1
|
Sara LK, Felson DT, Tilley S, LaValley MP, Lewis CE, Lynch JA, Segal NA, Guermazi A, Roemer F, Stefanik JJ, Lewis CL. The relation of walking forces to structural damage in the knee: The Multicenter Osteoarthritis Study. Osteoarthritis Cartilage 2025:S1063-4584(25)00976-8. [PMID: 40222627 DOI: 10.1016/j.joca.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE Mechanical loading is an important, modifiable risk factor for knee osteoarthritis. Identifying walking loads associated with disease worsening presents intervention opportunities. Our purpose was to evaluate the longitudinal relation of the baseline vertical ground reaction force (GRF) during walking to worsening bone marrow lesions (BMLs) and cartilage damage using cohort data from the Multicenter Osteoarthritis Study (MOST). METHODS MOST participants with GRF data at baseline and magnetic resonance imaging examinations at baseline and 2-year follow-up were included. Peak impact force (PIF) and average loading rate (ALR) from the vertical GRF were analyzed with respect to four joint regions (i.e., the medial and lateral portions of the tibiofemoral and patellofemoral joints). Analyses used logistic regression with generalized estimating equations and adjusted for relevant covariates. RESULTS Higher PIF was associated with increased odds of worsening BMLs in the lateral patellofemoral joint (odds ratio (95% confidence interval [CI]): 1.33 (1.11, 1.60)) and worsening cartilage damage in the lateral patellofemoral joint (1.48 (1.24, 1.77)), lateral tibiofemoral joint (1.24 (1.03, 1.50)), and medial tibiofemoral joint (1.25 (1.06, 1.48)). Higher ALR was associated with reduced odds of BML worsening in the lateral tibiofemoral joint (0.60 (0.41,0.87)). CONCLUSIONS Higher peak forces when walking were associated with worsening BMLs in the lateral patellofemoral joint and with worsening cartilage damage in regions of the knee associated with higher contact forces during walking. Higher ALRs were not associated with increased odds of structural worsening (BMLs or cartilage).
Collapse
Affiliation(s)
- Lauren K Sara
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States; School of Rehabilitation Sciences & Technology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.
| | - David T Felson
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States.
| | - Sarah Tilley
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States.
| | | | - Cora E Lewis
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - John A Lynch
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, United States.
| | - Neil A Segal
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, MO, United States.
| | - Ali Guermazi
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States.
| | - Frank Roemer
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States; Department of Radiology, Universitätsklinikum Erlangen & Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Joshua J Stefanik
- Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA, United States.
| | - Cara L Lewis
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States; Department of Physical Therapy, Boston University, Boston, MA, United States.
| |
Collapse
|
2
|
Guan S, Pandy MG. Patellofemoral Joint Contact Area Quantified In Vivo During Daily Activities. Ann Biomed Eng 2025; 53:260-270. [PMID: 39528773 DOI: 10.1007/s10439-024-03641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
In vivo measurements of patellofemoral joint contact area are scarce. Patellofemoral contact area has been measured in living people under static conditions with the knee held at fixed angles between 0 and 60° of flexion. No previous study to our knowledge has measured patellofemoral contact area in vivo during dynamic activity. The aim of this study was to measure and compare patellofemoral joint contact area in healthy people across a range of daily activities. Mobile biplane X-ray imaging was used to measure 3D tibiofemoral and patellofemoral kinematics in level walking, downhill walking, stair ascent, stair descent, and open-chain (non-weightbearing) knee flexion and knee extension. The kinematic data were combined with magnetic resonance imaging to determine patellofemoral joint contact area at each time point during each activity. The knee flexion angle explained, respectively, 83%, 80%, and 72% of the variability in the total, lateral, and medial patellofemoral contact areas measured across all participants and all activities. Total, lateral, and medial patellofemoral contact areas increased from 0 to 60° of knee flexion and then decreased as the flexion angle increased further, up to ~ 120°. Patellofemoral contact area was less sensitive to the type of activity and hence joint load. The lateral patellofemoral contact area was larger than the medial patellofemoral contact area throughout the range of knee flexion in all activities (p < 0.001). Knowledge of patellofemoral contact area during daily activities like walking improves our understanding of patellofemoral joint biomechanics and will assist in validating computational models of the patellofemoral joint.
Collapse
Affiliation(s)
- Shanyuanye Guan
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Marcus G Pandy
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
3
|
Ma X, Liu Q, Xu D, Fu J, He Y, Huang J. Biomechanical impact of progressive meniscal extrusion on the knee joint: a finite element analysis. J Orthop Surg Res 2024; 19:754. [PMID: 39538324 PMCID: PMC11562606 DOI: 10.1186/s13018-024-05249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND While measuring meniscal extrusion quantitatively is an early risk factor for knee osteoarthritis (KOA), the biomechanics involved in this process are not well understood. This study aimed to investigate the effects of varying degrees of medial and lateral meniscal extrusion and their material softening on knee osteoarthritis progression. METHODS Finite element analysis (FEA) was utilized to simulate varying degrees of meniscal extrusion (1-5 mm) in 72 knee joint models, representing progressive meniscal degeneration and material softening due to injury. Changes in von Mises stress of the cartilage and menisci and the load distribution on the tibial plateau's meniscus and cartilage were studied under balanced standing posture in both healthy and injured knees, and statistical analysis was performed using Spearman correlation. RESULTS Compared to healthy knees, peak stress in medial compartment tissues increased by over 40% with 4 mm of medial meniscus extrusion, and in lateral compartment tissues with 2 mm of lateral meniscus extrusion. Meniscus extrusion reduced the contact load between the meniscus and femoral cartilage but increased it between the tibial and femoral cartilages, with a maximum increase up to fivefold. Spearman correlation analysis indicated that meniscal extrusion significantly affected peak stress and contact loads in the respective knee compartment (p < 0.001), with a lesser impact on the opposite compartment. Notably, medial meniscal extrusion also significantly increased peak stress in the lateral tibial cartilage (p < 0.05). CONCLUSIONS The quantitative analysis revealed that meniscal extrusion significantly affected the biomechanics of soft tissues within the same compartment, with limited impact on the opposite side. Specifically, Medial extrusion beyond 4 mm significantly affected the biomechanics of the medial compartment, while lateral extrusion over 2 mm had a similar impact on the lateral compartment. Meniscal softening, without altering joint contact characteristics, primarily affected the biomechanics of the meniscus itself, with minimal impact on other soft tissues.
