1
|
Yang C, Li Y, Liu Y, Xu Z, Li W, Cao W, Jin K, Liu Y. Protection of Barrier Function in Cultured Human Corneal Epithelial Cells by Semaphorin 4D. Curr Eye Res 2023; 48:894-903. [PMID: 37395011 DOI: 10.1080/02713683.2023.2232572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Corneal epithelial barrier function is important to maintain corneal homeostasis and is impaired by inflammation. We aimed to investigate the localization of semaphorin 4D (Sema4D) in the cornea, and its effects on the barrier function of cultured corneal epithelial cells. METHODS The expressions of semaphorin4 D and its receptor in the murine cornea were examined by immunoblot, immunofluorescent staining and confocal microscopy observations. Human corneal epithelial (HCE) cells stimulated by TNF-α or IL-1β were cultured with or without Sema4D. Cell viability was examined by CCK8, cell migration was evaluated by scratch wound assay, and barrier function was assessed by transepithelial electrical resistance (TEER) and Dextran-FITC permeability assay. The expression of tight junction proteins in HCE cells was examined by immunoblot, immunofluorescent staining and qRT-PCR. RESULTS We demonstrated that the protein of Sema4D and its receptor, plexin-B1, was expressed in murine cornea. Sema4D induced an increase in the TEER and a decrease in the permeability of HCE cells. It also induced the expression of tight junction protein ZO-1, occludin and claudin-1 in HCE cells. Furthermore, under stimulation of TNF-α or IL-1β, Sema4D treatment could inhibit the decreased TEER and the elevated permeability of HCE cells. CONCLUSIONS Sema4D is located distinctly in corneal epithelial cells and promoted their barrier function by increasing the expression of tight junction proteins. Sema4D may act as a preventive for maintaining corneal epithelial barrier function during ocular inflammation.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Ophthalmology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Yunzepeng Li
- Department of Ophthalmology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Ye Liu
- Department of Pathology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Zhenghua Xu
- Department of Ophthalmology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Wei Li
- Department of Pathology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Wanwei Cao
- Department of Pathology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Kai Jin
- Department of Ophthalmology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| | - Yang Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, P.R. China
| |
Collapse
|
2
|
Nojima S. Class IV semaphorins in disease pathogenesis. Pathol Int 2022; 72:471-487. [PMID: 36066011 DOI: 10.1111/pin.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Semaphorins are a large family of secreted and/or transmembrane proteins, originally identified as proteins that function in axon guidance during neuronal development. However, semaphorins play crucial roles in other physiological and pathological processes, including immune responses, angiogenesis, maintenance of tissue homeostasis, and cancer progression. Class IV semaphorins may be present as transmembrane and soluble forms and are implicated in the pathogenesis of various diseases. This review discusses recent progress on the roles of class IV semaphorins determined by clinical and experimental pathology studies.
Collapse
Affiliation(s)
- Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
3
|
Du H, Xu Y, Zhu L. Role of Semaphorins in Ischemic Stroke. Front Mol Neurosci 2022; 15:848506. [PMID: 35350431 PMCID: PMC8957939 DOI: 10.3389/fnmol.2022.848506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the major causes of neurological morbidity and mortality in the world. Although the management of ischemic stroke has been improved significantly, it still imposes a huge burden on the health and property. The integrity of the neurovascular unit (NVU) is closely related with the prognosis of ischemic stroke. Growing evidence has shown that semaphorins, a family of axon guidance cues, play a pivotal role in multiple pathophysiological processes in NVU after ischemia, such as regulating the immune system, angiogenesis, and neuroprotection. Modulating the NVU function via semaphorin signaling has a potential to develop a novel therapeutic strategy for ischemic stroke. We, therefore, review recent progresses on the role of semphorin family members in neurons, glial cells and vasculature after ischemic stroke.
Collapse
Affiliation(s)
- Huaping Du
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Li Zhu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Collaborative Innovation Center of Hematology of Jiangsu Province, National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- *Correspondence: Li Zhu,
| |
Collapse
|
4
|
Brinks J, van Dijk EHC, Kiełbasa SM, Mei H, van der Veen I, Peters HAB, Sips HCM, Notenboom RGE, Quax PHA, Boon CJF, Meijer OC. The Cortisol Response of Male and Female Choroidal Endothelial Cells: Implications for Central Serous Chorioretinopathy. J Clin Endocrinol Metab 2022; 107:512-524. [PMID: 34546342 PMCID: PMC8764349 DOI: 10.1210/clinem/dgab670] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Central serous chorioretinopathy (CSC) is a severe ocular disease characterized by fluid accumulation under the retina and abnormalities in the underlying vascular layer, the choroid. CSC has a striking prevalence in males of 80% to 90% of total patients. Corticosteroids are the most pronounced extrinsic risk factor for CSC. Choroidal endothelial cells (CECs) are important for the vascular integrity of the choroid, but the effects of corticosteroid effects in these cells are unknown. OBJECTIVE We aimed to reveal the potential steroidal contribution to CSC. METHOD We characterized the expression of the glucocorticoid, mineralocorticoid, and androgen receptor in the human choroid using immunohistochemistry. Using RNA-sequencing, we describe the cortisol response in human CECs derived from 5 male and 5 female postmortem donors. RESULTS The glucocorticoid receptor was highly expressed in the human choroid, whereas no to minimal expression of the mineralocorticoid and androgen receptors was observed. The extensive transcriptional response to cortisol in human primary cultured CECs showed interindividual differences but very few sex differences. Several highly regulated genes such as ZBTB16 (log2 fold change males 7.9; females 6.2) provide strong links to choroidal vascular regulation. CONCLUSIONS The glucocorticoid receptor predominantly mediates the response to cortisol in human CECs. Interindividual differences are an important determinant regarding the cortisol response in human cultured CECs, whereas intrinsic sex differences appear less pronounced. The marked response of particular target genes in endothelial cells to cortisol, such as ZBTB16, warrants further investigation into their potential role in the pathophysiology of CSC and other vascular conditions.
Collapse
Affiliation(s)
- Joost Brinks
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Elon H C van Dijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Szymon M Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, the Netherlands
| | - Isa van der Veen
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam-Zuidoost, the Netherlands
| | - Hendrika A B Peters
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hetty C M Sips
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Robbert G E Notenboom
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul H A Quax
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam-Zuidoost, the Netherlands
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
5
|
Insights into the mechanism of vascular endothelial cells on bone biology. Biosci Rep 2021; 41:227494. [PMID: 33403387 PMCID: PMC7816070 DOI: 10.1042/bsr20203258] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
In the skeletal system, blood vessels not only function as a conduit system for transporting gases, nutrients, metabolic waste, or cells but also provide multifunctional signal molecules regulating bone development, regeneration, and remodeling. Endothelial cells (ECs) in bone tissues, unlike in other organ tissues, are in direct contact with the pericytes of blood vessels, resulting in a closer connection with peripheral connective tissues. Close-contact ECs contribute to osteogenesis and osteoclastogenesis by secreting various cytokines in the paracrine or juxtacrine pathways. An increasing number of studies have revealed that extracellular vesicles (EVs) derived from ECs can directly regulate maturation process of osteoblasts and osteoclasts. The different pathways focus on targets at different distances, forming the basis of the intimate spatial and temporal link between bone tissue and blood vessels. Here, we provide a systematic review to elaborate on the function of ECs in bone biology and its underlying mechanisms based on three aspects: paracrine, EVs, and juxtacrine. This review proposes the possibility of a therapeutic strategy targeting blood vessels, as an adjuvant treatment for bone disorders.
Collapse
|
6
|
Li C, Wan L, Wang P, Guan X, Li C, Wang X. Sema4D/Plexin-B1 promotes the progression of osteosarcoma cells by activating Pyk2-PI3K-AKT pathway. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:577-583. [PMID: 34854398 PMCID: PMC8672410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVES Osteosarcoma (OS) is one of the two most common malignant bone tumors among children and teens but it is still a rare disorder. Semaphorin 4D (Sema4D) has been reported to play a specific role in human cancers. The aim of this study was to explore the function of Sema4D in the tumorigenesis and development of OS. METHODS 10 pairs of OS tissues and paracancerous normal tissues from human OS samples and OS cell lines were used. Western blot assay was performed to detect the protein expression of Sema4D, Plexin-B1, and associated proteins of Pyk2-PI3K/AKT pathway. To explore the effect of Sema4D in the progression of OS, we reduced the expression of Sema4D. The effect of Sema4D knockdown on cell proliferation was explored by CCK-8 assay and clone formation assay. The effect of Sema4D knockdown on cell migration and invasion was assessed by Transwell assay. RESULTS Sema4D was overexpressed in OS tissues and cell lines. Sema4D knockdown notably suppressed cell proliferation in OS cells. Cell migration and invasion were reduced by Sema4D knockdown. Sema4D/Plexin-B1 facilitated OS, progression by promoting Pyk2-PI3K/AKT pathway. CONCLUSION Sema4D/Plexin-B1 promoted the development of OS so Sema4D might be a potential target of treatment for patients with OS.
