschke MJ, Wähnert D. Variable Fixation Technology Provides Rigid as Well as Progressive Dynamic Fixation: A Biomechanical Investigation. J Bone Joint Surg Am 2020; 102:e115. [PMID: 33086351 DOI: 10.2106/jbjs.19.01302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND A new locking-screw technology, the Variable Fixation Locking Screw (VFLS; Biomech Innovations), was developed with the aim of promoting secondary fracture-healing. The VFLS features a resorbable sleeve that progressively decreases its mechanical properties and mass during the fracture-healing time. In this study, we investigated whether the VFLS can provide rigid as well as progressive dynamic fixation. METHODS The interfragmentary stability provided by the VFLS was tested in a simulated fracture-gap model and compared with that provided by standard locking or by a combination of both technologies under compression and torsional loading. Tests were performed with an intact sleeve (initial condition) and after its chemical dissolution. An optical measurement system was used to characterize interfragmentary movements. RESULTS The axial stiffness did not differ significantly among groups in the initial condition. Sleeve resorption significantly decreased construct stiffness. The torsional stiffness of the samples instrumented with the VFLS was lower than that of the control group. The degradation of the sleeve resulted in a significant increase in axial displacement recorded at both the cis and trans cortices. In samples featuring combined technologies, this increase was about 12% to 20% at the trans cortex and about 50% to 60% at the cis cortex. In samples featuring VFLS technology only, this increase was about 20% to 37% at the trans cortex and about 70% to 125% at the cis cortex. CONCLUSIONS The initial stability offered by the VFLS is equivalent to that of standard locking-screw technology. The resorption of the degradable sleeve leads to effective and reproducible fracture-gap dynamization, progressively varying the way the fracture gap is strained and the magnitude of the strain. CLINICAL RELEVANCE The VFLS provides rigid and progressive dynamic fixation in vitro. Such variable stability might have beneficial effects in terms of triggering and boosting secondary fracture-healing.
Collapse
Affiliation(s)
- A Frank
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
- Institute for Musculoskeletal Medicine, Westfaelische-Wilhelms-University Muenster, Muenster, Germany
| | - S Brianza
- Biomech Innovations AG, Nidau, Switzerland
| | - M Plecko
- Unfallkrankenhaus Steiermark, Graz, Austria
| | - M J Raschke
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - D Wähnert
- Institute for Musculoskeletal Medicine, Westfaelische-Wilhelms-University Muenster, Muenster, Germany
- Department of Orthopedic and Trauma Surgery, Protestant Hospital of Bethel Foundation, Bielefeld, Germany
| |
Collapse
|
35
|
The Application of Digital Volume Correlation (DVC) to Evaluate Strain Predictions Generated by Finite Element Models of the Osteoarthritic Humeral Head. Ann Biomed Eng 2020; 48:2859-2869. [PMID: 32572730 PMCID: PMC7723934 DOI: 10.1007/s10439-020-02549-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/12/2020] [Indexed: 01/29/2023]
Abstract
Continuum-level finite element models (FEMs) of the humerus offer the ability to evaluate joint replacement designs preclinically; however, experimental validation of these models is critical to ensure accuracy. The objective of the current study was to quantify experimental full-field strain magnitudes within osteoarthritic (OA) humeral heads by combining mechanical loading with volumetric microCT imaging and digital volume correlation (DVC). The experimental data was used to evaluate the accuracy of corresponding FEMs. Six OA humeral head osteotomies were harvested from patients being treated with total shoulder arthroplasty and mechanical testing was performed within a microCT scanner. MicroCT images (33.5 µm isotropic voxels) were obtained in a pre- and post-loaded state and BoneDVC was used to quantify full-field experimental strains (≈ 1 mm nodal spacing, accuracy = 351 µstrain, precision = 518 µstrain). Continuum-level FEMs with two types of boundary conditions (BCs) were simulated: DVC-driven and force-driven. Accuracy of the FEMs was found to be sensitive to the BC simulated with better agreement found with the use of DVC-driven BCs (slope = 0.83, r2 = 0.80) compared to force-driven BCs (slope = 0.22, r2 = 0.12). This study quantified mechanical strain distributions within OA trabecular bone and demonstrated the importance of BCs to ensure the accuracy of predictions generated by corresponding FEMs.