Collapse
Affiliation(s)
- Xiaokang Ma
- School of Intelligent Systems Engineering, Sun Yat-Sen University, Shenzhen, Guangdong, 518000, China
| | - Qiang Liu
- School of Intelligent Systems Engineering, Sun Yat-Sen University, Shenzhen, Guangdong, 518000, China.
| | - Dawei Xu
- Deartment of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jie Fu
- School of Intelligent Systems Engineering, Sun Yat-Sen University, Shenzhen, Guangdong, 518000, China
| | - Yi He
- Deartment of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jianrong Huang
- Deartment of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| |
Collapse
|
4
|
Garcia SA, White MS, Gallegos J, Balza I, Kahan S, Palmieri-Smith RM. Associations Between Body Mass Index, Gait Biomechanics, and In Vivo Cartilage Function After Exercise in Those With Anterior Cruciate Ligament Reconstruction. Am J Sports Med 2024; 52:3295-3305. [PMID: 39503724 DOI: 10.1177/03635465241281333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
BACKGROUND Both high body mass index (BMI) and anterior cruciate ligament reconstruction (ACLR) independently influence knee osteoarthritis risk. Preliminary evidence shows the combination of these risk factors leads to poorer recovery and altered biomechanical outcomes after ACLR, but few studies have directly evaluated early changes in cartilage health between normal-BMI and high-BMI groups in this population. PURPOSE To evaluate ultrasound-based measures of cartilage strain and compositional changes (via echo-intensity [EI]) in response to an incline walking stress test between normal-BMI and high-BMI individuals with ACLR. A secondary evaluation was conducted of associations between habitual walking biomechanics (ie, ground-reaction forces, sagittal knee kinetics and kinematics) and cartilage strain and EI outcomes. STUDY DESIGN Controlled laboratory study. METHODS Gait biomechanics and femoral trochlear ultrasound analyses were evaluated in 64 participants with ACLR who had normal BMI (BMI < 27.0; n = 40) and high BMI (BMI ≥ 27.0; n = 24). Ultrasound images were collected bilaterally before and after an incline treadmill walk, and medial and lateral trochlear strain and EI changes pre-post exercise were used to compare BMI groups and limbs. Gait outcomes included ground-reaction forces, peak sagittal plane knee moments, angles, and excursions and were used to determine associations with cartilage outcomes in the entire cohort. RESULTS High-BMI individuals with ACLR exhibited greater medial trochlear cartilage strain in the ACLR limb compared with normal-BMI individuals (approximately 6%; P < .01). In those with high BMI, the ACLR limb exhibited greater medial trochlear strain relative to non-ACLR limbs (approximately 4%; P < .05), but between-limb differences were not observed in the normal-BMI group (P > .05). Medial trochlear EI changes were greater bilaterally in those with high BMI compared with normal-BMI ACLR counterparts (approximately 10%; P < .01). Last, individuals who walked with greater peak knee flexion angles exhibited less medial cartilage strain (ΔR2 = 0.06; P = .025). CONCLUSION The data suggested that high BMI affects cartilage functional properties after ACLR, whereas smaller knee flexion angles were associated with larger medial cartilage strain. CLINICAL RELEVANCE High-BMI individuals with ACLR may represent a subset of patients exhibiting earlier declines in cartilage functional integrity in response to loading, necessitating additional or more targeted interventions to mitigate disease development.
Collapse
Affiliation(s)
- Steven A Garcia
- School of Kinesiology, Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| | - McKenzie S White
- School of Kinesiology, Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| | - Jovanna Gallegos
- School of Kinesiology, Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabella Balza
- School of Kinesiology, Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| | - Seth Kahan
- School of Kinesiology, Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| | - Riann M Palmieri-Smith
- School of Kinesiology, Rehabilitation Biomechanics Laboratory, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Battersby HS, Evans RJ, Eghobamien IJ, Pamukoff DN. Measurement Position Influences Sex Comparisons of Distal Femoral Cartilage Thickness With Ultrasound Imaging. J Appl Biomech 2024; 40:333-345. [PMID: 39013453 DOI: 10.1123/jab.2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 07/18/2024]
Abstract
The purpose was to examine (1) the effect of measurement position and sex on femoral cartilage outcomes, and (2) the association between gait biomechanics and cartilage outcomes. Fifty individuals participated (25 males and 25 females; age = 20.62 [1.80] y). Ultrasound measured femoral cartilage thickness and echo-intensity at 90°, 115°, and 140° of knee flexion. Gait outcomes included the external knee adduction and knee flexion moments. Cartilage outcomes were compared using 2 (sex) × 3 (position) repeated-measures analysis of variance. Gait and cartilage associations were assessed using stepwise regression. Medial cartilage was thicker when measured at 90° compared with 115° (P = .02) and 140° (P < .01), and 115° compared with 140°, (P < .01) in males but not in females. Cartilage was thicker at 90° compared with 140° across both sexes within all regions (P < .01). Males had thicker cartilage than females in all positions (P < .01). Echo-intensity was lower at 90° than 115° (P < .01) and 140° (P = .01) in the central and lower at 90° than at 115° (P < .01) and 140° (P = .03) in lateral regions. No association was found between gait and cartilage outcomes. Ultrasound imaging position effects cartilage features more in males compared with females. Imaging position and sex influence cartilage outcomes and should be considered in study designs and clinical evaluation.