Collapse
Affiliation(s)
- Changhui Li
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China,Department of Rehabilitation Medicine, People’s Hospital of Rizhao, Rizhao, China
| | - Lei Wan
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China
| | - Peng Wang
- Department of Rehabilitation Medicine, People’s Hospital of Rizhao, Rizhao, China
| | - Xiliang Guan
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China
| | - Congda Li
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China
| | - Xishan Wang
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao, China,Corresponding author: Xishan Wang, Department of Orthopedics, People’s Hospital of Rizhao, No. 126 Taian Road, Rizhao, China E-mail:
| |
Collapse
|
7
|
Valle IB, Schuch LF, da Silva JM, Gala-García A, Diniz IMA, Birbrair A, Abreu LG, Silva TA. Pericyte in Oral Squamous Cell Carcinoma: A Systematic Review. Head Neck Pathol 2020; 14:1080-1091. [PMID: 32506378 PMCID: PMC7669928 DOI: 10.1007/s12105-020-01188-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The microenvironment of oral cancer is highly dynamic and has been proved to affect tumor progression. Pericytes are blood vessels surrounding cells that have recently gained attention for their roles in vascular and cancer biology. The objective of the present study was to survey the scientific literature for conclusive evidence about whether pericytes are part of blood vessels in oral squamous cell carcinoma (OSCC) and their roles in the tumor microenvironment and clinical outcomes. A systematic electronic search was undertaken in Medline Ovid, PubMed, Web of Science, and Scopus. Eligibility criteria were: publications adopting in vivo models of OSCC that included pericyte detection and assessment by pericyte markers (e.g., α-smooth muscle actin, neuron-glial antigen 2 and platelet-derived growth factor receptor-β). The search yielded seven eligible studies (from 2008 to 2018). The markers most commonly used for pericyte detection were α-smooth muscle actin and neuron-glial antigen 2. The studies reviewed showed the presence of immature vessels exhibiting a reduction of pericyte coverage in OSCC and indicated that anti-cancer therapies could contribute to vessel normalization and pericyte regain. The pericyte population is significantly affected during OSCC development and cancer therapy. While these findings might suggest a role for pericytes in OSCC progression, the limited data available do not allow us to conclude whether they modify the tumor microenvironment and clinical outcome.
Collapse
Affiliation(s)
- Isabella Bittencourt Valle
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lauren Frenzel Schuch
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Janine Mayra da Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alfonso Gala-García
- Department of Genetics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Guimarães Abreu
- Department of Child's and Adolescent's Oral Health, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Room 3105. Pampulha, Belo Horizonte, MG, CEP: 31.270-901, Brazil.
| |
Collapse
|
8
|
Rocco D, Gregorc V, Della Gravara L, Lazzari C, Palazzolo G, Gridelli C. New immunotherapeutic drugs in advanced non-small cell lung cancer (NSCLC): from preclinical to phase I clinical trials. Expert Opin Investig Drugs 2020; 29:1005-1023. [PMID: 32643447 DOI: 10.1080/13543784.2020.1793956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The development of immune checkpoint inhibitors (ICI) has represented a revolution in the treatment of non-small cell lung cancer (NSCLC) and has established a new standard of care for different settings. However, through adaptive changes, cancer cells can develop resistance mechanisms to these drugs, hence the necessity for novel immunotherapeutic agents. AREAS COVERED This paper explores the immunotherapeutics currently under investigation in phase I clinical trials for the treatment of NSCLC as monotherapies and combination therapies. It provides two comprehensive tables of phase I agents which are listed according to target, drug, drug class, mechanism of action, setting, trial identifier, and trial status. A comprehensive literature search was carried out to identify eligible studies from MEDLINE/PubMed and ClinicalTrials.gov. EXPERT OPINION A key hurdle to success in this field is our limited understanding of the synergic interactions of the immune targets in the context of the TME. While we can recognize the links between inhibitors and some particularly promising new targets such as TIM-3 and LAG3, we continue to develop approaches to exploit their interactions to enhance the immune response of the patient to tumor cells.
Collapse
Affiliation(s)
- Danilo Rocco
- Department of Pulmonary Oncology, AORN Dei Colli Monaldi , Naples, Italy
| | - Vanesa Gregorc
- Department of Oncology, Division of Experimental Medicine, IRCCS San Raffaele , Milan, Italy
| | - Luigi Della Gravara
- Department of Experimental Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli" , Caserta, Italy
| | - Chiara Lazzari
- Department of Oncology, Division of Experimental Medicine, IRCCS San Raffaele , Milan, Italy
| | | | - Cesare Gridelli
- Division of Medical Oncology, "S.G. Moscati" Hospital , Avellino, Italy
| |
Collapse
|
9
|
Cuthbert RJ, Jones E, Sanjurjo-Rodríguez C, Lotfy A, Ganguly P, Churchman SM, Kastana P, Tan HB, McGonagle D, Papadimitriou E, Giannoudis PV. Regulation of Angiogenesis Discriminates Tissue Resident MSCs from Effective and Defective Osteogenic Environments. J Clin Med 2020; 9:jcm9061628. [PMID: 32481579 PMCID: PMC7355658 DOI: 10.3390/jcm9061628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The biological mechanisms that contribute to atrophic long bone non-union are poorly understood. Multipotential mesenchymal stromal cells (MSCs) are key contributors to bone formation and are recognised as important mediators of blood vessel formation. This study examines the role of MSCs in tissue formation at the site of atrophic non-union. Materials and Methods: Tissue and MSCs from non-union sites (n = 20) and induced periosteal (IP) membrane formed following the Masquelet bone reconstruction technique (n = 15) or bone marrow (n = 8) were compared. MSC content, differentiation, and influence on angiogenesis were measured in vitro. Cell content and vasculature measurements were performed by flow cytometry and histology, and gene expression was measured by quantitative polymerase chain reaction (qPCR). Results: MSCs from non-union sites had comparable differentiation potential to bone marrow MSCs. Compared with induced periosteum, non-union tissue contained similar proportion of colony-forming cells, but a greater proportion of pericytes (p = 0.036), and endothelial cells (p = 0.016) and blood vessels were more numerous (p = 0.001) with smaller luminal diameter (p = 0.046). MSCs showed marked differences in angiogenic transcripts depending on the source, and those from induced periosteum, but not non-union tissue, inhibited early stages of in vitro angiogenesis. Conclusions: In vitro, non-union site derived MSCs have no impairment of differentiation capacity, but they differ from IP-derived MSCs in mediating angiogenesis. Local MSCs may thus be strongly implicated in the formation of the immature vascular network at the non-union site. Attention should be given to their angiogenic support profile when selecting MSCs for regenerative therapy.
Collapse
Affiliation(s)
- R. J. Cuthbert
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - E. Jones
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - C. Sanjurjo-Rodríguez
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
- Department of Biomedical Sciences, Medicine and Physiotherapy, University of A Coruña, CIBER-BBN-Institute of Biomedical Research of A Coruña (INIBIC), A Coruña 15001, Spain
| | - A. Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt;
| | - P. Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - S. M. Churchman
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - P. Kastana
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 265 04, Greece; (P.K.); (E.P.)
| | - H. B. Tan
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - D. McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - E. Papadimitriou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 265 04, Greece; (P.K.); (E.P.)
| | - P. V. Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
- NIHR Leeds Biomedical Research Center, Chapel Allerton Hospital, Leeds LS7 4SA, UK
- Correspondence: ; Tel.: +44-113-392-2750; Fax: +44-113-392-3290
| |
Collapse
|
10
|
Dao T, Gapihan G, Leboeuf C, Hamdan D, Feugeas JP, Boudabous H, Zelek L, Miquel C, Tran T, Monnot C, Germain S, Janin A, Bousquet G. Expression of angiopoietin-like 4 fibrinogen-like domain (cANGPTL4) increases risk of brain metastases in women with breast cancer. Oncotarget 2020; 11:1590-1602. [PMID: 32405335 PMCID: PMC7210011 DOI: 10.18632/oncotarget.27553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/19/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Brain metastases challenge daily clinical practice, and the mechanisms by which cancer cells cross the blood-brain barrier remain largely undeciphered. Angiopoietin-like 4 (ANGPTL4) proteolytic fragments have controversial biological effects on endothelium permeability. Here, we studied the link between ANGPTL4 and the risk of brain metastasis in cancer patients. Materials and Methods: From June 2015 to June 2016, serum samples from 113 cancer patients were prospectively collected, and ANGPTL4 concentrations were assessed. Using a murine model of brain metastases, we investigated the roles of nANGPTL4 and cANGPTL4, the two cleaved fragments of ANGPTL4, in the occurrence of brain metastases. Results: An ANGPTL4 serum concentration over 0.1 ng/mL was associated with decreased overall-survival. Multivariate analyses found that only breast cancer brain metastases were significantly associated with elevated ANGPTL4 serum concentrations. 4T1 murine breast cancer cells were transfected with either nANGPTL4- or cANGPTL4-encoding cDNAs. Compared to mice injected with wild-type 4T1 cells, mice injected with nANGPTL4 cells had shorter median survival (p < 0.05), while mice injected with cANGPTL4 had longer survival (p < 0.01). On tissue sections, compared to wild-type mice, mice injected with nANGPTL4 cells had significantly larger surface areas of lung metastases (p < 0.01), and mice injected with cANGPTL4 had significantly larger surface areas of brain metastases (p < 0.01). Conclusions: In this study, we showed that a higher expression of Angiopoietin-like 4 Fibrinogen-Like Domain (cANGPTL4) was associated with an increased risk of brain metastases in women with breast cancer.