Collapse
|
36
|
Tao G, Mao P, Guan H, Jiang M, Chu T, Zhong C, Liu J. Effect of miR-181a-3p on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting BMP10. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4159-4164. [PMID: 31713441 DOI: 10.1080/21691401.2019.1687494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective: To explore the regulation relationship between miR-181a-3p and BMP10, and their mechanism of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (MSCs).Methods: After osteogenic induction of MSCs, the ALP activity was detected by ELISA. The expression of miRNA-181a-3p and BMP10 was detected by RT-qPCR, and the protein levels of BMP10 and osteogenic differentiation marker proteins ALK and RUNX2 were detected by Western blot. The TargetScan online website was used to predict the putative target of miR-181a-3p, and dual luciferase reporter assay was performed to validate the targeting relationship between miR-181a-3p and BMP10.Results: In osteogenic differentiation of MSCs, ALP activity, the level of ALK and RUNX2 was evidently increased (p < .05), and the expression of miR-181a-3p was significantly downregulated (p < .05). Moreover, overexpression of miR-181a-3p obviously decreased the expression of BMP10 (p < .05), miR-181a-3p knockdown increased the expression of BMP10 prominently (p < .05). The transfection of miR-181a-3p mimics resulted in significantly downregulation of ALP activity and RUNX2 protein expression in MSCs (p < .05). In addition, overexpression of BMP10 could reverse the inhibitory effect of miR-181a-3p on osteogenic differentiation (p < .05).Conclusions: In conclusion, we found that miR-181a-3p inhibited osteogenic differentiation of MCSs by targeting BMP10.
Collapse
Affiliation(s)
- GuiLu Tao
- Department of Wound Repairment, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Mao
- Department of Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - HaoNan Guan
- Department of Wound Repairment, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - MinFei Jiang
- Department of Wound Repairment, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tongbin Chu
- Department of Wound Repair, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - CunDi Zhong
- Department of Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - JiaZheng Liu
- Department of Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
37
|
Numerical Study of Prosthetic Knee Replacement Using Finite Element Analysis. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2020. [DOI: 10.4028/www.scientific.net/jbbbe.44.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The knee at times undergoes a surgical process to substitute the weight-bearing surfaces of the knee joint. This procedure relieves the pain and disability around the knee joint. This research paper studied the knee arthroplasty, also referred to as knee replacement. This work was aided with computer vision for visual and accuracy. Autodesk fusion 360 and the stl files were used to generate cemented, posterior stabilised knee prosthesis and imported into the COMSOL Multiphysics software. Then, the three-dimensional models of the total knee arthroplasty (TKA) prosthetic structure are produced. The prosthetic components are modelled as linear isotropic elastic materials. Finite element (FE) simulations using COMSOL Multiphysics on a CAD model of a knee are effectuated to show the effect of several loads and strains on the knee. FE analysis of the model indicates that the orthotropic model depicts a more realistic stress distribution of the knee as it reveals the detailed anatomy of the entire knee structure. The computational results of this work displayed a fair agreement with experimental information from the literature.
Collapse
|
38
|
McGough MA, Boller LA, Groff DM, Schoenecker JG, Nyman JS, Wenke JC, Rhodes C, Shimko D, Duvall CL, Guelcher SA. Nanocrystalline hydroxyapatite-poly(thioketal urethane) nanocomposites stimulate a combined intramembranous and endochondral ossification response in rabbits. ACS Biomater Sci Eng 2020; 6:564-574. [PMID: 32405537 PMCID: PMC7220073 DOI: 10.1021/acsbiomaterials.9b01378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resorbable bone cements are replaced by bone osteoclastic resorption and osteoblastic new bone formation near the periphery. However, the ideal bone cement would be replaced by new bone through processes similar to fracture repair, which occurs through a variable combination of endochondral and intramembranous ossification. In this study, nanocrystalline hydroxyapatite (nHA)-poly(thioketal urethane) (PTKUR) cements were implanted in femoral defects in New Zealand White rabbits to evaluate ossification at 4, 12, and 18 months. Four formulations were tested: an injectable, flowable cement and three moldable putties with varying ratios of calcium phosphate to sucrose granules. New bone formation and resorption of the cement by osteoclasts occurred near the periphery. Stevenel's Blue and Safranin O staining revealed infiltration of chondrocytes into the cements and ossification of the cartilaginous intermediate. These findings suggest that nHA-PTKUR cements support combined intramembranous and endochondral ossification, resulting in enhanced osseointegration of the cement that could potentially improve patient outcomes.
