1
|
Darwish A, Ismail L, Manek S, Hellner K, Kehoe S, Soleymani Majd H. Prognostic characteristics, recurrence patterns, and survival outcomes of vulval squamous cell carcinoma - A twelve-year retrospective analysis of a tertiary centre. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108447. [PMID: 38843661 DOI: 10.1016/j.ejso.2024.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION Vulval cancer is a rare gynaecological malignancy. In this study, we present a tertiary centre case analysis to examine the recurrence patterns and survival outcomes of vulval squamous cell carcinoma (SCC). METHODS This is a retrospective cohort study of women who received treatment at Oxford University Hospitals between February 2010 and July 2022 for primary vulval SCC. RESULTS We included 98 cases. The median age at diagnosis was 68 years. Human Papillomavirus (HPV) infection and lichen sclerosis were observed in 21 and 50 cases, respectively. Surgical excision was the primary treatment. Recurrence within 2 years was more common with advanced stage (p = 0.047, RR = 2.26) and extracapsular lymph node spread (p = 0.013, RR = 2.88). Local recurrence was not associated with a specific cut-off value for tumour-free margin. Poor survival outcomes were observed with higher grade (p = 0.01), advanced FIGO stage (p < 0.001), HPV-independent cancer (p = 0.048), lymph node involvement (p < 0.001, HR = 7.14), extracapsular spread (p < 0.001, HR = 7.93), lymphovascular space invasion (p = 0.002, HR = 3.17), tumour diameter wider than 23 mm (p = 0.029, HR = 2.53) and depth of invasion more than 6 mm (p = 0.006, HR = 3.62). Perineural invasion is associated with shorter disease-free survival. Five-year cancer-specific survival rates for stages I, III, and IV were 90.2%, 40.8%, and 14.3%, respectively. CONCLUSION
Collapse
Affiliation(s)
- Ahmed Darwish
- Department of Obstetrics and Gynaecology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, OX3 9DU, Oxford, United Kingdom.
| | - Lamiese Ismail
- Department of Obstetrics and Gynaecology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, OX3 9DU, Oxford, United Kingdom.
| | - Sanjiv Manek
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, OX3 7LE, Oxford, United Kingdom.
| | - Karin Hellner
- Department of Obstetrics and Gynaecology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, OX3 9DU, Oxford, United Kingdom; Nuffield Department of Women's & Reproductive Health, Women's Center, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, OX3 9DU, Oxford, United Kingdom.
| | - Sean Kehoe
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, OX3 7LE, Oxford, United Kingdom.
| | - Hooman Soleymani Majd
- Department of Gynaecological Oncology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, OX3 7LE, Oxford, United Kingdom.
| |
Collapse
|
2
|
Reiisi S, Ahmadi K. Bioinformatics analysis of a disease-specific lncRNA-miRNA-mRNA regulatory network in recurrent spontaneous abortion (RSA). Arch Gynecol Obstet 2024; 309:1609-1620. [PMID: 38310583 DOI: 10.1007/s00404-023-07356-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND This study investigated the molecular mechanisms of long non-coding RNAs (lncRNAs) in RSA using the lncRNA-miRNA-mRNA regulatory network. METHODS The present study obtained expression datasets of long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), and microRNAs (miRNAs) from blood samples of individuals with unexplained recurrent spontaneous abortion (RSA) and healthy controls. Differentially expressed lncRNAs (DELs), mRNAs (DEMs), and miRNAs (DEmiRs) were identified. A regulatory network comprising lncRNA, miRNA, and mRNA was constructed, and Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to analyze the biological functions of DEM. Also, a protein-protein interaction (PPI) network was made and key genes were identified. RESULTS A total of 57 DELs, 212 DEmiRs, and 301 DEMs regarding RSA were identified. Later analysis revealed a lncRNA-miRNA-mRNA network comprising nine lncRNAs, 14 miRNAs, and 65 mRNAs. Then, the ceRNA network genes were subjected to functional enrichment and pathway analysis, which showed their association with various processes, such as cortisol and thyroid hormone synthesis and secretion, human cytomegalovirus infection, and parathyroid hormone synthesis. In addition, ten hub genes (ITGB3, GNAI2, GNAS, SRC, PLEC, CDC42, RHOA, RAC1, CTNND1, and FN1) were identified based on the PPI network results. CONCLUSION In summary, the outcomes of our study provided some data regarding the alteration genes involved in RSA pathogenic mechanism via the lncRNA-miRNA-mRNA network and reveal the possibility of identifying new lncRNAs and miRNAs as promising molecular biomarkers.
