1
|
Jacobus AP, Stephens TG, Youssef P, González-Pech R, Ciccotosto-Camp MM, Dougan KE, Chen Y, Basso LC, Frazzon J, Chan CX, Gross J. Comparative Genomics Supports That Brazilian Bioethanol Saccharomyces cerevisiae Comprise a Unified Group of Domesticated Strains Related to Cachaça Spirit Yeasts. Front Microbiol 2021; 12:644089. [PMID: 33936002 PMCID: PMC8082247 DOI: 10.3389/fmicb.2021.644089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/08/2021] [Indexed: 01/05/2023] Open
Abstract
Ethanol production from sugarcane is a key renewable fuel industry in Brazil. Major drivers of this alcoholic fermentation are Saccharomyces cerevisiae strains that originally were contaminants to the system and yet prevail in the industrial process. Here we present newly sequenced genomes (using Illumina short-read and PacBio long-read data) of two monosporic isolates (H3 and H4) of the S. cerevisiae PE-2, a predominant bioethanol strain in Brazil. The assembled genomes of H3 and H4, together with 42 draft genomes of sugarcane-fermenting (fuel ethanol plus cachaça) strains, were compared against those of the reference S288C and diverse S. cerevisiae. All genomes of bioethanol yeasts have amplified SNO2(3)/SNZ2(3) gene clusters for vitamin B1/B6 biosynthesis, and display ubiquitous presence of a particular family of SAM-dependent methyl transferases, rare in S. cerevisiae. Widespread amplifications of quinone oxidoreductases YCR102C/YLR460C/YNL134C, and the structural or punctual variations among aquaporins and components of the iron homeostasis system, likely represent adaptations to industrial fermentation. Interesting is the pervasive presence among the bioethanol/cachaça strains of a five-gene cluster (Region B) that is a known phylogenetic signature of European wine yeasts. Combining genomes of H3, H4, and 195 yeast strains, we comprehensively assessed whole-genome phylogeny of these taxa using an alignment-free approach. The 197-genome phylogeny substantiates that bioethanol yeasts are monophyletic and closely related to the cachaça and wine strains. Our results support the hypothesis that biofuel-producing yeasts in Brazil may have been co-opted from a pool of yeasts that were pre-adapted to alcoholic fermentation of sugarcane for the distillation of cachaça spirit, which historically is a much older industry than the large-scale fuel ethanol production.
Collapse
Affiliation(s)
- Ana Paula Jacobus
- Laboratory for Genomics and Experimental Evolution of Yeasts, Institute for Bioenergy Research, São Paulo State University, Rio Claro, Brazil
| | - Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Pierre Youssef
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Raul González-Pech
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Michael M Ciccotosto-Camp
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine E Dougan
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yibi Chen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Luiz Carlos Basso
- Biological Science Department, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo (USP), Piracicaba, Brazil
| | - Jeverson Frazzon
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jeferson Gross
- Laboratory for Genomics and Experimental Evolution of Yeasts, Institute for Bioenergy Research, São Paulo State University, Rio Claro, Brazil
| |
Collapse
|
2
|
Favaro L, Jansen T, van Zyl WH. Exploring industrial and naturalSaccharomyces cerevisiaestrains for the bio-based economy from biomass: the case of bioethanol. Crit Rev Biotechnol 2019; 39:800-816. [DOI: 10.1080/07388551.2019.1619157] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Trudy Jansen
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | | |
Collapse
|
3
|
Sugarcane must fed-batch fermentation by Saccharomyces cerevisiae: impact of sterilized and non-sterilized sugarcane must. Antonie van Leeuwenhoek 2019; 112:1177-1187. [PMID: 30830509 DOI: 10.1007/s10482-019-01250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
The presence of microbial contaminants is common in the sugarcane ethanol industry and can decrease process yield, reduce yeast cell viability and induce yeast cell flocculation. To evaluate the effect of microbial contamination on the fermentation process, we compared the use of sterilized and non-sterilized sugarcane must in the performance of Saccharomyces cerevisiae with similar fermentation conditions to those used in Brazilian mills. Non-sterilized sugarcane must had values of 103 and 108 CFU mL-1 of wild yeast and bacterial contamination, respectively; decreased total reducing sugar (TRS); and increased lactic and acetic acids, glycerol and ethanol concentrations during storage. During fermentation cycles with sterilized and non-sterilized sugarcane must, S. cerevisiae viability did not change, whereas ethanol yield varied from 74.1 to 80.2%, but it did not seem to be related to must microbial contamination. Ethanol productivity decreased throughout the fermentation cycles and was more pronounced in the last two fermentation cycles with non-sterilized must, but that may be related to the decrease in must TRS. High values of the ratio of total acid production per ethanol were reported at the end of the last two fermentation cycles conducted with non-sterilized must. Additionally, the values of wild yeast contamination increased from 102 to 103 CFU mL-1 and bacterial contamination increased from 104 to 106 CFU mL-1 when comparing the first and last fermentation cycles with non-sterilized must. In addition to the increase in microbial contamination and acid concentration, ethanol yield and yeast viability rates were not directly affected by the microbial contamination present in the non-sterilized sugarcane must.