Collapse
Affiliation(s)
- Madison A.P. McGough
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235
| | - Lauren A. Boller
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235
| | - Dustin M. Groff
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235
| | - Jonathan G. Schoenecker
- Vanderbilt Center for Bone Biology, Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37212
- Department of Orthopaedics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37212
| | - Jeffry S. Nyman
- Vanderbilt Center for Bone Biology, Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37212
- Department of Orthopaedics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37212
| | - Joseph C. Wenke
- U.S. Army Institute of Surgical Research, 3698 Chambers Rd, San Antonio, TX 78234
| | - Cheyenne Rhodes
- Medtronic Spinal & Biologics, 1800 Pyramid Pl, Memphis, TN 38132
| | - Dan Shimko
- Medtronic Spinal & Biologics, 1800 Pyramid Pl, Memphis, TN 38132
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235
| | - Scott A. Guelcher
- Department of Biomedical Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235
- Vanderbilt Center for Bone Biology, Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37212
| |
Collapse
|
39
|
The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing. J Mech Behav Biomed Mater 2019; 103:103544. [PMID: 32090944 DOI: 10.1016/j.jmbbm.2019.103544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/16/2019] [Indexed: 01/23/2023]
Abstract
The ability to fabricate complex structures via precise and heterogeneous deposition of biomaterials makes additive manufacturing (AM) a leading technology in the creation of implants and tissue engineered scaffolds. Connective tissues (CTs) remain attractive targets for manufacturing due to their "simple" tissue compositions that, in theory, are replicable through choice of biomaterial(s) and implant microarchitecture. Nevertheless, characterisation of the mechanical and biological functions of 3D printed constructs with respect to their host tissues is often limited and remains a restriction towards their translation into clinical practice. This review aims to provide an update on the current status of AM to mimic the mechanical properties of CTs, with focus on arterial tissue, articular cartilage and bone, from the perspective of printing platforms, biomaterial properties, and topological design. Furthermore, the grand challenges associated with the AM of CT replacements and their subsequent regulatory requirements are discussed to aid further development of reliable and effective implants.
Collapse
|
40
|
Miramini S, Yang Y, Zhang L. A probabilistic-based approach for computational simulation of bone fracture healing. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 180:105011. [PMID: 31421602 DOI: 10.1016/j.cmpb.2019.105011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/25/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE It is widely known that bone fracture healing is affected by mechanical factors such as fracture geometry, fixation configuration and post-operative weight bearing loading. However, there are several uncertainties associated with the magnitude of the mechanical factors affecting bone healing as it is challenging to adjust and control them in clinical practice. The current bone fracture healing investigations mainly adopt a deterministic approach for identifying the optimal mechanical conditions for a favourable bone healing outcome. However, a probabilistic approach should be used in the analysis to incorporate such uncertainties for prediction of bone healing. METHODS In this study we developed a probabilistic-based computational model to predict the probability of delayed healing or non-union under different fracture treatment mechanical conditions for fractures stabilised by locking plates. RESULTS The results show that there is a strong positive linear correlation between the mechanical stimulations (S) in the fracture gap and the magnitude of weight bearing, the bone-plate distance (BPD) and the plate working length (WL), whereas the fracture gap size has a highly negative and nonlinear correlation with S. While the results show that fracture mechanical microenvironment is more sensitive to the uncertainties in WL compared to BPD, the uncertainty associated with the magnitude of WL is very low and can be resulted from implant manufacturing tolerance. However, there is a high uncertainty associated with the magnitude of BPD as it cannot be accurately adjusted during the surgery. The results show that the tissue differentiation at the far cortex of fracture gap is more sensitive to the variation of BPD compared with that at the near cortex. The probability of delayed healing (fibrous tissue formation) at far cortex is increased from 0% to 40% when coefficient of variation (COV) of BPD rises from 0.1 to 0.9 (for average BPD = 2 mm, WL = 65 mm, fracture gap size = 3 mm and Weight bearing = 150 N). Further, both near and far cortex of fracture site are sensitive to the variation in weight bearing loading. CONCLUSIONS The developed probabilistic model may lead to useful guidelines that could help orthopaedic surgeons identify how reliable a specific fracture treatment strategy is.
Collapse
Affiliation(s)
- Saeed Miramini
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia.
| | - Yi Yang
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia.
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|