Collapse
Affiliation(s)
- Tu Dao
- Université Paris Diderot, Inserm, UMR_S942, Paris, France.,Medical Oncology Department, National Cancer Hospital, Ha Noi, Vietnam.,Ha Noi Medical University, Oncology Department, Ha Noi, Vietnam.,Cancer Research and Clinical Trial Center, National Cancer Hospital, Ha Noi, Vietnam.,These authors contributed equally to this work
| | - Guillaume Gapihan
- Université Paris Diderot, Inserm, UMR_S942, Paris, France.,These authors contributed equally to this work
| | | | - Diaddin Hamdan
- Université Paris Diderot, Inserm, UMR_S942, Paris, France
| | - Jean-Paul Feugeas
- INSERM, U722-Paris, Paris, France.,Université de Franche Comté, Besançon, France
| | | | - Laurent Zelek
- Oncology Department, Hôpital Avicenne, APHP, Bobigny, France.,Université Paris 13, Villetaneuse, Paris, France
| | - Catherine Miquel
- Université Paris Diderot, Inserm, UMR_S942, Paris, France.,Pathology Department, Hôpital St Louis, APHP, Paris, France
| | - Thuan Tran
- Medical Oncology Department, National Cancer Hospital, Ha Noi, Vietnam.,Ha Noi Medical University, Oncology Department, Ha Noi, Vietnam
| | - Catherine Monnot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Anne Janin
- Université Paris Diderot, Inserm, UMR_S942, Paris, France.,Pathology Department, Hôpital St Louis, APHP, Paris, France.,These authors are co-senior authors
| | - Guilhem Bousquet
- Université Paris Diderot, Inserm, UMR_S942, Paris, France.,Oncology Department, Hôpital Avicenne, APHP, Bobigny, France.,Université Paris 13, Villetaneuse, Paris, France.,These authors are co-senior authors
| |
Collapse
|
11
|
Zhou H, Yang YH, Basile JR. Retraction Note to: The Semaphorin 4D-Plexin-B1-RhoA signaling axis recruits pericytes and regulates vascular permeability through endothelial production of PDGF-B and ANGPTL4. Angiogenesis 2020; 23:269. [PMID: 32103388 DOI: 10.1007/s10456-020-09710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Editors-in-Chief have retracted this article [1] following an investigation by the University of Maryland. The institution found that in Figure 1C, the graph showing PDGF-B does not match the original data for the 24-hour time point. The graph shows the value to be over 1000 pg/ml, but the original data have a value of 106.626. In Figure 1F, the data were entered manually to create the standard deviation bars. The data manually entered do not match the original data. When the standard deviations for the original data were calculated, the p values were no longer significant using a paired student t test. In Figure 2C, the original data do not match the published data. In Figure 4B, the images in the first lane and the fifth lane are from the same micrograph (i.e., the same set of conditions). However, the published figure claims that they are different conditions. The metadata in this figure also shows different cell lines than those noted in the article. The first and last images are labelled as "Du145 shAR3 anti AR3.jpg". The second image is labelled as "Du145 shAR8 anti AR8.jpg". The third image is labelled as "Cos1 mARs3 mS3-2 antibody-2.jpg." The fourth image is labelled as "R1 3634 bleed.jpg". Due to these errors, the Editors-in-Chief have found that the results are no longer reliable.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 West Baltimore Street, 7-North, Baltimore, MD, 21201, USA
| | - Ying-Hua Yang
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 West Baltimore Street, 7-North, Baltimore, MD, 21201, USA
| | - John R Basile
- Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650 West Baltimore Street, 7-North, Baltimore, MD, 21201, USA. .,Greenebaum Cancer Center, 22 S. Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Tsuda T, Nishide M, Maeda Y, Hayama Y, Koyama S, Nojima S, Takamatsu H, Okuzaki D, Morita T, Nakatani T, Kato Y, Nakanishi Y, Futami Y, Suga Y, Naito Y, Konaka H, Satoh S, Naito M, Izumi M, Obata S, Nakatani A, Shikina T, Takeda K, Hayama M, Inohara H, Kumanogoh A. Pathological and therapeutic implications of eosinophil-derived semaphorin 4D in eosinophilic chronic rhinosinusitis. J Allergy Clin Immunol 2020; 145:843-854.e4. [PMID: 32035658 DOI: 10.1016/j.jaci.2019.12.893] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Eosinophilic chronic rhinosinusitis (ECRS) is a subtype of chronic rhinosinusitis. Clinical markers for ECRS disease activity and treatment strategies have not been sufficiently established. Although semaphorins are originally identified as neuronal guidance factors, it is becoming clear that they play key roles in immune regulation and inflammatory diseases. OBJECTIVE We sought to investigate the pathological functions and therapeutic potential of semaphorin 4D (SEMA4D) in ECRS. METHODS Serum soluble SEMA4D levels in patients with paranasal sinus diseases were measured by ELISA. The expression of SEMA4D in blood cells and nasal polyp tissues was assessed by flow cytometry and immunohistochemistry, respectively. Generation of soluble SEMA4D was evaluated in matrix metalloproteinase-treated eosinophils. Endothelial cells were stimulated with recombinant SEMA4D, followed by eosinophil transendothelial migration assays. Allergic chronic rhinosinusitis was induced in mice using Aspergillus protease with ovalbumin. The efficacy of treatment with anti-SEMA4D antibody was evaluated histologically and by nasal lavage fluid analysis. RESULTS Serum soluble SEMA4D levels were elevated in patients with ECRS and positively correlated with disease severity. Tissue-infiltrated eosinophils in nasal polyps from patients with ECRS stained strongly with anti-SEMA4D antibody. Cell surface expression of SEMA4D on eosinophils from patients with ECRS was reduced, which was due to matrix metalloproteinase-9-mediated cleavage of membrane SEMA4D. Soluble SEMA4D induced eosinophil transendothelial migration. Treatment with anti-SEMA4D antibody ameliorated eosinophilic infiltration in sinus tissues and nasal lavage fluid in the ECRS animal model. CONCLUSIONS Eosinophil-derived SEMA4D aggravates ECRS. Levels of serum SEMA4D reflect disease severity, and anti-SEMA4D antibody has therapeutic potential as a treatment for ECRS.
Collapse
Affiliation(s)
- Takeshi Tsuda
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan.
| | - Yohei Maeda
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Yoshitomo Hayama
- Department of Respiratory Medicine, Kinki Central Hospital, Itami City, Hyogo, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Satoshi Nojima
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan; Department of Pathology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Takeshi Nakatani
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yu Futami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yasuhiko Suga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Hachiro Konaka
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Shingo Satoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Mayuko Izumi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Sho Obata
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Ayaka Nakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Takashi Shikina
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Department of Otolaryngology, Ikeda Municipal Hospital, Ikeda City, Osaka, Japan
| | - Kazuya Takeda
- Department of Otolaryngology, Osaka City General Hospital, Osaka City, Osaka, Japan
| | - Masaki Hayama
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan; Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan; Institute for Open and Transdisciplinary Research Initiatives, Suita City, Osaka, Japan.
| |
Collapse
|
13
|
Zuazo-Gaztelu I, Pàez-Ribes M, Carrasco P, Martín L, Soler A, Martínez-Lozano M, Pons R, Llena J, Palomero L, Graupera M, Casanovas O. Antitumor Effects of Anti-Semaphorin 4D Antibody Unravel a Novel Proinvasive Mechanism of Vascular-Targeting Agents. Cancer Res 2019; 79:5328-5341. [PMID: 31239269 PMCID: PMC7611261 DOI: 10.1158/0008-5472.can-18-3436] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/08/2019] [Accepted: 06/21/2019] [Indexed: 01/15/2023]
Abstract
One of the main consequences of inhibition of neovessel growth and vessel pruning produced by angiogenesis inhibitors is increased intratumor hypoxia. Growing evidence indicates that tumor cells escape from this hypoxic environment to better nourished locations, presenting hypoxia as a positive stimulus for invasion. In particular, anti-VEGF/R therapies produce hypoxia-induced invasion and metastasis in a spontaneous mouse model of pancreatic neuroendocrine cancer (PanNET), RIP1-Tag2. Here, a novel vascular-targeting agent targeting semaphorin 4D (Sema4D) demonstrated impaired tumor growth and extended survival in the RIP1-Tag2 model. Surprisingly, although there was no induction of intratumor hypoxia by anti-Sema4D therapy, the increase in local invasion and distant metastases was comparable with the one produced by VEGFR inhibition. Mechanistically, the antitumor effect was due to an alteration in vascular function by modification of pericyte coverage involving platelet-derived growth factor B. On the other hand, the aggressive phenotype involved a macrophage-derived Sema4D signaling engagement, which induced their recruitment to the tumor invasive fronts and secretion of stromal cell-derived factor 1 (SDF1) that triggered tumor cell invasive behavior via CXCR4. A comprehensive clinical validation of the targets in different stages of PanNETs demonstrated the implication of both Sema4D and CXCR4 in tumor progression. Taken together, we demonstrate beneficial antitumor and prosurvival effects of anti-Sema4D antibody but also unravel a novel mechanism of tumor aggressivity. This mechanism implicates recruitment of Sema4D-positive macrophages to invasive fronts and their secretion of proinvasive molecules that ultimately induce local tumor invasion and distant metastasis in PanNETs. SIGNIFICANCE: An anti-semaphorin-4D vascular targeting agent demonstrates antitumor and prosurvival effects but also unravels a novel promalignant effect involving macrophage-derived SDF1 that promotes tumor invasion and metastasis, both in animal models and patients.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5328/F1.large.jpg.See related commentary by Tamagnone and Franzolin, p. 5146.
Collapse
Affiliation(s)
- Iratxe Zuazo-Gaztelu
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Marta Pàez-Ribes
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Patricia Carrasco
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Laura Martín
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Adriana Soler
- Vascular Signaling Group, ProCURE Research Program, IDIBELL, Barcelona, Spain
| | - Mar Martínez-Lozano
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Roser Pons
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Judith Llena
- Vascular Signaling Group, ProCURE Research Program, IDIBELL, Barcelona, Spain
| | - Luis Palomero
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain
| | - Mariona Graupera
- Vascular Signaling Group, ProCURE Research Program, IDIBELL, Barcelona, Spain
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE Research Program, Catalan Institute of Oncology, OncoBell Program, IDIBELL, Barcelona, Spain.
| |
Collapse
|
14
|
Transactivation of Met signalling by semaphorin4D in human placenta: implications for the pathogenesis of preeclampsia. J Hypertens 2019; 36:2215-2225. [PMID: 29939944 DOI: 10.1097/hjh.0000000000001808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The signalling of the receptor tyrosine kinase Met is critical in promoting trophoblast cell invasion, and the deficiency in HGF/Met signalling is associated with preeclampsia. The semaphorin family member semaphorin4D (sema4D) and its receptor Plexin-B1 have been reported to control tumour cell invasion by coupling with Met. We hypothesized that sema4D/Plexin-B1 may promote trophoblast invasion by activating Met, and downregulation of sema4D/Plexin-B1 may account for the deficiency in Met signalling in preeclamptic placenta. METHODS In this study, Met and Erk activation and the expression of sema4D/Plexin-B1 in normal and preeclamptic placentas were comparably measured. The role of sema4D in trophoblast cell invasion and tubulogenesis was examined in vitro using the Transwell invasion assay and tube formation assay in trophoblast-endothelial cell co-culture model. RESULTS Met, sema4D and Plexin-B1 co-localized in various subtypes of human trophoblast cells, including villous trophoblasts and extravillous trophoblasts (EVTs). In early-onset preeclampsia (E-PE) placentas, the phosphorylated Met and Erk as well as sema4D and Plexin-B1 were much lower than those in gestational week-matched preterm-labour (PTL) placentas. In human trophoblast HTR8/SVneo cell line, sema4D could promote Met and Erk phosphorylation as well as enhance trophoblast cell invasion and tubulogenesis with endothelial cells. Moreover, the effect of sema4D on HTR8/SVneo could be blocked by knocking down Met with specific siRNA. CONCLUSION The crosstalk between sema4D and Met could transactivate Met to promote trophoblast cell invasion and differentiation, and decreased expression of sema4D and Plexin-B1 may be responsible for the deficiency in Met signalling and the development of preeclampsia.