Collapse
|
4
|
Oehling V, Klaassen P, Frick O, Dusny C, Schmid A. l-Arabinose triggers its own uptake via induction of the arabinose-specific Gal2p transporter in an industrial Saccharomyces cerevisiae strain. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:231. [PMID: 30159031 PMCID: PMC6106821 DOI: 10.1186/s13068-018-1231-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Bioethanol production processes with Saccharomyces cerevisiae using lignocellulosic biomass as feedstock are challenged by the simultaneous utilization of pentose and hexose sugars from biomass hydrolysates. The pentose uptake into the cell represents a crucial role for the efficiency of the process. The focus of the here presented study was to understand the uptake and conversion of the pentose l-arabinose in S. cerevisiae and reveal its regulation by d-glucose and d-galactose. Gal2p-the most prominent transporter enabling l-arabinose uptake in S. cerevisiae wild-type strains-has an affinity for the transport of l-arabinose, d-glucose, and d-galactose. d-Galactose was reported for being mandatory for inducing GAL2 expression. GAL2 expression is also known to be regulated by d-glucose-mediated carbon catabolite repression, as well as catabolite inactivation. The results of the present study demonstrate that l-arabinose can be used as sole carbon and energy source by the recombinant industrial strain S. cerevisiae DS61180. RT-qPCR and RNA-Seq experiments confirmed that l-arabinose can trigger its own uptake via the induction of GAL2 expression. Expression levels of GAL2 during growth on l-arabinose reached up to 21% of those obtained with d-galactose as sole carbon and energy source. l-Arabinose-induced GAL2 expression was also subject to catabolite repression by d-glucose. Kinetic investigations of substrate uptake, biomass, and product formation during growth on a mixture of d-glucose/l-arabinose revealed impairment of growth and ethanol production from l-arabinose upon d-glucose depletion. The presence of d-glucose is thus preventing the fermentation of l-arabinose in S. cerevisiae DS61180. Comparative transcriptome studies including the wild-type and a precursor strain delivered hints for an increased demand in ATP production and cofactor regeneration during growth of S. cerevisiae DS61180 on l-arabinose. Our results thus emphasize that cofactor and energy metabolism demand attention if the combined conversion of hexose and pentose sugars is intended, for example in biorefineries using lignocellulosics.