Collapse
Affiliation(s)
| | - Ryan J Evans
- School of Kinesiology, Western University, London, ON, Canada
| | | | | |
Collapse
|
6
|
Kupratis ME, Gonzalez U, Rahman A, Burris DL, Corbin EA, Price C. Exogenous Collagen Crosslinking is Highly Detrimental to Articular Cartilage Lubrication. J Biomech Eng 2024; 146:071001. [PMID: 38323667 PMCID: PMC11005859 DOI: 10.1115/1.4064663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Healthy articular cartilage is a remarkable bearing material optimized for near-frictionless joint articulation. Because its limited self-repair capacity renders it susceptible to osteoarthritis (OA), approaches to reinforce or rebuild degenerative cartilage are of significant interest. While exogenous collagen crosslinking (CXL) treatments improve cartilage's mechanical properties and increase its resistance to enzymatic degradation, their effects on cartilage lubrication remain less clear. Here, we examined how the collagen crosslinking agents genipin (GP) and glutaraldehyde (GTA) impact cartilage lubrication using the convergent stationary contact area (cSCA) configuration. Unlike classical configurations, the cSCA sustains biofidelic kinetic friction coefficients (μk) via superposition of interstitial and hydrodynamic pressurization (i.e., tribological rehydration). As expected, glutaraldehyde- and genipin-mediated CXL increased cartilage's tensile and compressive moduli. Although net tribological rehydration was retained after CXL, GP or GTA treatment drastically elevated μk. Both healthy and "OA-like" cartilage (generated via enzymatic digestion) sustained remarkably low μk in saline- (≤0.02) and synovial fluid-lubricated contacts (≤0.006). After CXL, μk increased up to 30-fold, reaching values associated with marked chondrocyte death in vitro. These results demonstrate that mechanical properties (i.e., stiffness) are necessary, but not sufficient, metrics of cartilage function. Furthermore, the marked impairment in lubrication suggests that CXL-mediated stiffening is ill-suited to cartilage preservation or joint resurfacing.
Collapse
Affiliation(s)
- Meghan E. Kupratis
- Biomedical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - Uriel Gonzalez
- Biomedical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - Atia Rahman
- Mechanical Engineering, University of Delaware, Newark, DE 19713
- University of Delaware
| | - David L. Burris
- Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Elise A. Corbin
- Biomedical Engineering, University of Delaware, Newark, DE 19713; Materials Science & Engineering, University of Delaware, Newark, DE 19716
- University of Delaware
| | - Christopher Price
- Biomedical Engineering, University of Delaware, Newark, DE 19713; Mechanical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
7
|
Battersby HS, Holmes SC, Shumski EJ, Heredia CE, Garcia SA, Pamukoff DN. The Influence of Knee Position on Ultrasound Imaging of Femoral Cartilage in Individuals with Anterior Cruciate Ligament Reconstruction. Cartilage 2024; 15:84-93. [PMID: 37846037 PMCID: PMC11368891 DOI: 10.1177/19476035231205682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/07/2023] [Accepted: 09/09/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Articular cartilage is important for knee function and can be imaged using ultrasound. The purpose was to compare femoral cartilage thickness and echo intensity (EI) measured at 90° and 140° of knee flexion and between limbs in a cohort with unilateral anterior cruciate ligament reconstruction (ACLR). We also examined associations between gait biomechanics and cartilage outcomes. METHODS Twenty-seven individuals with primary unilateral ACLR participated (12 men, 15 women; age = 22.3 ± 3.8 years; time since ACLR = 71.2 ± 47.2 months). Ultrasound was used to obtain femoral cartilage measurements. Gait outcomes included peak KFA (knee flexion angle) and peak external knee flexion moment (KFM). Cartilage outcomes were compared using a 2 (position) × 2 (limb) repeated measures ANOVA (analysis of variance). Gait and cartilage associations were assessed using linear regression. FINDINGS There were no position × limb interactions for any cartilage outcome (all P > 0.05). Medial (P = 0.038) and central cartilage (P < 0.001) were thicker, whereas central (P = 0.029) and lateral cartilage EI (P = 0.003) were lower when measured at 90° than those at 140° of knee flexion. Medial cartilage was thicker in the ACLR than that in the contralateral limb (P = 0.016). A larger KFM was associated with thicker medial cartilage (ΔR2 = 0.146, P = 0.021) and central cartilage (ΔR2 = 0.159, P = 0.039) measured at 140° of knee flexion in the ACLR limb but not at 90°. INTERPRETATION Findings suggest that imaging position influences cartilage thickness and EI measurements in individuals with ACLR and should be considered in study designs and clinical evaluation. A greater KFM was associated with thicker cartilage within specific portions of the distal femur.