Collapse
Affiliation(s)
- Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| | - Kambiz Ahmadi
- Department of Computer Science, Faculty of Mathematical Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
3
|
Karinen S, Juurikka K, Hujanen R, Wahbi W, Hadler-Olsen E, Svineng G, Eklund KK, Salo T, Åström P, Salem A. Tumour cells express functional lymphatic endothelium-specific hyaluronan receptor in vitro and in vivo: Lymphatic mimicry promotes oral oncogenesis? Oncogenesis 2021; 10:23. [PMID: 33674563 PMCID: PMC7977063 DOI: 10.1038/s41389-021-00312-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Lymphatic metastasis represents the main route of tumour cell dissemination in oral squamous cell carcinoma (OSCC). Yet, there are no FDA-approved therapeutics targeting cancer-related lymphangiogenesis to date. The lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE-1), a specific lymphatic marker, is associated with poor survival in OSCC patients. In this study, we present a potential novel mechanism of lymphatic metastasis in OSCC-lymphatic mimicry (LM), a process whereby tumour cells form cytokeratin+/LYVE-1+, but podoplanin-negative, mosaic endothelial-like vessels. LM was detected in one-third (20/57; 35.08%) of randomly selected OSCC patients. The LM-positive patients had shorter overall survival (OS) compared to LM-negative group albeit not statistically significant. Highly-metastatic tumour cells formed distinct LM structures in vitro and in vivo. Importantly, the siRNA-mediated knockdown of LYVE-1 not only impaired tumour cell migration but also blunted their capacity to form LM-vessels in vitro and reduced tumour metastasis in vivo. Together, our findings uncovered, to our knowledge, a previously unknown expression and function of LYVE-1 in OSCC, whereby tumour cells could induce LM formation and promote lymphatic metastasis. Finally, more detailed studies on LM are warranted to better define this phenomenon in the future. These studies could benefit the development of targeted therapeutics for blocking tumour-related lymphangiogenesis.
Collapse
Affiliation(s)
- Sini Karinen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Krista Juurikka
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland.,Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, 90220, Oulu, Finland
| | - Roosa Hujanen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Elin Hadler-Olsen
- Department of medical biology, Faculty of Health sciences, Arctic university of Norway, 9037, Tromsø, Norway.,The Public Dental Health Competence Center of Northern Norway, 9271, Tromsø, Norway
| | - Gunbjørg Svineng
- Department of medical biology, Faculty of Health sciences, Arctic university of Norway, 9037, Tromsø, Norway
| | - Kari K Eklund
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland.,Department of Rheumatology, Helsinki University and Helsinki University Hospital, and Orton Orthopedic Hospital and Research Institute, 00014, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland.,Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, 90220, Oulu, Finland.,Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland.,Helsinki University Hospital (HUS), 00014, Helsinki, Finland
| | - Pirjo Åström
- The Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland. .,Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
4
|
Reed BG, Babayev SN, Chen LX, Carr BR, Word RA, Jimenez PT. Estrogen-regulated miRNA-27b is altered by bisphenol A in human endometrial stromal cells. Reproduction 2020; 156:559-567. [PMID: 30328349 PMCID: PMC6215928 DOI: 10.1530/rep-18-0041] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRs) are small molecules important for regulation of transcription and translation. The objective was to identify hormonally regulated miRs in human endometrial stromal cells and to determine the impact of the endocrine disruptor, bisphenol A (BPA), on those miRs. miR microarray analysis and multiple confirmatory cell preparations treated with 17β-estradiol (E2) and BPA altered miR-27b, let-7c, let-7e and miR-181b. Further, decidualization downregulated miR-27b. VEGFB and VEGFC were validated as targets of miR-27b. Identification of miR-27b target genes suggests that BPA and E2 downregulate miR-27b thereby leading to upregulation of genes important for vascularization and angiogenesis of the endometrium during the menstrual cycle and decidualization.