Collapse
Affiliation(s)
- Verena Oehling
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | | | - Oliver Frick
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
- Present Address: Department of Solar Materials, Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany
| | - Christian Dusny
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
- Present Address: Department of Solar Materials, Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany
| | - Andreas Schmid
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
- Present Address: Department of Solar Materials, Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany
| |
Collapse
|
5
|
Lino FSDO, Basso TO, Sommer MOA. A synthetic medium to simulate sugarcane molasses. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:221. [PMID: 30127851 PMCID: PMC6086992 DOI: 10.1186/s13068-018-1221-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/31/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Developing novel microbial cell factories requires careful testing of candidates under industrially relevant conditions. However, this frequently occurs late during the strain development process. The availability of laboratory media that simulate industrial-like conditions might improve cell factory development, as they allow for strain construction and testing in the laboratory under more relevant conditions. While sugarcane molasses is one of the most important substrates for the production of biofuels and other bioprocess-based commodities, there are no defined media that faithfully simulate it. In this study, we tested the performance of a new synthetic medium simulating sugarcane molasses. RESULTS Laboratory scale simulations of the Brazilian ethanol production process, using both sugarcane molasses and our synthetic molasses (SM), demonstrated good reproducibility of the fermentation performance, using yeast strains, PE-2 and Ethanol Red™. After 4 cycles of fermentation, the final ethanol yield (gp gs-1) values for the SM ranged from 0.43 ± 0.01 to 0.44 ± 0.01 and from 0.40 ± 0.01 to 0.46 ± 0.01 for the molasses-based fermentations. The other fermentation parameters (i.e., biomass production, yeast viability, and glycerol and acetic acid yield) were also within similar value ranges for all the fermentations. Sequential pairwise competition experiments, comparing industrial and laboratory yeast strains, demonstrated the impact of the media on strain fitness. After two sequential cocultivations, the relative abundance of the laboratory yeast strain was 5-fold lower in the SM compared to the yeast extract-peptone-dextrose medium, highlighting the importance of the media composition on strain fitness. CONCLUSIONS Simulating industrial conditions at laboratory scale is a key part of the efficient development of novel microbial cell factories. In this study, we have developed a synthetic medium that simulated industrial sugarcane molasses media. We found good agreement between the synthetic medium and the industrial media in terms of the physiological parameters of the industrial-like fermentations.
Collapse
Affiliation(s)
- Felipe Senne de Oliveira Lino
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitovert 220, 2800 Kongens Lyngby, Denmark
| | - Thiago Olitta Basso
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Professor Lineu Prestes, 580 São Paulo, Brazil
| | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitovert 220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Aldrete-Tapia A, Martínez-Peniche R, Miranda-Castilleja D, Hernández-Iturriaga M. Saccharomyces cerevisiaeassociated with the spontaneous fermentation of tequila agave juice. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- A. Aldrete-Tapia
- Programa de Posgrado de Alimentos del Centro de la República (PROPAC), Facultad de Química; Universidad Autónoma de Querétaro; Cerro de las Campanas s/n Col. Las Campanas C.P. 76010 Querétaro Querétaro México
| | - R. Martínez-Peniche
- Programa de Posgrado de Alimentos del Centro de la República (PROPAC), Facultad de Química; Universidad Autónoma de Querétaro; Cerro de las Campanas s/n Col. Las Campanas C.P. 76010 Querétaro Querétaro México
| | - D. Miranda-Castilleja
- Programa de Posgrado de Alimentos del Centro de la República (PROPAC), Facultad de Química; Universidad Autónoma de Querétaro; Cerro de las Campanas s/n Col. Las Campanas C.P. 76010 Querétaro Querétaro México
| | - M. Hernández-Iturriaga
- Programa de Posgrado de Alimentos del Centro de la República (PROPAC), Facultad de Química; Universidad Autónoma de Querétaro; Cerro de las Campanas s/n Col. Las Campanas C.P. 76010 Querétaro Querétaro México
| |
Collapse
|
7
|
Monteiro B, Ferraz P, Barroca M, da Cruz SH, Collins T, Lucas C. Conditions promoting effective very high gravity sugarcane juice fermentation. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:251. [PMID: 30237826 PMCID: PMC6142328 DOI: 10.1186/s13068-018-1239-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/27/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Applying very high gravity (VHG) fermentation conditions to the sugarcane juice (SCJ) bioethanol industry would improve its environmental and economic sustainability without the need for major infrastructure changes or investments. It could enable a decrease in the consumption of biological and natural resources (cane/land, water and energy) while maintaining acceptable production parameters. The present study attempts to demonstrate and characterise an effective industrially relevant SCJ-VHG fermentation process. RESULTS An industry-like SCJ-VHG bioethanol production process with 30 and 35 °Bx broth was employed to investigate the effects of both the yeast strain used and nitrogen source supplementation on process yield, process productivity, biomass viability, glycerol concentration and retention-associated gene expression. Process performance was shown to be variably affected by the different process conditions investigated. Highest process efficiency, with a 17% (w/v) ethanol yield and only 0.2% (w/v) sugar remaining unfermented, was observed with the Saccharomyces cerevisiae industrial strain CAT-1 in 30 °Bx broth with urea supplementation. In addition, efficient retention of glycerol by the yeast strain was identified as a requisite for better fermentation and was consistent with a higher expression of glycerol permease STL1 and channel FPS1. Urea was shown to promote the deregulation of STL1 expression, overcoming glucose repression. The consistency between Fps1-mediated ethanol secretion and ethanol in the extracellular media reinforces previous suggestions that ethanol might exit the cell through the Fps1 channel. CONCLUSIONS This work brings solid evidence in favour of the utilisation of VHG conditions in SCJ fermentations, bringing it a step closer to industrial application. SCJ concentrated up to 30 °Bx maintains industrially relevant ethanol production yield and productivity, provided the broth is supplemented with a suitable nitrogen source and an appropriate industrial bioethanol-producing yeast strain is used. In addition, the work contributes to a better understanding of the VHG-SCJ process and the variable effects of process parameters on process efficiency and yeast strain response.