Collapse
Affiliation(s)
| | - Skylar C. Holmes
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Eric J. Shumski
- Department of Kinesiology, University of Georgia, Athens, GA, USA
| | | | - Steven A. Garcia
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
8
|
Guan S, Dumas R, Pandy MG. Tibiofemoral Slip Velocity in Total Knee Arthroplasty is Design-Invariant but Activity-Dependent. Ann Biomed Eng 2024; 52:1779-1794. [PMID: 38530534 PMCID: PMC11560988 DOI: 10.1007/s10439-024-03490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Tibiofemoral slip velocity is a key contributor to total knee arthroplasty (TKA) component wear, yet few studies have evaluated this quantity in vivo. The aim of the present study was to measure and compare tibiofemoral slip velocities in 3 TKA designs for a range of daily activities. Mobile biplane X-ray imaging was used to measure 6-degree-of-freedom tibiofemoral kinematics and the locations of articular contact in 75 patients implanted with a posterior-stabilized, cruciate-retaining, or medial-stabilized design while each patient performed level walking, step up, step down, sit-to-stand, and stand-to-sit. Using these data, tibiofemoral slip velocity was calculated for the duration of each activity for each TKA design. The pattern of tibiofemoral slip velocity was similar for all 3 TKA designs within each activity but markedly different across the 5 activities tested, with the magnitude of peak slip velocity being significantly higher in level walking (range: 158-211 mm/s) than in all other activities (range: 43-75 mm/s). The pattern of tibiofemoral slip velocity in both the medial and lateral compartments closely resembled the pattern of tibiofemoral (knee) flexion angular velocity, with a strong linear relationship observed between slip velocity and flexion angular velocity (r = 0.81-0.97). Tibiofemoral slip velocity was invariant to TKA design but was significantly affected by activity type. Our measurements of slip velocity and articular contact locations for a wide range of daily activities may be used as inputs in joint simulator testing protocols and computational models developed to estimate TKA component wear.
Collapse
Affiliation(s)
- Shanyuanye Guan
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Raphael Dumas
- University of Lyon, University Gustave Eiffel, University Claude Bernard Lyon 1, LBMC UMR T_9406, F-69622, Lyon, France
| | - Marcus G Pandy
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
9
|
Garner MR, Homcha B, Cowman T, Goss M, Reid JS, Lewis GS. Transverse patella fracture fixation: A cadaveric biomechanical comparison of cannulated screws and anterior tension band versus low-profile, multiplanar mesh plating. Injury 2024; 55:111574. [PMID: 38669892 PMCID: PMC11111345 DOI: 10.1016/j.injury.2024.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Multiplanar mesh plating of patella fractures has become more popular in recent years. It was the goal of this study to compare the biomechanical stability of cannulated screw with anterior tension band to multiplanar mesh plating for fixation of transverse patella fractures in cadaver specimens. MATERIALS AND METHODS Eight matched pairs of fresh frozen cadaveric knees were obtained and soft tissues dissected leaving the extensor mechanism, joint capsule, and retinaculum intact. Transverse fractures were created at the mid-portion of the patella. For each pair, one specimen was repaired using cannulated screws with anterior tension band, and the second was repaired using multiplanar mesh plating. Each specimen underwent cyclic extension loading with loads increasing by 1.1 kg after every 50 cycles. Interfragmentary displacement was measured at the end of each interval at both 5° and 45° of knee flexion angle, with fixation failure defined by >2 mm displacement. RESULTS The specimens fixed with multiplanar mesh plating survived more cycles and higher loads than the specimens fixed with cannulated screws with anterior tension band (p = 0.011 comparing survival plots). After 150 cycles of extension loading, 3 of 8 of the specimens fixed with screws/tension band had failed, whereas none of the mesh plated specimens had failed. After 400 cycles, 7 of 8 of the screws/tension band had failed, whereas half of the mesh plated specimens had failed. CONCLUSIONS While a more technically challenging and expensive technique, mesh plating for patella fractures appears to offer greater durability than traditional cannulated screw with tension banding.
Collapse
Affiliation(s)
- Matthew R Garner
- Department of Orthopaedics & Rehabilitation, Penn State College of Medicine, 500 University Dr. Hershey, PA 17033 USA.
| | - Brittany Homcha
- Department of Orthopaedics & Rehabilitation, Penn State College of Medicine, 500 University Dr. Hershey, PA 17033 USA
| | - Trevin Cowman
- Department of Orthopaedics & Rehabilitation, Penn State College of Medicine, 500 University Dr. Hershey, PA 17033 USA
| | - Madison Goss
- Penn State College of Medicine, 500 University Dr. Hershey, PA 17033 USA
| | - J Spence Reid
- Department of Orthopaedics & Rehabilitation, Penn State College of Medicine, 500 University Dr. Hershey, PA 17033 USA
| | - Gregory S Lewis
- Department of Orthopaedics & Rehabilitation, Penn State College of Medicine, 500 University Dr. Hershey, PA 17033 USA
| |
Collapse
|
10
|
Kupratis ME, Rahman A, Burris DL, Corbin EA, Price C. Enzymatic digestion does not compromise sliding-mediated cartilage lubrication. Acta Biomater 2024; 178:196-207. [PMID: 38428511 DOI: 10.1016/j.actbio.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Articular cartilage's remarkable low-friction properties are essential to joint function. In osteoarthritis (OA), cartilage degeneration (e.g., proteoglycan loss and collagen damage) decreases tissue modulus and increases permeability. Although these changes impair lubrication in fully depressurized and slowly slid cartilage, new evidence suggests such relationships may not hold under biofidelic sliding conditions more representative of those encountered in vivo. Our recent studies using the convergent stationary contact area (cSCA) configuration demonstrate that articulation (i.e., sliding) generates interfacial hydrodynamic pressures capable of replenishing cartilage interstitial fluid/pressure lost to compressive loading through a mechanism termed tribological rehydration. This fluid recovery sustains in vivo-like kinetic friction coefficients (µk<0.02 in PBS and <0.005 in synovial fluid) with little sensitivity to mechanical properties in healthy tissue. However, the tribomechanical function of compromised cartilage under biofidelic sliding conditions remains unknown. Here, we investigated the effects of OA-like changes in cartilage mechanical properties, modeled via enzymatic digestion of mature bovine cartilage, on its tribomechanical function during cSCA sliding. We found no differences in sliding-driven tribological rehydration behaviors or µk between naïve and digested cSCA cartilage (in PBS or synovial fluid). This suggests that OA-like cartilage retains sufficient functional properties to support naïve-like fluid recovery and lubrication under biofidelic sliding conditions. However, OA-like cartilage accumulated greater total tissue strains due to elevated strain accrual during initial load application. Together, these results suggest that elevated total tissue strains-as opposed to activity-mediated strains or friction-driven wear-might be the key biomechanical mediator of OA pathology in cartilage. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) decreases cartilage's modulus and increases its permeability. While these changes compromise frictional performance in benchtop testing under low fluid load support (FLS) conditions, whether such observations hold under sliding conditions that better represent the joints' dynamic FLS conditions in vivo is unclear. Here, we leveraged biofidelic benchtop sliding experiments-that is, those mimicking joints' native sliding environment-to examine how OA-like changes in mechanical properties effect cartilage's natural lubrication. We found no differences in sliding-mediated fluid recovery or kinetic friction behaviors between naïve and OA-like cartilage. However, OA-like cartilage experienced greater strain accumulation during load application, suggesting that elevated tissue strains (not friction-driven wear) may be the primary biomechanical mediator of OA pathology.