Collapse
|
15
|
Lu JJ, Su YW, Wang CJ, Li DF, Zhou L. Semaphorin 4D promotes the proliferation and metastasis of bladder cancer by activating the PI3K/AKT pathway. TUMORI JOURNAL 2019; 105:231-242. [PMID: 30674231 PMCID: PMC6566455 DOI: 10.1177/0300891618811280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
The present study aimed to investigate the role of semaphorin 4D (Sema4D) in bladder cancer cell proliferation and metastasis in vivo and in vitro. Effects of Sema4D modulation on cancer cell viability and clonogenic abilities were assessed by MTT assay and colony formation assay. Cell apoptosis, cell cycle analysis, transwell assays, and wound-healing assays were also assayed. A mouse model of bladder cancer was established to observe the tumorigenesis in vivo. Our data showed that Sema4D was 4-fold upregulated in clinical bladder cancer tissues relative to noncancerous ones and differentially expressed in bladder cancer cell lines. Knockdown of Sema4D in bladder cancer T24 and 5637 cells significantly decreased cell proliferation, clonogenic potential, and motility. On the contrary, overexpression of Sema4D in bladder cancer SV-HUC-1 cells significantly increased cell viability and motility. Concordantly, knockdown of Sema4D impaired while overexpression of Sema4D promoted bladder cancer cell growth rates in xenotransplanted mice. Cell cycle was arrested by modulation of Sema4D. Cell apoptotic rates and the mitochondrial membrane potentials were consistently increased upon knockdown of Sema4D in T24 cells and 5637 cells. Western blotting revealed that epithelial-mesenchymal transition was promoted by Sema4D. The PI3K/AKT pathway was activated upon Sema4D overexpression in SV-HUC-1 cells, while it was inactivated by knockdown of Sema4D in T24 cells. All these data suggest that Sema4D promotes cell proliferation and metastasis in bladder cancer in vivo and in vitro. The oncogenic behavior of Sema4D is achieved by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jian-jun Lu
- Department of Urinary Surgery, Ningbo Beilun District People ’s Hospital, Ningbo, China
| | - Yao-wu Su
- Department of Urinary Surgery, Ningbo Beilun District People ’s Hospital, Ningbo, China
| | - Chao-jun Wang
- Department of Urinary Surgery, The First Affiliated Hospital Zhejiang University, Zhejiang, China
| | - Di-feng Li
- Department of Urinary Surgery, Ningbo Beilun District People ’s Hospital, Ningbo, China
| | - Liang Zhou
- Department of Urinary Surgery, Ningbo Beilun District People ’s Hospital, Ningbo, China
| |
Collapse
|
16
|
Zhang L, Chen Y, Li F, Bao L, Liu W. Atezolizumab and Bevacizumab Attenuate Cisplatin Resistant Ovarian Cancer Cells Progression Synergistically via Suppressing Epithelial-Mesenchymal Transition. Front Immunol 2019; 10:867. [PMID: 31105696 PMCID: PMC6498972 DOI: 10.3389/fimmu.2019.00867] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The AURELIA trial demonstrated that adding Bevacizumab to chemotherapy significantly improved progression-free survival (PFS) for platinum resistant recurrent ovarian cancer. Recently, immunotherapy also presented potential anti-tumor effects in several malignant solid tumors. This study aimed to investigate whether combining anti-PD-L1 Atezolizumab with BEV may have a synergistic effect and enhance the efficacy of both treatments in cisplatin resistant epithelial ovarian cancer (CREOC). We retrospectively analyzed 124 epithelial ovarian cancer (EOC) patients from Gynecologic Oncology Department of Tianjin Cancer Hospital between January 2013 and June 2018, who all were diagnosed with cisplatin resistance due to progressing <6 months after completing platinum-based therapy. Based on responding to at least 2 cycles of Bevacizumab-containing chemotherapy (BC), these Patients were divided into BC response group and BC non-response group. Immunohistochemistry was used to detect that PD-L1 expression and tumor angiogenesis-related proteins (VEGF and Semaphorin4D) in tissues from 124 patients with CREOC. The positive expressions of PD-L1, VEGF, and Semaphorin4D (SEMA4D) were found in 58.73, 50.79, and 71.43% of the 63 cases CREOC tissues with BC response, respectively, which were significantly higher than that in the 61 cases BC non-response group (P < 0.05). PD-L1 expression correlated with SEMA4D and VEGF positively (r = 0.344 and 0.363, P < 0.001). Over-expressions of PD-L1, VEGF and SEMA4D are associated with more malignant clinicopathologic characteristics of CREOC Patients. In survival analysis, patients' response to BC was the independent factor for evaluation of PFS and overall survival (OS). Cell functional assays showed that Atezolizumab in combination with Bevacizumab inhibited the proliferation, migration, and invasion of cisplatin resistant ovarian cancer cell line A2780cis in vitro synergistically, which maybe associate with Bevacizumab suppressing the epithelial-mesenchymal transition (EMT) and PD-L1 expression by targeting STAT3. Furthermore, Bevacizumab and Atezolizumab induced synergistic anti-tumor effect in vivo. These findings suggest a novel therapeutic strategy for cisplatin resistant recurrent EOC and its mechanism warrants further study.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ying Chen
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,National Clinical Research Centre of Cancer, Tianjin, China
| | - Fangxuan Li
- Department of Cancer Prevention, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lewen Bao
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenxin Liu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
17
|
Zou T, Jiang S, Dissanayaka WL, Heng BC, Xu J, Gong T, Huang X, Zhang C. Sema4D/PlexinB1 promotes endothelial differentiation of dental pulp stem cells via activation of AKT and ERK1/2 signaling. J Cell Biochem 2019; 120:13614-13624. [PMID: 30937968 DOI: 10.1002/jcb.28635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/05/2023]
Abstract
Inducing of dental pulp stem cells (DPSCs) into endothelial cells (ECs) to prevascularize pulp tissue constructs may offer a novel and viable approach for enhancing pulp regeneration. However, there are numerous challenges in current methods for the acquisition of sufficient translational ECs. It was known that Sema4D/PlexinB1 signaling exerts profound effects on enhancing vascular endothelial growth factor (VEGF) secretion and angiogenesis. Whether Sema4D/PlexinB1 could regulate endothelial differentiation of DPSCs is not yet investigated. In this study, when DPSCs were treated with Sema4D (2 μg/mL), ECs-specific (VEGFR1, VEGFR2, CD31, and vWF), and angiogenic genes and proteins were significantly upregulated. The induced ECs exhibited similar endothelial vessel formation ability to that of human umbilical vein endothelial cells (HUVECs). Furthermore, phosphorylation of AKT increased dramatically within 5 minutes (from 0.93 to 21.8), while p-ERK1/2 was moderately elevated (from 0.94 to 2.65). In summary, our results demonstrated that Sema4D/PlexinB1 signaling induces endothelial differentiation of DPSCs. The interactions of Sema4D, VEGF, ANGPTL4, ANG1, and HIF-1α may play a crucial role in mediating the differentiation process.
Collapse
Affiliation(s)
- Ting Zou
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Shan Jiang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | | | - Boon Chin Heng
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Jianguang Xu
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ting Gong
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Xiaojing Huang
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
18
|
Wu JH, Zhou YF, Hong CD, Chen AQ, Luo Y, Mao L, Xia YP, He QW, Jin HJ, Huang M, Li YN, Hu B. Semaphorin-3A protects against neointimal hyperplasia after vascular injury. EBioMedicine 2018; 39:95-108. [PMID: 30579864 PMCID: PMC6355729 DOI: 10.1016/j.ebiom.2018.12.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Neointimal hyperplasia is a prominent pathological event during in-stent restenosis. Phenotype switching of vascular smooth muscle cells (VSMCs) from a differentiated/contractile to a dedifferentiated/synthetic phenotype, accompanied by migration and proliferation of VSMCs play an important role in neointimal hyperplasia. However, the molecular mechanisms underlying phenotype switching of VSMCs have yet to be fully understood. METHODS The mouse carotid artery ligation model was established to evaluate Sema3A expression and its role during neointimal hyperplasia in vivo. Bioinformatics analysis, chromatin immunoprecipitation (ChIP) assays and promoter-luciferase reporter assays were used to examine regulatory mechanism of Sema3A expression. SiRNA transfection and lentivirus infection were performed to regulate Sema3A expression. EdU assays, Wound-healing scratch experiments and Transwell migration assays were used to assess VSMC proliferation and migration. FINDINGS In this study, we found that semaphorin-3A (Sema3A) was significantly downregulated in VSMCs during neointimal hyperplasia after vascular injury in mice and in human atherosclerotic plaques. Meanwhile, Sema3A was transcriptionally downregulated by PDGF-BB via p53 in VSMCs. Furthermore, we found that overexpression of Sema3A inhibited VSMC proliferation and migration, as well as increasing differentiated gene expression. Mechanistically, Sema3A increased the NRP1-plexin-A1 complex and decreased the NRP1-PDGFRβ complex, thus inhibiting phosphorylation of PDGFRβ. Moreover, we found that overexpression of Sema3A suppressed neointimal hyperplasia after vascular injury in vivo. INTERPRETATION These results suggest that local delivery of Sema3A may act as a novel therapeutic option to prevent in-stent restenosis.