Collapse
Affiliation(s)
- Bruno Monteiro
- Laboratory of Food and Beverage Biotechnology, ESALQ, University of São Paulo, Piracicaba, SP 13418-900 Brazil
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Ferraz
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S)/CBMA, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Mário Barroca
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S)/CBMA, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sandra H. da Cruz
- Laboratory of Food and Beverage Biotechnology, ESALQ, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | - Tony Collins
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S)/CBMA, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cândida Lucas
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S)/CBMA, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Armanhi JSL, de Souza RSC, Damasceno NDB, de Araújo LM, Imperial J, Arruda P. A Community-Based Culture Collection for Targeting Novel Plant Growth-Promoting Bacteria from the Sugarcane Microbiome. FRONTIERS IN PLANT SCIENCE 2017; 8:2191. [PMID: 29354144 PMCID: PMC5759035 DOI: 10.3389/fpls.2017.02191] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/12/2017] [Indexed: 05/08/2023]
Abstract
The soil-plant ecosystem harbors an immense microbial diversity that challenges investigative approaches to study traits underlying plant-microbe association. Studies solely based on culture-dependent techniques have overlooked most microbial diversity. Here we describe the concomitant use of culture-dependent and -independent techniques to target plant-beneficial microbial groups from the sugarcane microbiome. The community-based culture collection (CBC) approach was used to access microbes from roots and stalks. The CBC recovered 399 unique bacteria representing 15.9% of the rhizosphere core microbiome and 61.6-65.3% of the endophytic core microbiomes of stalks. By cross-referencing the CBC (culture-dependent) with the sugarcane microbiome profile (culture-independent), we designed a synthetic community comprised of naturally occurring highly abundant bacterial groups from roots and stalks, most of which has been poorly explored so far. We then used maize as a model to probe the abundance-based synthetic inoculant. We show that when inoculated in maize plants, members of the synthetic community efficiently colonize plant organs, displace the natural microbiota and dominate at 53.9% of the rhizosphere microbial abundance. As a result, inoculated plants increased biomass by 3.4-fold as compared to uninoculated plants. The results demonstrate that abundance-based synthetic inoculants can be successfully applied to recover beneficial plant microbes from plant microbiota.