Collapse
Affiliation(s)
| | - Atia Rahman
- Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - David L Burris
- Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Elise A Corbin
- Biomedical Engineering, University of Delaware, Newark, DE, USA; Materials Science & Engineering, University of Delaware, Newark, DE, USA
| | - Christopher Price
- Biomedical Engineering, University of Delaware, Newark, DE, USA; Mechanical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
11
|
Karimi Dastgerdi A, Esrafilian A, Carty CP, Nasseri A, Yahyaiee Bavil A, Barzan M, Korhonen RK, Astori I, Hall W, Saxby DJ. Validation and evaluation of subject-specific finite element models of the pediatric knee. Sci Rep 2023; 13:18328. [PMID: 37884632 PMCID: PMC10603053 DOI: 10.1038/s41598-023-45408-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Finite element (FE) models have been widely used to investigate knee joint biomechanics. Most of these models have been developed to study adult knees, neglecting pediatric populations. In this study, an atlas-based approach was employed to develop subject-specific FE models of the knee for eight typically developing pediatric individuals. Initially, validation simulations were performed at four passive tibiofemoral joint (TFJ) flexion angles, and the resulting TFJ and patellofemoral joint (PFJ) kinematics were compared to corresponding patient-matched measurements derived from magnetic resonance imaging (MRI). A neuromusculoskeletal-(NMSK)-FE pipeline was then used to simulate knee biomechanics during stance phase of walking gait for each participant to evaluate model simulation of a common motor task. Validation simulations demonstrated minimal error and strong correlations between FE-predicted and MRI-measured TFJ and PFJ kinematics (ensemble average of root mean square errors < 5 mm for translations and < 4.1° for rotations). The FE-predicted kinematics were strongly correlated with published reports (ensemble average of Pearson's correlation coefficients (ρ) > 0.9 for translations and ρ > 0.8 for rotations), except for TFJ mediolateral translation and abduction/adduction rotation. For walking gait, NMSK-FE model-predicted knee kinematics, contact areas, and contact pressures were consistent with experimental reports from literature. The strong agreement between model predictions and experimental reports underscores the capability of sequentially linked NMSK-FE models to accurately predict pediatric knee kinematics, as well as complex contact pressure distributions across the TFJ articulations. These models hold promise as effective tools for parametric analyses, population-based clinical studies, and enhancing our understanding of various pediatric knee injury mechanisms. They also support intervention design and prediction of surgical outcomes in pediatric populations.
Collapse
Affiliation(s)
- Ayda Karimi Dastgerdi
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and the Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD, Australia.
| | - Amir Esrafilian
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Christopher P Carty
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and the Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD, Australia
- Department of Orthopedics, Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Azadeh Nasseri
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and the Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD, Australia
| | - Alireza Yahyaiee Bavil
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and the Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD, Australia
| | - Martina Barzan
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and the Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD, Australia
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Ivan Astori
- Department of Orthopedics, Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Wayne Hall
- School of Engineering and Built Environment, Mechanical Engineering and Industrial Design, Griffith University, Gold Coast, QLD, Australia
| | - David John Saxby
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland and the Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
12
|
Donno L, Galluzzo A, Pascale V, Sansone V, Frigo CA. Walking with a Posterior Cruciate Ligament Injury: A Musculoskeletal Model Study. Bioengineering (Basel) 2023; 10:1178. [PMID: 37892908 PMCID: PMC10604140 DOI: 10.3390/bioengineering10101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The understanding of the changes induced in the knee's kinematics by a Posterior Cruciate Ligament (PCL) injury is still rather incomplete. This computational study aimed to analyze how the internal loads are redistributed among the remaining ligaments when the PCL is lesioned at different degrees and to understand if there is a possibility to compensate for a PCL lesion by changing the hamstring's contraction in the second half of the swing phase. A musculoskeletal model of the knee joint was used for simulating a progressive PCL injury by gradually reducing the ligament stiffness. Then, in the model with a PCL residual stiffness at 15%, further dynamic simulations of walking were performed by progressively reducing the hamstring's force. In each condition, the ligaments tension, contact force and knee kinematics were analyzed. In the simulated PCL-injured knee, the Medial Collateral Ligament (MCL) became the main passive stabilizer of the tibial posterior translation, with synergistic recruitment of the Lateral Collateral Ligament. This resulted in an enhancement of the tibial-femoral contact force with respect to the intact knee. The reduction in the hamstring's force limited the tibial posterior sliding and, consequently, the tension of the ligaments compensating for PCL injury decreased, as did the tibiofemoral contact force. This study does not pretend to represent any specific population, since our musculoskeletal model represents a single subject. However, the implemented model could allow the non-invasive estimation of load redistribution in cases of PCL injury. Understanding the changes in the knee joint biomechanics could help clinicians to restore patients' joint stability and prevent joint degeneration.