Collapse
Affiliation(s)
- Beverly G Reed
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Samir N Babayev
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lucy X Chen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce R Carr
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - R Ann Word
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Patricia T Jimenez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Rofstad EK, Simonsen TG, Huang R, Andersen LMK, Galappathi K, Ellingsen C, Wegner CS, Hauge A, Gaustad JV. Patient-derived xenograft models of squamous cell carcinoma of the uterine cervix. Cancer Lett 2016; 373:147-55. [PMID: 26828134 DOI: 10.1016/j.canlet.2016.01.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/11/2016] [Accepted: 01/26/2016] [Indexed: 01/23/2023]
Abstract
Patient-derived xenograft (PDX) models of cancer are considered to reflect the biology and treatment response of human tumors to a larger extent than xenograft models initiated from established cell lines. The characterization of a panel of four novel PDX models of cervical carcinoma of the uterine cervix is described in this communication. The outcome of treatment differed substantially among the donor patients, and the PDX models were found to mirror the histology, aggressiveness, and metastatic propensity of the donor patients' tumors. Two of the models (BK-12 and LA-19) were highly metastatic, one model (ED-15) was poorly metastatic, and one model (HL-16) was non-metastatic. The primary tumors of the two highly metastatic models showed high density of intratumoral lymphatics, whereas the other two models did not develop intratumoral lymphatics. The potential of the models to metastasize to lymph nodes was associated with high expression of both angiogenesis-related genes and cancer stem cell-related genes. The models may be highly valuable for studying mechanisms linking lymph node metastasis to lymphangiogenesis, hemangiogenesis, and the presence of cancer stem cells.
Collapse
Affiliation(s)
- Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Trude G Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ruixia Huang
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lise Mari K Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kanthi Galappathi
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Christine Ellingsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Catherine S Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Ye J, Wu X, Wu D, Wu P, Ni C, Zhang Z, Chen Z, Qiu F, Xu J, Huang J. miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One 2013; 8:e60687. [PMID: 23593282 PMCID: PMC3625233 DOI: 10.1371/journal.pone.0060687] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/01/2013] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers globally and is one of the leading causes of cancer-related deaths due to therapy resistance and metastasis. Understanding the mechanism underlying colorectal carcinogenesis is essential for the diagnosis and treatment of CRC. microRNAs (miRNAs) can act as either oncogenes or tumor suppressors in many cancers. A tumor suppressor role for miR-27b has recently been reported in neuroblastoma, while no information about miR-27b in CRC is available. In this study, we demonstrated that miR-27b expression is decreased in most CRC tissues and determined that overexpression of miR-27b represses CRC cell proliferation, colony formation and tumor growth in vitro and in vivo. We identified vascular endothelial growth factor C (VEGFC) as a novel target gene of miR-27b and determined that miR-27b functioned as an inhibitor of tumor progression and angiogenesis through targeting VEGFC in CRC. We further determined that DNA hypermethylation of miR-27b CpG islands decreases miR-27b expression. In summary, an anti-tumor role for miR-27b and its novel target VEGFC in vivo could lead to tumor necrosis and provide a rationale for developing miR-27b as a therapeutic agent.