Collapse
Affiliation(s)
- Jaderson Silveira Leite Armanhi
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Rafael Soares Correa de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Natália de Brito Damasceno
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Laura M. de Araújo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- *Correspondence: Paulo Arruda
| |
Collapse
|
9
|
Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 2016; 100:8241-54. [PMID: 27470141 DOI: 10.1007/s00253-016-7735-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 12/17/2022]
Abstract
Enzyme cost is a major impediment to second-generation (2G) cellulosic ethanol production. One strategy to reduce enzyme cost is to engineer enzyme production capacity in a fermentative microorganism to enable consolidated bio-processing (CBP). Ideally, a strain with a high secretory phenotype, high fermentative capacity as well as an innate robustness to bioethanol-specific stressors, including tolerance to products formed during pre-treatment and fermentation of lignocellulosic substrates should be used. Saccharomyces cerevisiae is a robust fermentative yeast but has limitations as a potential CBP host, such as low heterologous protein secretion titers. In this study, we evaluated natural S. cerevisiae isolate strains for superior secretion activity and other industrially relevant characteristics needed during the process of lignocellulosic ethanol production. Individual cellulases namely Saccharomycopsis fibuligera Cel3A (β-glucosidase), Talaromyces emersonii Cel7A (cellobiohydrolase), and Trichoderma reesei Cel5A (endoglucanase) were utilized as reporter proteins. Natural strain YI13 was identified to have a high secretory phenotype, demonstrating a 3.7- and 3.5-fold higher Cel7A and Cel5A activity, respectively, compared to the reference strain S288c. YI13 also demonstrated other industrially relevant characteristics such as growth vigor, high ethanol titer, multi-tolerance to high temperatures (37 and 40 °C), ethanol (10 % w/v), and towards various concentrations of a cocktail of inhibitory compounds commonly found in lignocellulose hydrolysates. This study accentuates the value of natural S. cerevisiae isolate strains to serve as potential robust and highly productive chassis organisms for CBP strain development.
Collapse
|
10
|
de Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, da Silva MJ, González-Guerrero M, de Araújo LM, Verza NC, Bagheri HC, Imperial J, Arruda P. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep 2016; 6:28774. [PMID: 27358031 PMCID: PMC4928081 DOI: 10.1038/srep28774] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes.
Collapse
Affiliation(s)
- Rafael Soares Correa de Souza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875, Campinas, SP, Brazil
| | - Vagner Katsumi Okura
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875, Campinas, SP, Brazil
| | - Jaderson Silveira Leite Armanhi
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875, Campinas, SP, Brazil
| | - Beatriz Jorrín
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA Campus Montegancedo UPM, 28223 -Pozuelo de Alarcón (Madrid), Spain
| | - Núria Lozano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA Campus Montegancedo UPM, 28223 -Pozuelo de Alarcón (Madrid), Spain
| | - Márcio José da Silva
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875, Campinas, SP, Brazil
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA Campus Montegancedo UPM, 28223 -Pozuelo de Alarcón (Madrid), Spain
| | - Laura Migliorini de Araújo
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875, Campinas, SP, Brazil
| | - Natália Cristina Verza
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875, Campinas, SP, Brazil
| | | | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA Campus Montegancedo UPM, 28223 -Pozuelo de Alarcón (Madrid), Spain
- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), 13083-875, Campinas, SP, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| |
Collapse
|
11
|
dos Santos LV, de Barros Grassi MC, Gallardo JCM, Pirolla RAS, Calderón LL, de Carvalho-Netto OV, Parreiras LS, Camargo ELO, Drezza AL, Missawa SK, Teixeira GS, Lunardi I, Bressiani J, Pereira GAG. Second-Generation Ethanol: The Need is Becoming a Reality. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1089/ind.2015.0017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | | | | | | | - Luige Llerena Calderón
- GranBio/BioCelere, Campinas, Brazil
- Laboratório de Genômica e Expressão, UNICAMP, Campinas, Brazil
| | | | - Lucas Salera Parreiras
- GranBio/BioCelere, Campinas, Brazil
- Laboratório de Genômica e Expressão, UNICAMP, Campinas, Brazil
| | | | | | - Sílvia Kazue Missawa
- GranBio/BioCelere, Campinas, Brazil
- Laboratório de Genômica e Expressão, UNICAMP, Campinas, Brazil
| | - Gleidson Silva Teixeira
- GranBio/BioCelere, Campinas, Brazil
- Laboratório de Genômica e Expressão, UNICAMP, Campinas, Brazil
| | | | | | | |
Collapse
|
12
|
Šuranská H, Vránová D, Omelková J. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains. Braz J Microbiol 2016; 47:181-90. [PMID: 26887243 PMCID: PMC4822743 DOI: 10.1016/j.bjm.2015.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 05/19/2015] [Indexed: 11/26/2022] Open
Abstract
In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir) were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic) wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines.