Collapse
Affiliation(s)
- Lucia Donno
- Movement Biomechanics and Motor Control Lab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, I-20133 Milan, Italy;
| | - Alessandro Galluzzo
- IRCCS Istituto Ortopedico Galeazzi, I-20161 Milan, Italy; (A.G.); (V.P.); (V.S.)
- Residency Program in Orthopaedics and Traumatology, University of Milan, I-20122 Milan, Italy
| | - Valerio Pascale
- IRCCS Istituto Ortopedico Galeazzi, I-20161 Milan, Italy; (A.G.); (V.P.); (V.S.)
- Department of Biomedical Sciences for Health, University of Milan, I-20122 Milan, Italy
| | - Valerio Sansone
- IRCCS Istituto Ortopedico Galeazzi, I-20161 Milan, Italy; (A.G.); (V.P.); (V.S.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, I-20122 Milan, Italy
| | - Carlo Albino Frigo
- Movement Biomechanics and Motor Control Lab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, I-20133 Milan, Italy;
| |
Collapse
|
13
|
Wang B, Mao Z, Guo J, Yang J, Zhang S. The non-invasive evaluation technique of patellofemoral joint stress: a systematic literature review. Front Bioeng Biotechnol 2023; 11:1197014. [PMID: 37456733 PMCID: PMC10343958 DOI: 10.3389/fbioe.2023.1197014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Patellofemoral joint stress (PFJS) is an important parameter for understanding the mechanism of patellofemoral joint pain, preventing patellofemoral joint injury, and evaluating the therapeutic efficacy of PFP rehabilitation programs. The purpose of this systematic review was to identify and categorize the non-invasive technique to evaluate the PFJS. Methods: Literature searches were conducted from January 2000 to October 2022 in electronic databases, namely, PubMed, Web of Science, and EBSCO (Medline, SPORTDiscus). This review includes studies that evaluated the patellofemoral joint reaction force (PJRF) or PFJS, with participants including both healthy individuals and those with patellofemoral joint pain, as well as cadavers with no organic changes. The study design includes cross-sectional studies, case-control studies, and randomized controlled trials. The JBI quality appraisal criteria tool was used to assess the risk of bias in the included studies. Results: In total, 5016 articles were identified in the database research and the citation network, and 69 studies were included in the review. Discussion: Researchers are still working to improve the accuracy of evaluation for PFJS by using a personalized model and optimizing quadriceps muscle strength calculations. In theory, the evaluation method of combining advanced computational and biplane fluoroscopy techniques has high accuracy in evaluating PFJS. The method should be further developed to establish the "gold standard" for PFJS evaluation. In practical applications, selecting appropriate methods and approaches based on theoretical considerations and ecological validity is essential.
Collapse
|
14
|
Chen Z, Franklin DW. Musculotendon Parameters in Lower Limb Models: Simplifications, Uncertainties, and Muscle Force Estimation Sensitivity. Ann Biomed Eng 2023; 51:1147-1164. [PMID: 36913088 PMCID: PMC10172227 DOI: 10.1007/s10439-023-03166-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023]
Abstract
Musculotendon parameters are key factors in the Hill-type muscle contraction dynamics, determining the muscle force estimation accuracy of a musculoskeletal model. Their values are mostly derived from muscle architecture datasets, whose emergence has been a major impetus for model development. However, it is often not clear if such parameter update indeed improves simulation accuracy. Our goal is to explain to model users how these parameters are derived and how accurate they are, as well as to what extent errors in parameter values might influence force estimation. We examine in detail the derivation of musculotendon parameters in six muscle architecture datasets and four prominent OpenSim models of the lower limb, and then identify simplifications which could add uncertainties to the derived parameter values. Finally, we analyze the sensitivity of muscle force estimation to these parameters both numerically and analytically. Nine typical simplifications in parameter derivation are identified. Partial derivatives of the Hill-type contraction dynamics are derived. Tendon slack length is determined as the musculotendon parameter that muscle force estimation is most sensitive to, whereas pennation angle is the least impactful. Anatomical measurements alone are not enough to calibrate musculotendon parameters, and the improvement on muscle force estimation accuracy will be limited if the source muscle architecture datasets are the only main update. Model users may check if a dataset or model is free of concerning factors for their research or application requirements. The derived partial derivatives may be used as the gradient for musculotendon parameter calibration. For model development, we demonstrate that it is more promising to focus on other model parameters or components and seek alternative strategies to further increase simulation accuracy.
Collapse
Affiliation(s)
- Ziyu Chen
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
| | - David W Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany.
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany.