Collapse
Affiliation(s)
- Jie-Hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can-Dong Hong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An-Qi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan-Wei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Huang
- Department of Neurology, the People's Hospital of China Three Gorges University, Institute of Translational Neuroscience, Three Gorges University College of Medicine, Yichang 443002, China
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Finney AC, Orr AW. Guidance Molecules in Vascular Smooth Muscle. Front Physiol 2018; 9:1311. [PMID: 30283356 PMCID: PMC6157320 DOI: 10.3389/fphys.2018.01311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Several highly conserved families of guidance molecules, including ephrins, Semaphorins, Netrins, and Slits, play conserved and distinct roles in tissue remodeling during tissue patterning and disease pathogenesis. Primarily, these guidance molecules function as either secreted or surface-bound ligands that interact with their receptors to activate a variety of downstream effects, including cell contractility, migration, adhesion, proliferation, and inflammation. Vascular smooth muscle cells, contractile cells comprising the medial layer of the vessel wall and deriving from the mural population, regulate vascular tone and blood pressure. While capillaries lack a medial layer of vascular smooth muscle, mural-derived pericytes contribute similarly to capillary tone to regulate blood flow in various tissues. Furthermore, pericyte coverage is critical in vascular development, as perturbations disrupt vascular permeability and viability. During cardiovascular disease, smooth muscle cells play a more dynamic role in which suppression of contractile markers, enhanced proliferation, and migration lead to the progression of aberrant vascular remodeling. Since many types of guidance molecules are expressed in vascular smooth muscle and pericytes, these may contribute to blood vessel formation and aberrant remodeling during vascular disease. While vascular development is a large focus of the existing literature, studies emerged to address post-developmental roles for guidance molecules in pathology and are of interest as novel therapeutic targets. In this review, we will discuss the roles of guidance molecules in vascular smooth muscle and pericyte function in development and disease.
Collapse
Affiliation(s)
- Alexandra Christine Finney
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| |
Collapse
|
20
|
Zhu C, Kros JM, Cheng C, Mustafa D. The contribution of tumor-associated macrophages in glioma neo-angiogenesis and implications for anti-angiogenic strategies. Neuro Oncol 2018; 19:1435-1446. [PMID: 28575312 DOI: 10.1093/neuonc/nox081] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
"Tumor-associated macrophages" (TAMs) form a significant cell population in malignant tumors and contribute to tumor growth, metastasis, and neovascularization. Gliomas are characterized by extensive neo-angiogenesis, and knowledge of the role of TAMs in neovascularization is important for future anti-angiogenic therapies. The phenotypes and functions of TAMs are heterogeneous and more complex than a classification into M1 and M2 inflammation response types would suggest. In this review, we provide an update on the current knowledge of the ontogeny of TAMs, focusing on diffuse gliomas. The role of TAMs in the regulation of the different processes in tumor angiogenesis is highlighted and the most recently discovered mechanisms by which TAMs mediate resistance against current antivascular therapies are mentioned. Novel compounds tested in clinical trials are discussed and brought in relation to different TAM-related angiogenesis pathways. In addition, potential therapeutic targets used to intervene in TAM-regulated tumor angiogenesis are summarized.
Collapse
Affiliation(s)
- Changbin Zhu
- Department of Pathology, Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, Netherlands; Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johan M Kros
- Department of Pathology, Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, Netherlands; Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht, Utrecht, Netherlands
| | - Caroline Cheng
- Department of Pathology, Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, Netherlands; Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dana Mustafa
- Department of Pathology, Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, Netherlands; Department of Nephrology and Hypertension, DIGD, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
21
|
Aryal B, Singh AK, Zhang X, Varela L, Rotllan N, Goedeke L, Chaube B, Camporez JP, Vatner DF, Horvath TL, Shulman GI, Suárez Y, Fernández-Hernando C. Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis. JCI Insight 2018; 3:97918. [PMID: 29563332 PMCID: PMC5926923 DOI: 10.1172/jci.insight.97918] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
Alterations in ectopic lipid deposition and circulating lipids are major risk factors for developing cardiometabolic diseases. Angiopoietin-like protein 4 (ANGPTL4), a protein that inhibits lipoprotein lipase (LPL), controls fatty acid (FA) uptake in adipose and oxidative tissues and regulates circulating triacylglycerol-rich (TAG-rich) lipoproteins. Unfortunately, global depletion of ANGPTL4 results in severe metabolic abnormalities, inflammation, and fibrosis when mice are fed a high-fat diet (HFD), limiting our understanding of the contribution of ANGPTL4 in metabolic disorders. Here, we demonstrate that genetic ablation of ANGPTL4 in adipose tissue (AT) results in enhanced LPL activity, rapid clearance of circulating TAGs, increased AT lipolysis and FA oxidation, and decreased FA synthesis in AT. Most importantly, we found that absence of ANGPTL4 in AT prevents excessive ectopic lipid deposition in the liver and muscle, reducing novel PKC (nPKC) membrane translocation and enhancing insulin signaling. As a result, we observed a remarkable improvement in glucose tolerance in short-term HFD-fed AT-specific Angptl4-KO mice. Finally, lack of ANGPTL4 in AT enhances the clearance of proatherogenic lipoproteins, attenuates inflammation, and reduces atherosclerosis. Together, these findings uncovered an essential role of AT ANGPTL4 in regulating peripheral lipid deposition, influencing whole-body lipid and glucose metabolism and the progression of atherosclerosis.
Collapse
Affiliation(s)
- Binod Aryal
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine
| | - Abhishek K. Singh
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine
| | - Luis Varela
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine
| | | | - Balkrishna Chaube
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine
| | | | | | - Tamas L. Horvath
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine
| | - Gerald I. Shulman
- Department of Internal Medicine
- Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, and
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
22
|
Angelopoulou E, Piperi C. Emerging role of plexins signaling in glioma progression and therapy. Cancer Lett 2018; 414:81-87. [DOI: 10.1016/j.canlet.2017.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
|
23
|
Zhou YF, Li YN, Jin HJ, Wu JH, He QW, Wang XX, Lei H, Hu B. Sema4D/PlexinB1 inhibition ameliorates blood-brain barrier damage and improves outcome after stroke in rats. FASEB J 2018; 32:2181-2196. [PMID: 29242274 DOI: 10.1096/fj.201700786rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The inflammatory process in stroke is the major contributor to blood-brain barrier (BBB) breakdown. Previous studies indicated that semaphorin 4D (Sema4D), an axon guidance molecule, initiated inflammatory microglial activation and disrupted endothelial function in the CNS. However, whether Sema4D disrupts BBB integrity after stroke remains unclear. To study the effect of Sema4D on BBB disruption in stroke, rats were subjected to transient middle cerebral artery occlusion and targeted injection of lentivirus-mediated clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene disruption of PlexinB1. We found that Sema4D synchronously increased with BBB permeability and accumulated in the perivascular area after stroke. Suppressing Sema4D/PlexinB1 signaling in the periinfarct cortex significantly decreased BBB permeability as detected by MRI and fibrin deposition, and thereby improved stroke outcome. In vitro, we confirmed that Sema4D disrupted BBB integrity and endothelial tight junctions. Moreover, we found that Sema4D induced pericytes to acquire a CD11b-positive phenotype and express proinflammatory cytokines. In addition, Sema4D inhibited AUF1-induced proinflammatory mRNA decay effect. Taken together, our data provides evidence that Sema4D disrupts BBB integrity and promotes an inflammatory response by binding to PlexinB1 in pericytes after transient middle cerebral artery occlusion. Our study indicates that Sema4D may be a novel therapeutic target for treatment in the acute phase of stroke.-Zhou, Y.-F., Li, Y.-N., Jin, H.-J., Wu, J.-H., He, Q.-W., Wang, X.-X., Lei, H., Hu, B. Sema4D/PlexinB1 inhibition ameliorates blood-brain barrier damage and improves outcome after stroke in rats.
Collapse
Affiliation(s)
- Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie-Hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan-Wei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu-Xia Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Lontos K, Adamik J, Tsagianni A, Galson DL, Chirgwin JM, Suvannasankha A. The Role of Semaphorin 4D in Bone Remodeling and Cancer Metastasis. Front Endocrinol (Lausanne) 2018; 9:322. [PMID: 29971044 PMCID: PMC6018527 DOI: 10.3389/fendo.2018.00322] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
Semaphorin 4D (Sema4D; CD100) is a transmembrane homodimer 150-kDa glycoprotein member of the Semaphorin family. Semaphorins were first identified as chemorepellants that guide neural axon growth. Sema4D also possesses immune regulatory activity. Recent data suggest other Sema4D functions: inactivation of platelets, stimulation of angiogenesis, and regulation of bone formation. Sema4D is a coupling factor expressed on osteoclasts that inhibits osteoblast differentiation. Blocking Sema4D may, therefore, be anabolic for bone. Sema4D and its receptor Plexin-B1 are commonly dysregulated in cancers, suggesting roles in cancer progression, invasion, tumor angiogenesis, and skeletal metastasis. This review focuses on Sema4D in bone and cancer biology and the molecular pathways involved, particularly Sema4D-Plexin-B1 signaling crosstalk between cancer cells and the bone marrow microenvironment-pertinent areas since a humanized Sema4D-neutralizing antibody is now in early phase clinical trials in cancers and neurological disorders.