Collapse
Affiliation(s)
- Jun Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianguo Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dang Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pin Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fuming Qiu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghong Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Abstract
The endometrium has a complex and dynamic blood and lymphatic vasculature which undergoes regular cycles of growth and breakdown. While we now have a detailed picture of the endometrial blood vasculature, our understanding of the lymphatic vasculature in the endometrium is limited. Recent studies have illustrated that the endometrium contains a population of lymphatic vessels with restricted distribution in the functional layer relative to the basal layer. The mechanisms responsible for this restricted distribution and the consequences for endometrial function are not known. This review will summarise our current understanding of endometrial lymphatics, including the mechanisms regulating their growth and function. The potential contribution of lymphatic vessels and lymphangiogenic growth factors to various endometrial disorders will be discussed.
Collapse
Affiliation(s)
- Jane E Girling
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne, The Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC, Australia.
| | | |
Collapse
|
8
|
Localization and characterization of lymphatic vessels in oral and cervical squamous cell carcinoma. Exp Ther Med 2012; 2:793-797. [PMID: 22977577 DOI: 10.3892/etm.2011.277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/23/2011] [Indexed: 11/05/2022] Open
Abstract
Lymph node metastasis is considered a factor in determining the prognosis of squamous cell carcinoma (SCC). Both oral and cervical SCC tumor cells prefer lymph vessels as the route of metastasis. D2-40 is a specific marker of lymphatic endothelial cells. This study clarifies the distribution and characteristics of lymphatic vessels in oral and cervical SCCs. Immunohistochemistry was performed in 20 oral and 20 cervical SCCs (10 non-metastatic and 10 metastatic to lymph nodes) using D2-40, CD31, CD34, CD105 and double staining with D2-40 and keratin. Lymphatic vessel density (LVD) was also determined morphologically. Results showed that lymphatic vessels in both types of SCCs were distributed mainly at the superficial region beneath the epithelium. The LVD in each tumor was significantly higher compared to the corresponding normal mucosa. Moreover, the LVD in lymph node metastasis in each tumor was significantly higher compared to their non-metastatic counterparts. Cancer cell invasion was observed in the lymphatic vessels suggesting the existence of lymph node involvement during metastasis. The new lymphatic vessels that proliferated around the cancer nests in both SCCs have endothelial cell characteristics inferred to be associated with early lymphatic development and initial dissemination of cancer cells.
Collapse
|
9
|
Biedka M, Makarewicz R, Kopczyńska E, Marszałek A, Goralewska A, Kardymowicz H. Angiogenesis and lymphangiogenesis as prognostic factors after therapy in patients with cervical cancer. Contemp Oncol (Pozn) 2012; 16:6-11. [PMID: 23788848 PMCID: PMC3687378 DOI: 10.5114/wo.2012.27330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 04/02/2011] [Accepted: 07/25/2011] [Indexed: 01/16/2023] Open
Abstract
AIM OF THE STUDY This retrospective study attempts to evaluate the influence of serum vascular endothelial growth factor C (VEGF-C), microvessel density (MVD) and lymphatic vessel density (LMVD) on the result of tumour treatment in women with cervical cancer. MATERIAL AND METHODS The research was carried out in a group of 58 patients scheduled for brachytherapy for cervical cancer. All women were patients of the Department and University Hospital of Oncology and Brachytherapy, Collegium Medicum in Bydgoszcz of Nicolaus Copernicus University in Toruń. VEGF-C was determined by means of a quantitative sandwich enzyme immunoassay using a human antibody VEGF-C ELISA produced by Bender MedSystem, enzyme-linked immunosorbent detecting the activity of human VEGF-C in body fluids. The measure for the intensity of angiogenesis and lymphangiogenesis in immunohistochemical reactions is the number of blood vessels within the tumour. Statistical analysis was done using Statistica 6.0 software (StatSoft, Inc. 2001). The Cox proportional hazards model was used for univariate and multivariate analyses. Univariate analysis of overall survival was performed as outlined by Kaplan and Meier. In all statistical analyses p < 0.05 (marked red) was taken as significant. RESULTS In 51 patients who showed up for follow-up examination, the influence of the factors of angiogenesis, lymphangiogenesis, patients' age and the level of haemoglobin at the end of treatment were assessed. Selected variables, such as patients' age, lymph vessel density (LMVD), microvessel density (MVD) and the level of haemoglobin (Hb) before treatment were analysed by means of Cox logical regression as potential prognostic factors for lymph node invasion. The observed differences were statistically significant for haemoglobin level before treatment and the platelet number after treatment. The study revealed the following prognostic factors: lymph node status, FIGO stage, and kind of treatment. No statistically significant influence of angiogenic and lymphangiogenic factors on the prognosis was found. CONCLUSION Angiogenic and lymphangiogenic factors have no value in predicting response to radiotherapy in cervical cancer patients.