- Munich Data Science Institute (MDSI), Technical University of Munich, Munich, Germany.
| |
Collapse
|
15
|
Garcia SA, Johnson AK, Brown SR, Washabaugh EP, Krishnan C, Palmieri-Smith RM. Dynamic knee stiffness during walking is increased in individuals with anterior cruciate ligament reconstruction. J Biomech 2023; 146:111400. [PMID: 36469997 DOI: 10.1016/j.jbiomech.2022.111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Individuals with anterior cruciate ligament (ACL) reconstruction often display abnormal gait mechanics reflective of a "stiff-knee" gait (i.e., reduced knee flexion angles and moments). However, dynamic knee stiffness, which is the dynamic relationship between the position of the knee and the moment acting on it, has not been directly examined during walking in individuals with ACL reconstruction. Here, we aimed to evaluate dynamic knee stiffness in the involved compared to the uninvolved limb during weight-acceptance and mid-stance phases of walking. Twenty-six individuals who underwent ACL reconstruction (Age: 20.2 ± 5.1 yrs., Time post-op: 7.2 ± 0.9 mo.) completed an overground walking assessment using a three-dimensional motion capture system and two force plates. Dynamic knee stiffness (Nm/°) was calculated as the slope of the regression line during weight-acceptance and midstance, obtained by plotting the sagittal plane knee angle versus knee moment. Paired t-tests with Bonferroni corrections were used to compare differences in dynamic stiffness, knee excursions, and moment ranges between limbs during both stance phases. Greater dynamic knee stiffness was found in the involved compared with the uninvolved limb during weight-acceptance and mid-stance (p < 0.01). Knee flexion and extension excursions were reduced in the involved limb during both weight-acceptance and mid-stance, respectively (p < 0.01). Sagittal plane knee moment ranges were not different between limbs during weight-acceptance (p = 0.1); however, the involved limb moment range was reduced relative to the uninvolved limb during mid-stance (p < 0.01). These results indicate that individuals with ACL reconstruction walk with a stiffer knee throughout stance, which may influence knee contact forces and could contribute to the high propensity for post-traumatic knee osteoarthritis development in this population.
Collapse
Affiliation(s)
- Steven A Garcia
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States; Orthopedic Rehabilitation and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI, United States
| | - Alexa K Johnson
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States; Orthopedic Rehabilitation and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI, United States
| | - Scott R Brown
- Department of Kinesiology, Aquinas College, Grand Rapids, MI, United States; Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, United States
| | - Edward P Washabaugh
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, United States; Neuromuscular and Rehabilitation Robotics Laboratory, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
| | - Chandramouli Krishnan
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States; Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, United States; Neuromuscular and Rehabilitation Robotics Laboratory, University of Michigan, Ann Arbor, MI, United States; Robotics Institute, University of Michigan, Ann Arbor, MI, United States.
| | - Riann M Palmieri-Smith
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States; Orthopedic Rehabilitation and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI, United States; Department of Orthopaedic Surgery, Michigan Medicine, Ann Arbor, MI, United States.
| |
Collapse
|
16
|
Makani A, Shirazi-Adl SA, Ghezelbash F. Computational biomechanics of human knee joint in stair ascent: Muscle-ligament-contact forces and comparison with level walking. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3646. [PMID: 36054682 DOI: 10.1002/cnm.3646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/28/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
About a third of knee joint disorders originate from the patellofemoral (PF) site that makes stair ascent a difficult activity for patients. A detailed finite element model of the knee joint is coupled to a lower extremity musculoskeletal model to simulate the stance phase of stair ascent. It is driven by the mean of measurements on the hip-knee-ankle moments-angles as well as ground reaction forces reported in healthy individuals. Predicted muscle activities compare well to the recorded electromyography data. Peak forces in quadriceps (3.87 BW, body weight, at 20% instance in our 607 N subject), medial hamstrings (0.77 BW at 20%), and gastrocnemii (1.21 BW at 80%) are estimated. Due to much greater flexion angles-moments in the first half of stance, large PF contact forces (peak of 3.1 BW at 20% stance) and stresses (peak of 4.83 MPa at 20% stance) are estimated that exceed their peaks in level walking by fourfold and twofold, respectively. Compared with level walking, ACL forces diminish in the first half of stance but substantially increase later in the second half (peak of 0.76 BW at 75% stance). Under nearly similar contact forces at 20% of stance, the contact stress on the tibiofemoral (TF) medial plateau reaches a peak (9.68 MPa) twice that on the PF joint suggesting the vulnerability of both joints. Compared with walking, stair ascent increases peak ACL force and both peak TF and PF contact stresses. Reductions in the knee flexion moment and/or angle appear as a viable strategy to mitigate internal loads and pain.
Collapse
Affiliation(s)
- Amirhossein Makani
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Québec, Canada
| | - Saeed A Shirazi-Adl
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Québec, Canada
| | - Farshid Ghezelbash
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Québec, Canada
| |
Collapse
|
17
|
Thomeer LT, Guan S, Gray HA, Pandy MG. Articular contact motion at the knee during daily activities. J Orthop Res 2022; 40:1756-1769. [PMID: 34878691 DOI: 10.1002/jor.25222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/31/2021] [Accepted: 11/20/2021] [Indexed: 02/04/2023]
Abstract
We combined mobile biplane X-ray imaging and magnetic resonance imaging to measure the regions of articular cartilage contact and cartilage thickness at the tibiofemoral and patellofemoral joints during six functional activities: standing, level walking, downhill walking, stair ascent, stair descent, and open-chain (non-weight-bearing) knee flexion. The contact centers traced similar paths on the medial and lateral femoral condyles, femoral trochlea, and patellar facet in all activities while their locations on the tibial plateau were more varied. The translations of the contact centers on the femur and patella were tightly coupled to the tibiofemoral flexion angle in all activities (r2 > 0.95) whereas those on the tibia were only moderately related to the flexion angle (r2 > 0.62). The regions of contacting cartilage were significantly thicker than the regions of non-contacting cartilage on the patella, femoral trochlea, and the medial and lateral tibial plateaus in all activities (p < 0.001). There were no significant differences in thickness between contacting and non-contacting cartilage on the medial and lateral femoral condyles in all activities, except open-chain knee flexion. Our results provide partial support for the proposition that cartilage thickness is adapted to joint load and do not exclude the possibility that other factors, such as joint congruence, also play a role in regulating the structure and organization of healthy cartilage. The data obtained in this study may serve as a guide when evaluating articular contact motion in osteoarthritic and reconstructed knees.
