1
|
Inguscio CR, Carton F, Cisterna B, Rizzi M, Boccafoschi F, Tabaracci G, Malatesta M. Low ozone concentrations do not exert cytoprotective effects on tamoxifen-treated breast cancer cells in vitro. Eur J Histochem 2024; 68. [PMID: 39252536 PMCID: PMC11445695 DOI: 10.4081/ejh.2024.4106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Medical treatment with low ozone concentrations proved to exert therapeutic effects in various diseases by inducing a cytoprotective antioxidant response through the nuclear factor erythroid derived-like 2 (Nrf2) transcription factor pathway. Low ozone doses are increasingly administered to oncological patients as a complementary treatment to mitigate some adverse side-effects of antitumor treatments. However, a widespread concern exists about the possibility that the cytoprotective effect of Nrf2 activation may confer drug resistance to cancer cells or at least reduce the efficacy of antitumor agents. In this study, the effect of low ozone concentrations on tamoxifen-treated MCF7 human breast cancer cells has been investigated in vitro by histochemical and molecular techniques. Results demonstrated that cell viability, proliferation and migration were generally similar in tamoxifen-treated cells as in cells concomitantly treated with tamoxifen and ozone. Notably, low ozone concentrations were unable to overstimulate the antioxidant response through the Nfr2 pathway, thus excluding a possible ozone-driven cytoprotective effect that would lead to increased tumor cell survival during the antineoplastic treatment. These findings, though obtained in an in vitro model, support the hypothesis that low ozone concentrations do not interfere with the tamoxifen-induced effects on breast cancer cells.
Collapse
Affiliation(s)
- Chiara Rita Inguscio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Flavia Carton
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| | - Manuela Rizzi
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara.
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara.
| | | | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona.
| |
Collapse
|
2
|
Metsiou DN, Deligianni D, Giannopoulou E, Kalofonos H, Koutras A, Athanassiou G. Adhesion strength and anti-tumor agents regulate vinculin of breast cancer cells. Front Oncol 2022; 12:811508. [PMID: 36052248 PMCID: PMC9424896 DOI: 10.3389/fonc.2022.811508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The onset and progression of cancer are strongly associated with the dissipation of adhesion forces between cancer cells, thus facilitating their incessant attachment and detachment from the extracellular matrix (ECM) to move toward metastasis. During this process, cancer cells undergo mechanical stresses and respond to these stresses with membrane deformation while inducing protrusions to invade the surrounding tissues. Cellular response to mechanical forces is inherently related to the reorganization of the cytoskeleton, the dissipation of cell–cell junctions, and the adhesion to the surrounding ECM. Moreover, the role of focal adhesion proteins, and particularly the role of vinculin in cell attachment and detachment during migration, is critical, indicating the tight cell–ECM junctions, which favor or inhibit the metastatic cascade. The biomechanical analysis of these sequences of events may elucidate the tumor progression and the potential of cancer cells for migration and metastasis. In this work, we focused on the evaluation of the spreading rate and the estimation of the adhesion strength between breast cancer cells and ECM prior to and post-treatment with anti-tumor agents. Specifically, different tamoxifen concentrations were used for ER+ breast cancer cells, while even concentrations of trastuzumab and pertuzumab were used for HER2+ cells. Analysis of cell stiffness indicated an increased elastic Young’s modulus post-treatment in both MCF-7 and SKBR-3 cells. The results showed that the post-treatment spreading rate was significantly decreased in both types of breast cancer, suggesting a lower metastatic potential. Additionally, treated cells required greater adhesion forces to detach from the ECM, thus preventing detachment events of cancer cells from the ECM, and therefore, the probability of cell motility, migration, and metastasis was confined. Furthermore, post-detachment and post-treatment vinculin levels were increased, indicating tighter cell–ECM junctions, hence limiting the probability of cell detachment and, therefore, cell motility and migration.