Collapse
Affiliation(s)
- Marta Biedka
- Chair and Clinic of Oncology and Brachytherapy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Radiotherapy Department I, Oncology Centre, Bydgoszcz, Poland
| | - Roman Makarewicz
- Chair and Clinic of Oncology and Brachytherapy, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Ewa Kopczyńska
- Chair and Department of Pathobiochemistry and Chemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej Marszałek
- Chair and Department of Clinical Pathomorphology, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
- Chair and Department of Clinical Pathomorphology, Poznan University of Medical Sciences, Poland
| | | | | |
Collapse
|
10
|
Balsat C, Blacher S, Signolle N, Beliard A, Munaut C, Goffin F, Noel A, Foidart JM, Kridelka F. Whole slide quantification of stromal lymphatic vessel distribution and peritumoral lymphatic vessel density in early invasive cervical cancer: a method description. ISRN OBSTETRICS AND GYNECOLOGY 2011; 2011:354861. [PMID: 21876817 PMCID: PMC3163137 DOI: 10.5402/2011/354861] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/20/2011] [Indexed: 11/23/2022]
Abstract
Peritumoral Lymphatic Vessel Density (LVD) is considered to be a predictive marker for the presence of lymph node metastases in cervical cancer. However, when LVD quantification relies on conventional optical microscopy and the hot spot technique, interobserver variability is significant and yields inconsistent conclusions. In this work, we describe an original method that applies computed image analysis to whole slide scanned tissue sections following immunohistochemical lymphatic vessel staining. This procedure allows to determine an objective LVD quantification as well as the lymphatic vessel distribution and its heterogeneity within the stroma surrounding the invasive tumor bundles. The proposed technique can be useful to better characterize lymphatic vessel interactions with tumor cells and could potentially impact on prognosis and therapeutic decisions.