Collapse
Affiliation(s)
- Lucas T Thomeer
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Shanyuanye Guan
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Hans A Gray
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Marcus G Pandy
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Hipsley A, Hall M, Saxby DJ, Bennell KL, Wang X, Bryant AL. Quadriceps muscle strength at 2 years following anterior cruciate ligament reconstruction is associated with tibiofemoral joint cartilage volume. Knee Surg Sports Traumatol Arthrosc 2022; 30:1949-1957. [PMID: 34997247 DOI: 10.1007/s00167-021-06853-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Quadriceps strength deficits following anterior cruciate ligament reconstruction (ACLR) are linked to altered lower extremity biomechanics, tibiofemoral joint (TFJ) space narrowing and cartilage composition changes. It is unknown, however, if quadriceps strength is associated with cartilage volume in the early years following ACLR prior to the onset of posttraumatic osteoarthritis (OA) development. The purpose of this cross-sectional study was to examine the relationship between quadriceps muscle strength (peak and across the functional range of knee flexion) and cartilage volume at ~ 2 years following ACLR and determine the influence of concomitant meniscal pathology. METHODS The involved limb of 51 ACLR participants (31 isolated ACLR; 20 combined meniscal pathology) aged 18-40 years were tested at 2.4 ± 0.4 years post-surgery. Isokinetic knee extension torque generated in 10° intervals between 60° and 10° knee flexion (i.e. 60°-50°, 50°-40°, 40°-30°, 30°-20°, 20°-10°) together with peak extension torque were measured. Tibial and patellar cartilage volumes were measured using magnetic resonance imaging (MRI). The relationships between peak and angle-specific knee extension torque and MRI-derived cartilage volumes were evaluated using multiple linear regression. RESULTS In ACLR participants with and without meniscal pathology, higher knee extension torques at 60°-50° and 50°-40° knee flexion were negatively associated with medial tibial cartilage volume (p < 0.05). No significant associations were identified between peak concentric or angle-specific knee extension torques and patellar cartilage volume. CONCLUSION Higher quadriceps strength at knee flexion angles of 60°-40° was associated with lower cartilage volume on the medial tibia ~ 2 years following ACLR with and without concomitant meniscal injury. Regaining quadriceps strength across important functional ranges of knee flexion after ACLR may reduce the likelihood of developing early TFJ cartilage degenerative changes. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Anthony Hipsley
- Department of Medicine Dentistry and Health Sciences, Centre for Health, Exercise and Sports Medicine, The University of Melbourne, Melbourne, VIC, Australia.
| | - Michelle Hall
- Department of Medicine Dentistry and Health Sciences, Centre for Health, Exercise and Sports Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - David J Saxby
- School of Allied Health Sciences, Griffith University, Gold Coast, Australia.,Core Group for Innovation in Health Technology, Menzies Health Institute Queensland, Gold Coast, Australia.,Gold Coast Orthopaedic Research and Education Alliance, Gold Coast, Australia
| | - Kim L Bennell
- Department of Medicine Dentistry and Health Sciences, Centre for Health, Exercise and Sports Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Xinyang Wang
- Department of Medicine Dentistry and Health Sciences, Centre for Health, Exercise and Sports Medicine, The University of Melbourne, Melbourne, VIC, Australia.,Department of Orthopaedic Surgery, Beijing Chao-Yang Hospital, Beijing, China
| | - Adam L Bryant
- Department of Medicine Dentistry and Health Sciences, Centre for Health, Exercise and Sports Medicine, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Verma DK, Kumari P, Kanagaraj S. Engineering Aspects of Incidence, Prevalence, and Management of Osteoarthritis: A Review. Ann Biomed Eng 2022; 50:237-252. [DOI: 10.1007/s10439-022-02913-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022]
|
20
|
Gray HA, Guan S, Thomeer LT, Pandy MG. Moment arm of the knee-extensor mechanism measured in vivo across a range of daily activities. J Biomech 2021; 123:110484. [PMID: 34062347 DOI: 10.1016/j.jbiomech.2021.110484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/27/2022]
Abstract
We measured the moment arm of the knee-extensor mechanism as ten healthy young individuals performed six functional activities: level walking, downhill walking, stair ascent, stair descent, open-chain (non-weight-bearing) knee flexion, and open-chain knee extension. The moment arm of the knee-extensor mechanism was described by the moment arm of the patellar-tendon force, which acts to rotate the tibia about the instantaneous axis of rotation (screw axis) of the knee. A mobile biplane X-ray imaging system enabled simultaneous measurements of the three-dimensional movements of the femur, tibia and patella during each activity, from which the position and orientation of the screw axis and the patellar-tendon moment arm (PTMA) were determined. Mean PTMA across all activities and all participants remained nearly constant (~46 mm) from 0° to 70° of knee flexion and decreased by no more than 20% at higher flexion angles. The magnitude of the PTMA varied more substantially across individuals than across activities, indicating that the moment arm is more heavily influenced by differences in knee-joint geometry than muscle loading. Hence, PTMA measurements obtained for a given activity performed by one individual may be used with good confidence to describe the PTMA for any other activity performed by the same individual. Caution is advised when using PTMA measurements obtained from one individual to describe the moment arm in another individual even once the data are normalized by knee bone size, as the PTMA varied by as much as 13% from the mean across individuals.
Collapse
Affiliation(s)
- Hans A Gray
- Dept of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
| | - Shanyuanye Guan
- Dept of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
| | - Lucas T Thomeer
- Dept of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
| | - Marcus G Pandy
- Dept of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|