Collapse
Affiliation(s)
- Despoina Nektaria Metsiou
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering and Aeronautics, University of Patras, Patra, Greece
- *Correspondence: Despoina Nektaria Metsiou, ;
| | - Despina Deligianni
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering and Aeronautics, University of Patras, Patra, Greece
| | - Efstathia Giannopoulou
- Clinical Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, Patra, Greece
| | - Haralabos Kalofonos
- Clinical Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, Patra, Greece
| | - Angelos Koutras
- Clinical Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, Patra, Greece
| | - George Athanassiou
- Laboratory of Biomechanics and Biomedical Engineering, Department of Mechanical Engineering and Aeronautics, University of Patras, Patra, Greece
| |
Collapse
|
3
|
Morphometrical, Morphological, and Immunocytochemical Characterization of a Tool for Cytotoxicity Research: 3D Cultures of Breast Cell Lines Grown in Ultra-Low Attachment Plates. TOXICS 2022; 10:toxics10080415. [PMID: 35893848 PMCID: PMC9394479 DOI: 10.3390/toxics10080415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
Three-dimensional cell cultures may better mimic avascular tumors. Yet, they still lack characterization and standardization. Therefore, this study aimed to (a) generate multicellular aggregates (MCAs) of four breast cell lines: MCF7, MDA-MB-231, and SKBR3 (tumoral) and MCF12A (non-tumoral) using ultra-low attachment (ULA) plates, (b) detail the methodology used for their formation and analysis, providing technical tips, and (c) characterize the MCAs using morphometry, qualitative cytology (at light and electron microscopy), and quantitative immunocytochemistry (ICC) analysis. Each cell line generated uniform MCAs with structural differences among cell lines: MCF7 and MDA-MB-231 MCAs showed an ellipsoid/discoid shape and compact structure, while MCF12A and SKBR3 MCAs were loose, more flattened, and presented bigger areas. MCF7 MCAs revealed glandular breast differentiation features. ICC showed a random distribution of the proliferating and apoptotic cells throughout the MCAs, not fitting in the traditional spheroid model. ICC for cytokeratin, vimentin, and E-cadherin showed different results according to the cell lines. Estrogen (ER) and progesterone (PR) receptors were positive only in MCF7 and human epidermal growth factor receptor 2 (HER-2) in SKBR3. The presented characterization of the MCAs in non-exposed conditions provided a good baseline to evaluate the cytotoxic effects of potential anticancer compounds.
Collapse
|
4
|
Metsiou DN, Kozaniti FK, Deligianni DD. Engineering Breast Cancer Cells and hUMSCs Microenvironment in 2D and 3D Scaffolds: A Mechanical Study Approach of Stem Cells in Anticancer Therapy. Bioengineering (Basel) 2021; 8:bioengineering8110189. [PMID: 34821755 PMCID: PMC8615245 DOI: 10.3390/bioengineering8110189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Cell biomechanics plays a major role as a promising biomarker for early cancer diagnosis and prognosis. In the present study, alterations in modulus of elasticity, cell membrane roughness, and migratory potential of MCF-7 (ER+) and SKBR-3 (HER2+) cancer cells were elucidated prior to and post treatment with conditioned medium from human umbilical mesenchymal stem cells (hUMSCs-CM) during static and dynamic cell culture. Moreover, the therapeutic potency of hUMSCs-CM on cancer cell’s viability, migratory potential, and F-actin quantified intensity was addressed in 2D surfaces and 3D scaffolds. Interestingly, alterations in ER+ cancer cells showed a positive effect of treatment upon limiting cell viability, motility, and potential for migration. Moreover, increased post treatment cell stiffness indicated rigid cancer cells with confined cell movement and cytoskeletal alterations with restricted lamellipodia formation, which enhanced these results. On the contrary, the cell viability and the migratory potential were not confined post treatment with hUMSCs-CM on HER2+ cells, possibly due to their intrinsic aggressiveness. The increased post treatment cell viability and the decreased cell stiffness indicated an increased potency for cell movement. Hence, the therapy had no efficacy on HER2+ cells.
Collapse
|
5
|
|
6
|
Mahmood RI, Abbass AK, Razali N, Al-Saffar AZ, Al-Obaidi JR. Protein profile of MCF-7 breast cancer cell line treated with lectin delivered by CaCO 3NPs revealed changes in molecular chaperones, cytoskeleton, and membrane-associated proteins. Int J Biol Macromol 2021; 184:636-647. [PMID: 34174302 DOI: 10.1016/j.ijbiomac.2021.06.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/09/2023]
Abstract
The second most predominant cancer in the world and the first among women is breast cancer. We aimed to study the protein abundance profiles induced by lectin purified from the Agaricus bisporus mushroom (ABL) and conjugated with CaCO3NPs in the MCF-7 breast cancer cell line. Two-dimensional electrophoresis (2-DE) and orbitrap mass spectrometry techniques were used to reveal the protein abundance pattern induced by lectin. Flow cytometric analysis showed the accumulation of ABL-CaCO3NPs treated cells in the G1 phase than the positive control. Thirteen proteins were found different in their abundance in breast cancer cells after 24 h exposure to lectin conjugated with CaCO3NPs. Most of the identified proteins were showing a low abundance in ABL-CaCO3NPs treated cells in comparison to the positive and negative controls, including V-set and immunoglobulin domain, serum albumin, actin cytoplasmic 1, triosephosphate isomerase, tropomyosin alpha-4 chain, and endoplasmic reticulum chaperone BiP. Hornerin, tropomyosin alpha-1 chain, annexin A2, and protein disulfide-isomerase were up-regulated in comparison to the positive. Bioinformatic analyses revealed the regulation changes of these proteins mainly affected the pathways of 'Bcl-2-associated athanogene 2 signalling pathway', 'Unfolded protein response', 'Caveolar-mediated endocytosis signalling', 'Clathrin-mediated endocytosis signalling', 'Calcium signalling' and 'Sucrose degradation V', which are associated with breast cancer. We concluded that lectin altered the abundance in molecular chaperones/heat shock proteins, cytoskeletal, and metabolic proteins. Additionally, lectin induced a low abundance of MCF-7 cancer cell proteins in comparison to the positive and negative controls, including; V-set and immunoglobulin domain, serum albumin, actin cytoplasmic 1, triosephosphate isomerase, tropomyosin alpha-4 chain, and endoplasmic reticulum chaperone BiP.