Collapse
Affiliation(s)
- Konstantinos Lontos
- Hematology-Oncology Division, Department of Medicine, UPMC Hillman Cancer Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Juraj Adamik
- Hematology-Oncology Division, Department of Medicine, UPMC Hillman Cancer Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anastasia Tsagianni
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Deborah L. Galson
- Hematology-Oncology Division, Department of Medicine, UPMC Hillman Cancer Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - John M. Chirgwin
- Hematology and Oncology Division, Department of Medicine, Indiana University School of Medicine, Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Attaya Suvannasankha
- Hematology and Oncology Division, Department of Medicine, Indiana University School of Medicine, Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
- *Correspondence: Attaya Suvannasankha,
| |
Collapse
|
25
|
Huang F, Yao Y, Wu J, Liu Q, Zhang J, Pu X, Zhang Q, Xia L. Curcumin inhibits gastric cancer-derived mesenchymal stem cells mediated angiogenesis by regulating NF-κB/VEGF signaling. Am J Transl Res 2017; 9:5538-5547. [PMID: 29312505 PMCID: PMC5752903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Cancer-derived mesenchymal stem cells (MSCs) seem to play an important role in mediating tumor angiogenesis. Recently, curcumin has been shown to display multiple therapeutic properties, including anticancer activity. In the present study, we have tried to explore the role of curcumin in regulating gastric cancer cells-derived mesenchymal stem cells (GC-MSCs) mediated angiogenesis. Our results showed that curcumin attenuated the high expression levels of fibroblast proteins (α-SMA & Vimentin) in GC-MSCs. Its treatment also inhibited GC-MSCs induced human umbilical vein endothelial cells (HUVEC) tube formation, migration and colony formation. Furthermore, it was noticed that curcumin abrogated NF-κB signaling activity and VEGF production in GC-MSCs. Next, to establish the link between regulation of NF-κB/VEGF signaling by curcumin, and its influence on GC-MSC-derived angiogenesis, we pretreated GC-MSCs with either NF-κB inhibitor PDTC or a neutralizing antibody against VEGF (NA-VEGF), and then collected conditioned media (CM). The HUVEC cells were then cultured in this conditioned media to test their ability to form tubes, migrate and form colonies. Our results demonstrated that NF-κB/VEGF signaling is important for GC-MSCs induced tube formation, migration and colony formation in HUVEC cells. Moreover, we also observed that NF-κB/VEGF signaling regulated VEGF expression of gastric cancer cells both in vitro and in vivo. Overall, our study indicated that curcumin may serve as a novel therapeutic target for GC-MSCs derived angiogenesis, by inhibiting NF-κB/VEGF signaling.
Collapse
Affiliation(s)
- Feng Huang
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan Affiliated with Jiangsu UniversitySuzhou 215300, China
| | - Yongliang Yao
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan Affiliated with Jiangsu UniversitySuzhou 215300, China
| | - Jianhong Wu
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan Affiliated with Jiangsu UniversitySuzhou 215300, China
| | - Qingqian Liu
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan Affiliated with Jiangsu UniversitySuzhou 215300, China
| | - Jiao Zhang
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan Affiliated with Jiangsu UniversitySuzhou 215300, China
| | - Xiongyong Pu
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan Affiliated with Jiangsu UniversitySuzhou 215300, China
| | - Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical CollegeBengbu 233004, China
| | - Longfei Xia
- School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| |
Collapse
|
26
|
Nishide M, Nojima S, Ito D, Takamatsu H, Koyama S, Kang S, Kimura T, Morimoto K, Hosokawa T, Hayama Y, Kinehara Y, Kato Y, Nakatani T, Nakanishi Y, Tsuda T, Park JH, Hirano T, Shima Y, Narazaki M, Morii E, Kumanogoh A. Semaphorin 4D inhibits neutrophil activation and is involved in the pathogenesis of neutrophil-mediated autoimmune vasculitis. Ann Rheum Dis 2017; 76:1440-1448. [PMID: 28416516 PMCID: PMC5738596 DOI: 10.1136/annrheumdis-2016-210706] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Inappropriate activation of neutrophils plays a pathological role in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). The aim of this study was to investigate the functions of semaphorin 4D (SEMA4D) in regulation of neutrophil activation, and its involvement in AAV pathogenesis. METHODS Serum levels of soluble SEMA4D were evaluated by ELISA. Blood cell-surface expression of membrane SEMA4D was evaluated by flow cytometry. To determine the functional interactions between neutrophil membrane SEMA4D and endothelial plexin B2, wild-type and SEMA4D-/- mice neutrophils were cultured with an endothelial cell line (MS1) stained with SYTOX green, and subjected to neutrophil extracellular trap (NET) formation assays. The efficacy of treating human neutrophils with recombinant plexin B2 was assessed by measuring the kinetic oxidative burst and NET formation assays. RESULTS Serum levels of soluble SEMA4D were elevated in patients with AAV and correlated with disease activity scores. Cell-surface expression of SEMA4D was downregulated in neutrophils from patients with AAV, a consequence of proteolytic cleavage of membrane SEMA4D. Soluble SEMA4D exerted pro-inflammatory effects on endothelial cells. Membranous SEMA4D on neutrophils bound to plexin B2 on endothelial cells, and this interaction decreased NET formation. Recombinant plexin B2 suppressed neutrophil Rac1 activation through SEMA4D's intracellular domain, and inhibited pathogen-induced or ANCA-induced oxidative burst and NET formation. CONCLUSIONS Neutrophil surface SEMA4D functions as a negative regulator of neutrophil activation. Proteolytic cleavage of SEMA4D as observed in patients with AAV may amplify neutrophil-mediated inflammatory responses. SEMA4D is a promising biomarker and potential therapeutic target for AAV.
Collapse
Affiliation(s)
- Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Satoshi Nojima
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
- Department of Pathology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Daisuke Ito
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Sujin Kang
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
- Department of Clinical Application of Biologics, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Tetsuya Kimura
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Keiko Morimoto
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Takashi Hosokawa
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Yoshitomo Hayama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Yuhei Kinehara
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Takeshi Nakatani
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| | - Takeshi Tsuda
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
- Department of Otorhinolaryngology–Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Jeong Hoon Park
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
| | - Toru Hirano
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Yoshihito Shima
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center, Suita City, Osaka, Japan
- The Japan Agency for Medical Research and Development–Core Research for Evolutional Science and Technology (AMED–CREST), Japan
| |
Collapse
|
27
|
Peng SX, Yao L, Cui C, Zhao HD, Liu CJ, Li YH, Wang LF, Huang SB, Shen YQ. Semaphorin4D promotes axon regrowth and swimming ability during recovery following zebrafish spinal cord injury. Neuroscience 2017; 351:36-46. [PMID: 28347780 DOI: 10.1016/j.neuroscience.2017.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/16/2017] [Accepted: 03/19/2017] [Indexed: 01/03/2023]
Abstract
Semaphorins comprise a family of proteins involved in axon guidance during development. Semaphorin4D (Sema4D) has both neuroregenerative and neurorepressive functions, being able to stimulate both axonal outgrowth and growth cone collapse during development, and therefore could play an important role in neurological recovery from traumatic injury. Here, we used a zebrafish spinal cord transection model to study the role of Sema4D in a system capable of neuroregeneration. Real-time qPCR and in situ hybridization showed upregulated Sema4D expression in the acute response phase (within 3days post SCI), and downregulated levels in the chronic response phase (11-21days after SCI). Double-immunostaining for Sema4D and either Islet-1 (motoneuron marker) or Iba-1 (microglial marker) showed that microglia surrounded Sema4D-positive motoneurons along the central canal at 4h post injury (hpi) and 12hpi. Following administration of Sema4D morpholino (MO) to transected zebrafish, double-immunostaining showed that Sema4D-positive motoneurons surrounded by microglia decreased at 7days and 11days compared with standard control MO. Anterograde and retrograde tracing indicate that Sema4D participates in axon regeneration in the spinal cord following spinal cord injury (SCI) in the zebrafish. Swim tracking shows that MO-mediated inhibition of Sema4D retarded the recovery of swimming function when compared to standard control MO. The combined results indicate that Sema4D expression in motoneurons enhances locomotor recovery and axon regeneration, possibly by regulating microglia function, after SCI in adult zebrafish.
Collapse
Affiliation(s)
- Shi-Xiao Peng
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Li Yao
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chun Cui
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hou-de Zhao
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chun-Jie Liu
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yu-Hong Li
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Lin-Fang Wang
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Shu-Bing Huang
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yan-Qin Shen
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
28
|
La Paglia L, Listì A, Caruso S, Amodeo V, Passiglia F, Bazan V, Fanale D. Potential Role of ANGPTL4 in the Cross Talk between Metabolism and Cancer through PPAR Signaling Pathway. PPAR Res 2017; 2017:8187235. [PMID: 28182091 PMCID: PMC5274667 DOI: 10.1155/2017/8187235] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
The angiopoietin-like 4 (ANGPTL4) protein belongs to a superfamily of secreted proteins structurally related to factors modulating angiogenesis known as angiopoietins. At first, ANGPTL4 has been identified as an adipokine exclusively involved in lipid metabolism, because of its prevalent expression in liver and adipose tissue. This protein regulates lipid metabolism by inhibiting lipoprotein lipase (LPL) activity and stimulating lipolysis of white adipose tissue (WAT), resulting in increased levels of plasma triglycerides (TG) and fatty acids. Subsequently, ANGPTL4 has been shown to be involved in several nonmetabolic and metabolic conditions, both physiological and pathological, including angiogenesis and vascular permeability, cell differentiation, tumorigenesis, glucose homoeostasis, lipid metabolism, energy homeostasis, wound healing, inflammation, and redox regulation. The transcriptional regulation of ANGPTL4 can be modulated by several transcription factors, including PPARα, PPARβ/δ, PPARγ, and HIF-1α, and nutritional and hormonal conditions. Several studies showed that high levels of ANGPTL4 are associated with poor prognosis in patients with various solid tumors, suggesting an important role in cancer onset and progression, metastasis, and anoikis resistance. Here, we have discussed the potential role of ANGPTL4 in mediating the cross talk between metabolic syndromes, such as diabetes and obesity, and cancer through regulation of its expression by PPARs.