Collapse
Affiliation(s)
- C Balsat
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Cancer), University of Liège, Pathology Tower (B23), 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Girling JE, Donoghue JF, Lederman FL, Cann LM, Achen MG, Stacker SA, Rogers PAW. Vascular endothelial growth factor-D over-expressing tumor cells induce differential effects on uterine vasculature in a mouse model of endometrial cancer. Reprod Biol Endocrinol 2010; 8:84. [PMID: 20615255 PMCID: PMC2909246 DOI: 10.1186/1477-7827-8-84] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 07/08/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND It has been hypothesised that increased VEGF-D expression may be an independent prognostic factor for endometrial cancer progression and lymph node metastasis; however, the mechanism by which VEGF-D may promote disease progression in women with endometrial cancer has not been investigated. Our aim was to describe the distribution of lymphatic vessels in mouse uterus and to examine the effect of VEGF-D over-expression on these vessels in a model of endometrial cancer. We hypothesised that VEGF-D over-expression would stimulate growth of new lymphatic vessels into the endometrium, thereby contributing to cancer progression. METHODS We initially described the distribution of lymphatic vessels (Lyve-1, podoplanin, VEGFR-3) and VEGF-D expression in the mouse uterus during the estrous cycle, early pregnancy and in response to estradiol-17beta and progesterone using immunohistochemistry. We also examined the effects of VEGF-D over-expression on uterine vasculature by inoculating uterine horns in NOD SCID mice with control or VEGF-D-expressing 293EBNA tumor cells. RESULTS Lymphatic vessels positive for the lymphatic endothelial cell markers Lyve-1, podoplanin and VEGFR-3 profiles were largely restricted to the connective tissue between the myometrial circular and longitudinal muscle layers; very few lymphatic vessel profiles were observed in the endometrium. VEGF-D immunostaining was present in all uterine compartments (epithelium, stroma, myometrium), although expression was generally low. VEGF-D immunoexpression was slightly but significantly higher in estrus relative to diestrus; and in estradiol-17beta treated mice relative to vehicle or progesterone treated mice. The presence of VEGF-D over-expressing tumor cells did not induce endometrial lymphangiogenesis, although changes were observed in existing vessel profiles. For myometrial lymphatic and endometrial blood vessels, the percentage of profiles containing proliferating endothelial cells, and the cross sectional area of vessel profiles were significantly increased in response to VEGF-D in comparison to control tumor cells. In contrast, no significant changes were noted in myometrial blood vessels. In addition, examples of invading cells or tumor emboli were observed in mice receiving VEGF-D expressing 293EBNA cells. CONCLUSIONS These results illustrate that VEGF-D over-expression has differential effects on the uterine vasculature. These effects may facilitate VEGF-D's ability to promote endometrial cancer metastasis and disease progression.
Collapse
MESH Headings
- Animals
- Carcinoma, Endometrioid/blood supply
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/metabolism
- Carcinoma, Endometrioid/pathology
- Cells, Cultured
- Disease Models, Animal
- Endometrial Neoplasms/blood supply
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Transplantation, Heterologous
- Up-Regulation/genetics
- Uterus/blood supply
- Uterus/metabolism
- Uterus/pathology
- Vascular Endothelial Growth Factor D/genetics
Collapse
Affiliation(s)
- Jane E Girling
- Centre for Women's Health Research, Monash Institute of Medical Research and Monash University Department of Obstetrics and Gynaecology, Monash Medical Centre, 246 Clayton Rd, Clayton, VIC 3168, Australia
| | - Jacqueline F Donoghue
- Centre for Women's Health Research, Monash Institute of Medical Research and Monash University Department of Obstetrics and Gynaecology, Monash Medical Centre, 246 Clayton Rd, Clayton, VIC 3168, Australia
| | - Fiona L Lederman
- Centre for Women's Health Research, Monash Institute of Medical Research and Monash University Department of Obstetrics and Gynaecology, Monash Medical Centre, 246 Clayton Rd, Clayton, VIC 3168, Australia
| | - Leonie M Cann
- Centre for Women's Health Research, Monash Institute of Medical Research and Monash University Department of Obstetrics and Gynaecology, Monash Medical Centre, 246 Clayton Rd, Clayton, VIC 3168, Australia
| | - Marc G Achen
- Ludwig Institute for Cancer Research, PO Box 2008, Royal Melbourne Hospital, Victoria, Australia