Collapse
Affiliation(s)
- Rana I Mahmood
- Department of Biology, College of Science, Baghdad University, Baghdad, Iraq; Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Amal Kh Abbass
- Department of Biology, College of Science, Baghdad University, Baghdad, Iraq
| | - Nurhanani Razali
- Department of Hygienic Sciences, Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, 658-8558, Kobe, Japan; Membranology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan, 904-0495
| | - Ali Z Al-Saffar
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia.
| |
Collapse
|
7
|
Shinde A, Illath K, Gupta P, Shinde P, Lim KT, Nagai M, Santra TS. A Review of Single-Cell Adhesion Force Kinetics and Applications. Cells 2021; 10:577. [PMID: 33808043 PMCID: PMC8000588 DOI: 10.3390/cells10030577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cells exert, sense, and respond to the different physical forces through diverse mechanisms and translating them into biochemical signals. The adhesion of cells is crucial in various developmental functions, such as to maintain tissue morphogenesis and homeostasis and activate critical signaling pathways regulating survival, migration, gene expression, and differentiation. More importantly, any mutations of adhesion receptors can lead to developmental disorders and diseases. Thus, it is essential to understand the regulation of cell adhesion during development and its contribution to various conditions with the help of quantitative methods. The techniques involved in offering different functionalities such as surface imaging to detect forces present at the cell-matrix and deliver quantitative parameters will help characterize the changes for various diseases. Here, we have briefly reviewed single-cell mechanical properties for mechanotransduction studies using standard and recently developed techniques. This is used to functionalize from the measurement of cellular deformability to the quantification of the interaction forces generated by a cell and exerted on its surroundings at single-cell with attachment and detachment events. The adhesive force measurement for single-cell microorganisms and single-molecules is emphasized as well. This focused review should be useful in laying out experiments which would bring the method to a broader range of research in the future.
Collapse
Affiliation(s)
- Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-Si, Gangwon-Do 24341, Korea;
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan;
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| |
Collapse
|
8
|
Wen X, Ou YC, Bogatcheva G, Thomas G, Mahadevan-Jansen A, Singh B, Lin EC, Bardhan R. Probing metabolic alterations in breast cancer in response to molecular inhibitors with Raman spectroscopy and validated with mass spectrometry. Chem Sci 2020; 11:9863-9874. [PMID: 34094246 PMCID: PMC8162119 DOI: 10.1039/d0sc02221g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/19/2020] [Indexed: 01/07/2023] Open
Abstract
Rapid and accurate response to targeted therapies is critical to differentiate tumors that are resistant to treatment early in the regimen. In this work, we demonstrate a rapid, noninvasive, and label-free approach to evaluate treatment response to molecular inhibitors in breast cancer (BC) cells with Raman spectroscopy (RS). Metabolic reprogramming in BC was probed with RS and multivariate analysis was applied to classify the cells into responsive or nonresponsive groups as a function of drug dosage, drug type, and cell type. Metabolites identified with RS were then validated with mass spectrometry (MS). We treated triple-negative BC cells with Trametinib, an inhibitor of the extracellular-signal-regulated kinase (ERK) pathway. Changes measured with both RS and MS corresponding to membrane phospholipids, amino acids, lipids and fatty acids indicated that these BC cells were responsive to treatment. Comparatively, minimal metabolic changes were observed post-treatment with Alpelisib, an inhibitor of the mammalian target of rapamycin (mTOR) pathway, indicating treatment resistance. These findings were corroborated with cell viability assay and immunoblotting. We also showed estrogen receptor-positive MCF-7 cells were nonresponsive to Trametinib with minimal metabolic and viability changes. Our findings support that oncometabolites identified with RS will ultimately enable rapid drug screening in patients ensuring patients receive the most effective treatment at the earliest time point.
Collapse
Affiliation(s)
- Xiaona Wen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235 USA
| | - Yu-Chuan Ou
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Nashville TN 37235 USA
| | - Galina Bogatcheva
- Department of Medicine, Vanderbilt University Medical Center Nashville TN 37232 USA
| | - Giju Thomas
- Vanderbilt Biophotonics Center, Vanderbilt University Nashville TN 37232 USA
| | | | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center Nashville TN 37232 USA
| | - Eugene C Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University Chiayi 62106 Taiwan
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University Ames IA 50012 USA
- Nanovaccine Institute, Iowa State University Ames IA 50012 USA
| |
Collapse
|