Collapse
Affiliation(s)
- Laura La Paglia
- ICAR-CNR, National Research Council of Italy, 90146 Palermo, Italy
| | - Angela Listì
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Stefano Caruso
- Génomique Fonctionnelle des Tumeurs Solides, INSERM, UMR 1162, 75010 Paris, France
| | - Valeria Amodeo
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Francesco Passiglia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
29
|
Xue D, Desjardins M, Kaufman GN, Béland M, Al-Tamemi S, Ahmed E, Tao S, Friedel RH, Mourad W, Mazer BD. Semaphorin 4C: A Novel Component of B-Cell Polarization in Th2-Driven Immune Responses. Front Immunol 2016; 7:558. [PMID: 28003812 PMCID: PMC5141245 DOI: 10.3389/fimmu.2016.00558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/21/2016] [Indexed: 12/27/2022] Open
Abstract
Background Semaphorins are important molecules in embryonic development and multiple semaphorins have been identified as having key roles in immune regulation. To date, there is little known about Semaphorin 4C (Sema4C) in immune biology. We report for the first time that Sema4C is inducible in human and murine B-cells and may be important for normal B-cell development. Methods Human tonsillar B-cells were studied following activation via anti-CD40 antibodies in the presence or absence of representative Th1, Th2, and regulatory cytokines. Murine B-cells from WT and Sema4C−/− mice were similarly stimulated. B-cell phenotyping in WT and Sema4C mutant mice was performed by flow cytometry and lymphoid architecture was studied by immunohistochemistry. Sema4C expression and synapse formation were analyzed by confocal microscopy. Results Gene array studies performed on human tonsillar B-cells stimulated to produce IgE revealed that Sema4C was among the top genes expressed at 24 h, and the only semaphorin to be increased under Th2 conditions. Validation studies demonstrated that human and murine B-cells expressed Sema4C under similar conditions. Sema4C−/− mice had impaired maturation of B-cell follicles in spleens and associated decreases in follicular and marginal zone B-cells as well as impaired IgG and IgA production. In keeping with a potential role in maturation of B-cells, Sema4C was expressed predominantly on CD27+ human B-cells. Within 72 h of B-cell activation, Sema4C was localized to one pole in a synapse-like structure, in association with F-actin, B-cell receptor, and Plexin-B2. Cell polarization was impaired in Sema4C−/− mice. Conclusion We have identified a novel immune semaphorin induced in human and murine B-cells under Th2 conditions. Sema4C appears to be a marker for human memory B-cells. It may be important for B-cell polarization and for the formation of normal splenic follicles.
Collapse
Affiliation(s)
- Di Xue
- Translational Research in Respiratory Diseases, The Research Institute of the McGill University Health Center , Montreal, QC , Canada
| | - Marylin Desjardins
- Translational Research in Respiratory Diseases, The Research Institute of the McGill University Health Center, Montreal, QC, Canada; McGill University Health Center, Montreal Children's Hospital, Montreal, QC, Canada
| | - Gabriel N Kaufman
- Translational Research in Respiratory Diseases, The Research Institute of the McGill University Health Center , Montreal, QC , Canada
| | - Marianne Béland
- Translational Research in Respiratory Diseases, The Research Institute of the McGill University Health Center , Montreal, QC , Canada
| | - Salem Al-Tamemi
- McGill University Health Center, Montreal Children's Hospital, Montreal, QC, Canada; Sultan Qaboos University Hospital, Muscat, Oman
| | - Eisha Ahmed
- Translational Research in Respiratory Diseases, The Research Institute of the McGill University Health Center , Montreal, QC , Canada
| | - Shao Tao
- Translational Research in Respiratory Diseases, The Research Institute of the McGill University Health Center , Montreal, QC , Canada
| | | | - Walid Mourad
- Department of Medicine, University de Montreal , Montreal, QC , Canada
| | - Bruce D Mazer
- Translational Research in Respiratory Diseases, The Research Institute of the McGill University Health Center, Montreal, QC, Canada; McGill University Health Center, Montreal Children's Hospital, Montreal, QC, Canada
| |
Collapse
|
30
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The role of the semaphorins in cancer. Cell Adh Migr 2016; 10:652-674. [PMID: 27533782 PMCID: PMC5160032 DOI: 10.1080/19336918.2016.1197478] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
The semaphorins were initially characterized as axon guidance factors, but have subsequently been implicated also in the regulation of immune responses, angiogenesis, organ formation, and a variety of additional physiological and developmental functions. The semaphorin family contains more then 20 genes divided into 7 subfamilies, all of which contain the signature sema domain. The semaphorins transduce signals by binding to receptors belonging to the neuropilin or plexin families. Additional receptors which form complexes with these primary semaphorin receptors are also frequently involved in semaphorin signaling. Recent evidence suggests that semaphorins also fulfill important roles in the etiology of multiple forms of cancer. Some semaphorins have been found to function as bona-fide tumor suppressors and to inhibit tumor progression by various mechanisms while other semaphorins function as inducers and promoters of tumor progression.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yelena Mumblat
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Tatyana Smolkin
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Shira Toledano
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Inbal Nir-Zvi
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Keren Ziv
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
31
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The semaphorins and their receptors as modulators of tumor progression. Drug Resist Updat 2016; 29:1-12. [DOI: 10.1016/j.drup.2016.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/31/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022]
|
32
|
Gurrapu S, Tamagnone L. Transmembrane semaphorins: Multimodal signaling cues in development and cancer. Cell Adh Migr 2016; 10:675-691. [PMID: 27295627 DOI: 10.1080/19336918.2016.1197479] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Semaphorins constitute a large family of membrane-bound and secreted proteins that provide guidance cues for axon pathfinding and cell migration. Although initially discovered as repelling cues for axons in nervous system, they have been found to regulate cell adhesion and motility, angiogenesis, immune function and tumor progression. Notably, semaphorins are bifunctional cues and for instance can mediate both repulsive and attractive functions in different contexts. While many studies focused so far on the function of secreted family members, class 1 semaphorins in invertebrates and class 4, 5 and 6 in vertebrate species comprise around 14 transmembrane semaphorin molecules with emerging functional relevance. These can signal in juxtacrine, paracrine and autocrine fashion, hence mediating long and short range repulsive and attractive guidance cues which have a profound impact on cellular morphology and functions. Importantly, transmembrane semaphorins are capable of bidirectional signaling, acting both in "forward" mode via plexins (sometimes in association with receptor tyrosine kinases), and in "reverse" manner through their cytoplasmic domains. In this review, we will survey known molecular mechanisms underlying the functions of transmembrane semaphorins in development and cancer.
Collapse
Affiliation(s)
- Sreeharsha Gurrapu
- a Department of Oncology , University of Torino c/o IRCCS , Candiolo ( TO ), Italy.,b Candiolo Cancer Institute, IRCCS-FPO , Candiolo ( TO ), Italy
| | - Luca Tamagnone
- a Department of Oncology , University of Torino c/o IRCCS , Candiolo ( TO ), Italy.,b Candiolo Cancer Institute, IRCCS-FPO , Candiolo ( TO ), Italy
| |
Collapse
|
33
|
Chung E, Oh I, Lee KY. Characterization of sphere-forming HCT116 clones by whole RNA sequencing. Ann Surg Treat Res 2016; 90:183-93. [PMID: 27073788 PMCID: PMC4826980 DOI: 10.4174/astr.2016.90.4.183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To determine CD133(+) cells defined as cancer stem cells (CSCs) in colon cancer, we examined whether CD133(+) clones in HCT116 demonstrate known features of CSCs like sphere-forming ability, chemodrug-resistance, and metastatic potential. METHODS Magnetic cell isolation and cell separation demonstrated that <1% of HCT116 cells expressed CD133, with the remaining cells being CD133(-) clones. In colon cancer cells, radioresistance is also considered a CSC characteristic. We performed clonogenic assay using 0.4 Gy γ-irradiation. RESULTS Interestingly, there were no differences between HCT116 parental and HCT116 CD133(+) clones when the cells comprised 0.5% of the total cells, and CD133(-) clone demonstrated radiosensitive changes compared with parental and CD133(+) clones. Comparing gene expression profiles between sphere-forming and nonforming culture conditions of HCT116 subclones by whole RNA sequencing failed to obtain specific genes expressed in CD133(+) clones. CONCLUSION Despite no differences of gene expression profiles in monolayer attached culture conditions of each clone, sphere-forming conditions of whole HCT116 subclones, parental, CD133(+), and CD133(-) increased 1,761 coding genes and downregulated 1,384 genes related to CSCs self-renewal and survival. Thus, spheroid cultures of HCT116 cells could be useful to expand colorectal CSCs rather than clonal expansion depending on CD133 expressions.
Collapse
Affiliation(s)
| | - Inkyung Oh
- Department of Surgery, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Kil Yeon Lee
- Department of Surgery, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
34
|
Ding X, Qiu L, Zhang L, Xi J, Li D, Huang X, Zhao Y, Wang X, Sun Q. The role of semaphorin 4D as a potential biomarker for antiangiogenic therapy in colorectal cancer. Onco Targets Ther 2016; 9:1189-204. [PMID: 27022279 PMCID: PMC4789851 DOI: 10.2147/ott.s98906] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Semaphorin 4D (Sema4D) belongs to the class IV semaphorins, and accumulating evidence has indicated that its elevated level may be one strategy by which tumors evade current anti-angiogenic therapies. The biological roles of Sema4D in colorectal cancer (CRC), however, remain largely undefined. This study was designed to investigate the effects of Sema4D on tumor angiogenesis and growth in CRC, especially in different vascular endothelial growth factor (VEGF) backgrounds. Methods The expression of Sema4D in human CRC was evaluated by immunohistochemical analysis of tumors and their matching normal control tissues. The expression level of Sema4D and VEGF was investigated in different CRC cell lines. To evaluate the contributions of Sema4D to tumor-induced angiogenesis, two CRC cell lines with opposite VEGF backgrounds were infected with lentiviruses expressing Sema4D or Sema4D short hairpin RNA, followed by in vitro migration and in vivo tumor angiogenic assays. Results Immunohistochemical analysis of human CRC revealed high levels of Sema4D in a cell surface pattern. In all, 84.85% of CRC samples analyzed exhibited moderate to strong Sema4D expression. The positive ratios of Sema4D staining for well, moderately, and poorly differentiated cancers were 71.43%, 96.67%, and 77.27%, respectively. Sema4D is highly expressed in five different CRC cell lines, while VEGF expression level varies among these cell lines. HCT-116 showed the lowest VEGF level, while Caco-2 showed the maximum VEGF level. In vitro migration results show that regardless of cell type and VEGF background, Sema4D showed an enhanced in vitro proangiogenic effect to induce the migration of human umbilical vein endothelial cells. Finally, in vivo tumor angiogenic assays demonstrated that Sema4D alone can elicit a significant angiogenic response to promote tumor growth independently of VEGF. Conclusion Targeting Sema4D might serve as a parallel option for antiangiogenic therapy for CRC, particularly when traditional anti-VEGF therapies fail or tumors develop resistance to strategies targeting a single angiogenic signaling pathway.