| | - Steven A Stacker
- Ludwig Institute for Cancer Research, PO Box 2008, Royal Melbourne Hospital, Victoria, Australia
| | - Peter AW Rogers
- Centre for Women's Health Research, Monash Institute of Medical Research and Monash University Department of Obstetrics and Gynaecology, Monash Medical Centre, 246 Clayton Rd, Clayton, VIC 3168, Australia
| |
Collapse
|
12
|
Prognostic significance of peritumoral lymphatic vessel density and vascular endothelial growth factor receptor 3 in invasive squamous cell cervical cancer. Transl Oncol 2010; 3:170-5. [PMID: 20563258 DOI: 10.1593/tlo.09292] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/14/2009] [Accepted: 12/15/2009] [Indexed: 11/18/2022] Open
Abstract
Cervical cancer is known to metastasize primarily by the lymphatic system. Dissemination through lymphatic vessels represents an early step in regional tumor progression, and the presence of lymphatic metastasis is associated with a poor prognosis. In patients who have undergone a radical hysterectomy, lymphovascular space invasion (LVSI), assessed on hematoxylin and eosin-stained slides, is a major factor for adjuvant therapy in patients with cervical cancer. With the advent of a lymphatic endothelial cell-specific marker, such as D2-40, it is now possible to distinguish between blood and lymphatic space invasion (LSI). In this study, the utility of D2-40 was assessed for the detection of lymphatic vessel density (LVD) and identification of LSI. The expressions of vascular endothelial growth factor receptor-3 (VEGFR-3), VEGF-C, tyrosine receptor kinase-2, and angiopoietin-1 were assessed by immunohistochemical methods on 50 patients with squamous cell carcinoma of the cervix. Clinicopathologic characteristics, including pelvic lymph node metastasis, were correlated with the above histochemical findings. We found that lymphangiogenesis, measured by an increase in peritumoral LVD, was significantly associated with positive lymph node status (P < .005). VEGFR-3 expression was significantly associated with LVD (P < .05). D2-40 staining verified LSI (P = .03) and surpassed that of hematoxylin and eosin-identified LVSI (P = .54). In conclusion, lymphangiogenic markers, specifically LVD quantified by D2-40 and VEGFR-3, are independently associated with LSI and lymph node metastasis in patients with early squamous cell carcinoma of the cervix treated with radical hysterectomy and pelvic lymphadenectomy.
Collapse
|
13
|
Sapoznik S, Cohen B, Tzuman Y, Meir G, Ben-Dor S, Harmelin A, Neeman M. Gonadotropin-regulated lymphangiogenesis in ovarian cancer is mediated by LEDGF-induced expression of VEGF-C. Cancer Res 2010; 69:9306-14. [PMID: 19934313 DOI: 10.1158/0008-5472.can-09-1213] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The risk and severity of ovarian carcinoma, the leading cause of gynecologic malignancy death, are significantly elevated in postmenopausal women. Ovarian failure at menopause, associated with a reduction in estrogen secretion, results in an increase of the gonadotropic luteinizing hormone (LH) and follicle-stimulating hormone (FSH), suggesting a role for these hormones in facilitating the progression of ovarian carcinoma. The current study examined the influence of hormonal stimulation on lymphangiogenesis in ovarian cancer cells. In vitro stimulation of ES2 ovarian carcinoma cells with LH and FSH induced expression of vascular endothelial growth factor (VEGF)-C. In vivo, ovariectomy of mice resulted in activation of the VEGF-C promoter in ovarian carcinoma xenografts, increased VEGF-C mRNA level, and enhanced tumor lymphangiogenesis and angiogenesis. Seeking the molecular mechanism, we examined the role of lens epithelium-derived growth factor (LEDGF/p75) and the possible contribution of its putative target, a conserved stress-response element identified in silico in the VEGF-C promoter. Using chromatin immunoprecipitation, we showed that LEDGF/p75 indeed binds the VEGF-C promoter, and binding is augmented by FSH. A corresponding hormonally regulated increase in the LEDGF/p75 mRNA and protein levels was observed. Suppression of LEDGF/p75 expression using small interfering RNA, suppression of LH and FSH production using the gonadotropin-releasing hormone antagonist cetrorelix, or mutation of the conserved stress-response element suppressed the hormonally induced expression of VEGF-C. Overall, our data suggest a possible role for elevated gonadotropins in augmenting ovarian tumor lymphangiogenesis in postmenopausal women.
Collapse
Affiliation(s)
- Stav Sapoznik
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|