Collapse
Affiliation(s)
- Xiaojie Ding
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China; Molecular Epidemiology Joint Laboratory, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Lijuan Qiu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China; Molecular Epidemiology Joint Laboratory, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Lijuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Provincial Tumor Hospital), Kunming, People's Republic of China
| | - Juemin Xi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China; Molecular Epidemiology Joint Laboratory, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Duo Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China; Molecular Epidemiology Joint Laboratory, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Xinwei Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China; Molecular Epidemiology Joint Laboratory, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Yujiao Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China; Molecular Epidemiology Joint Laboratory, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Xiaodang Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China; Molecular Epidemiology Joint Laboratory, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China; Molecular Epidemiology Joint Laboratory, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China
| |
Collapse
|
35
|
Plexin-B1 indirectly affects glioma invasiveness and angiogenesis by regulating the RhoA/αvβ3 signaling pathway and SRPK1. Tumour Biol 2016; 37:11225-36. [PMID: 26944058 DOI: 10.1007/s13277-016-4849-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/13/2016] [Indexed: 01/15/2023] Open
Abstract
Gliomas are one of the most common primary brain tumors in adults. They display aggressive invasiveness, are highly vascular, and have a poor prognosis. Plexin-B1 is involved in numerous cellular processes, especially cellular migration and angiogenesis. However, the role and regulatory mechanisms of Plexin-B1 in gliomas are not understood and were thus investigated in this study. By using multiple and diverse experimental techniques, we investigated cell apoptosis, mitochondrial membrane potential, cell migration and invasion, angiogenesis, PI3K and Akt phosphorylation, and also the levels of SRPK1 and αvβ3 in glioma cells and animal glioma tissues. The results indicated that Plexin-B1 expression in glioma cell lines is increased compared to normal human astrocytes. Plexin-B1 mediates RhoA/integrin αvβ3 involved in the PI3K/Akt pathway and SRPK1 to influence the growth of glioma cell, angiogenesis, and motility in vitro and in vivo. Thus, Plexin-B1 signaling regulates the Rho/αvβ3/PI3K/Akt pathway and SRPK1, which are involved in glioma invasiveness and angiogenesis. Therefore, the new drug research should focus on Plexin-B1 as a target for the treatment of glioma invasion and angiogenesis.
Collapse
|
36
|
Wu M, Li J, Gao Q, Ye F. The role of Sema4D/CD100 as a therapeutic target for tumor microenvironments and for autoimmune, neuroimmune and bone diseases. Expert Opin Ther Targets 2016; 20:885-901. [PMID: 26732941 DOI: 10.1517/14728222.2016.1139083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Semaphorin 4D (Sema4D), also known as CD100, has been implicated in physiologic roles in the immune and nervous systems. However, the interaction of Sema4D with its high affinity receptor, Plexin-B1, reveals a novel role for Sema4D produced by the tumor microenvironment in tumor angiogenesis and metastasis. AREAS COVERED The ligation of Sema4D/CD100 with CD72 on immune and inflammatory cells is known to stimulate immune responses and regulation. Because CD100 and CD72 are expressed on lung immune and nonimmune cells, as well as on mast cells, the CD100/CD72 interaction plays another important role in allergic airway inflammation and mast cell functions. A better understanding of Sema4D-mediated cell signaling in physiological and pathological processes may be crucial for crafting new Sema4D-based therapeutics for human disease and tumor microenvironments. Strategies to achieve effective management through treatment with Sema4D include special siRNAs, neutralizing antibodies and knockdown. EXPERT OPINION This review focuses on the links between Sema4D and human diseases such as cancer, bone metabolism, immune responses and organ development. The current knowledge regarding the expression of Sema4D and its receptors and its functional roles is systemically reviewed to explore Sema4D as both a target and a therapeutic in human diseases.
Collapse
Affiliation(s)
- Mingfu Wu
- a Cancer Biology Research Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Jing Li
- a Cancer Biology Research Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Qinglei Gao
- a Cancer Biology Research Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Fei Ye
- b Department of Neurosurgery, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
37
|
Zhang HL, Jiang ZS, Wang FW. Analysis of gene expression profiles associated with functional recovery after spinal cord injury caused by sema4D knockdown in oligodendrocytes. Cell Biochem Biophys 2015; 69:655-61. [PMID: 24549858 DOI: 10.1007/s12013-014-9848-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We previously showed that sema4D Knockdown in oligodendrocytes promotes functional recovery after spinal cord injury. In this paper, we examined gene expression profiles associated with functional recovery by PCR array. For general observation during first 4 weeks, we found that sema4D knockdown could reduce edema and stimulate SCEP. Further, PCR array analysis indicated sema4D knockdown in OPCs inhibited wound tissue angiogenesis and inflammation genes expression and upregulated axon regeneration genes expression at early phase. Our findings provided the molecular mechanism for its potential application.
Collapse
Affiliation(s)
- Hong-Lei Zhang
- Department of Spine Surgery, Liaocheng People's Hospital Affiliated to Taishan Medical University, Liaocheng, 252000, Shandong, People's Republic of China
| | | | | |
Collapse
|
38
|
Sawano T, Watanabe F, Ishiguchi M, Doe N, Furuyama T, Inagaki S. Effect of Sema4D on microglial function in middle cerebral artery occlusion mice. Glia 2015. [PMID: 26202989 DOI: 10.1002/glia.22890] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia evokes neuroinflammatory response. Inflammatory stimulation induces microglial activation, such as changes of their morphology from ramified to ameboid, expression of iNOS and cytokines, and the elevation of proliferative activity. Activated microglia play important roles in pathogenesis of cerebral ischemia. A previous study indicated that Sema4D promoted iNOS expression in cultured microglia; however, roles of Sema4D on microglial activation in ischemic injury remains unclear. We investigated the effect of Sema4D-deficiency on microglial activation by using permanent middle cerebral artery occlusion (MCAO) in mice. In this study, ischemia-induced activated microglia were classified into activated-ramified microglia and ameboid microglia based on their morphology. We demonstrated that the rate of iNOS expression in activated-ramified microglia was lower than that in ameboid microglia, while the most proliferating microglia were activated-ramified microglia but not ameboid microglia after cerebral ischemia. Sema4D-deficiency decreased the number of ameboid microglia and iNOS-expressing activated-ramified microglia in the peri-ischemic cortex. These changes by Sema4D-deficiency contributed to the reduction of NO production that was estimated by nitrite concentration in ischemic cortex. On the other hand, Sema4D-deficiency promoted proliferation of microglia in the peri-ischemic cortex. Importantly, ischemia-induced apoptosis and postischemic behavioral abnormality were moderated in Sema4D(-/-) mice. These findings suggest that Sema4D promotes cytotoxic activation of microglia and inhibits functional recovery after cerebral ischemia.
Collapse
Affiliation(s)
- Toshinori Sawano
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Fumiya Watanabe
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mitsuko Ishiguchi
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan.,Division of Pathogenesis and Control of Oral Diseases, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Nobutaka Doe
- General Education Center, Hyogo University of Health Sciences, Kobe, Japan
| | - Tatsuo Furuyama
- Department of Liberal Arts and Sciences, Kagawa Prefectural University of Health Sciences, Kagawa, Japan
| | - Shinobu Inagaki
- Group of Neurobiology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
39
|
Abstract
Chronic rejection of transplanted organs remains the main obstacle in the long-term success of organ transplantation. Thus, there is a persistent quest for development of antichronic rejection therapies and identification of novel molecular and cellular targets. One of the potential targets is the pericytes, the mural cells of microvessels, which regulate microvascular permeability, development, and maturation by controlling endothelial cell functions and regulating tissue fibrosis and inflammatory response. In this review, we discuss the potential of targeting pericytes in the development of microvasular dysfunction and the molecular pathways involved in regulation of pericyte activities for antichronic rejection intervention.
Collapse
|
40
|
Puthanveetil P, Wan A, Rodrigues B. Lipoprotein lipase and angiopoietin-like 4 – Cardiomyocyte secretory proteins that regulate metabolism during diabetic heart disease. Crit Rev Clin Lab Sci 2015; 52:138-49. [DOI: 10.3109/10408363.2014.997931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Abstract
The formation of vasculature is essential for tissue maintenance and regeneration. During development, the vasculature forms via the dual processes of vasculogenesis and angiogenesis, and is regulated at multiple levels: from transcriptional hierarchies and protein interactions to inputs from the extracellular environment. Understanding how vascular formation is coordinated in vivo can offer valuable insights into engineering approaches for therapeutic vascularization and angiogenesis, whether by creating new vasculature in vitro or by stimulating neovascularization in vivo. In this Review, we will discuss how the process of vascular development can be used to guide approaches to engineering vasculature. Specifically, we will focus on some of the recently reported approaches to stimulate therapeutic angiogenesis by recreating the embryonic vascular microenvironment using biomaterials for vascular engineering and regeneration.
Collapse
Affiliation(s)
- Kyung Min Park
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, and The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, and The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| |
Collapse
|