Collapse
Affiliation(s)
- Hana Šuranská
- Brno University of Technology, Faculty of Chemistry, Department of Food Science and Biotechnology, Purkyňova 464/118, 612 00 Brno, Czech Republic.
| | - Dana Vránová
- Brno University of Technology, Faculty of Chemistry, Department of Food Science and Biotechnology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Jiřina Omelková
- Brno University of Technology, Faculty of Chemistry, Department of Food Science and Biotechnology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| |
Collapse
|
13
|
López MC, Mateo JJ, Maicas S. Screening of β-Glucosidase and β-Xylosidase Activities in Four Non-SaccharomycesYeast Isolates. J Food Sci 2015; 80:C1696-704. [DOI: 10.1111/1750-3841.12954] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/28/2015] [Indexed: 11/29/2022]
Affiliation(s)
- María Consuelo López
- Dept. de Microbiologia i Ecologia; Univ. de València; Dr. Moliner, 50. E-46100 Burjassot Spain
| | - José Juan Mateo
- Dept. de Microbiologia i Ecologia; Univ. de València; Dr. Moliner, 50. E-46100 Burjassot Spain
| | - Sergi Maicas
- Dept. de Microbiologia i Ecologia; Univ. de València; Dr. Moliner, 50. E-46100 Burjassot Spain
| |
Collapse
|
14
|
New sources and methods to isolate vinasse-tolerant wild yeasts efficient in ethanol production. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1095-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
15
|
Carvalho-Netto OV, Carazzolle MF, Mofatto LS, Teixeira PJPL, Noronha MF, Calderón LAL, Mieczkowski PA, Argueso JL, Pereira GAG. Saccharomyces cerevisiae transcriptional reprograming due to bacterial contamination during industrial scale bioethanol production. Microb Cell Fact 2015; 14:13. [PMID: 25633848 PMCID: PMC4318157 DOI: 10.1186/s12934-015-0196-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 01/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bioethanol production system used in Brazil is based on the fermentation of sucrose from sugarcane feedstock by highly adapted strains of the yeast Saccharomyces cerevisiae. Bacterial contaminants present in the distillery environment often produce yeast-bacteria cellular co-aggregation particles that resemble yeast-yeast cell adhesion (flocculation). The formation of such particles is undesirable because it slows the fermentation kinetics and reduces the overall bioethanol yield. RESULTS In this study, we investigated the molecular physiology of one of the main S. cerevisiae strains used in Brazilian bioethanol production, PE-2, under two contrasting conditions: typical fermentation, when most yeast cells are in suspension, and co-aggregated fermentation. The transcriptional profile of PE-2 was assessed by RNA-seq during industrial scale fed-batch fermentation. Comparative analysis between the two conditions revealed transcriptional profiles that were differentiated primarily by a deep gene repression in the co-aggregated samples. The data also indicated that Lactobacillus fermentum was likely the main bacterial species responsible for cellular co-aggregation and for the high levels of organic acids detected in the samples. CONCLUSIONS Here, we report the high-resolution gene expression profiling of strain PE-2 during industrial-scale fermentations and the transcriptional reprograming observed under co-aggregation conditions. This dataset constitutes an important resource that can provide support for further development of this key yeast biocatalyst.
Collapse
Affiliation(s)
- Osmar V Carvalho-Netto
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Marcelo F Carazzolle
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Luciana S Mofatto
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Paulo J P L Teixeira
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Melline F Noronha
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Luige A L Calderón
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | | | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Gonçalo A G Pereira
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
16
|
Genetic diversity of Clavispora lusitaniae isolated from Agave fourcroydes Lem, as revealed by DNA fingerprinting. J Microbiol 2015; 53:14-20. [PMID: 25557477 DOI: 10.1007/s12275-015-4373-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/24/2014] [Accepted: 11/01/2014] [Indexed: 10/24/2022]
Abstract
This study characterized Clavispora lusitaniae strains isolated from different stages of the processing and early fermentation of a henequen (Agave fourcroydes) spirit produced in Yucatan, Mexico using a molecular technique. Sixteen strains identified based on morphological features, obtained from different substrates, were typed molecularly. Nine different versions of the divergent D1/D2 domain of the large-subunit ribosomal DNA sequence were identified among the C. lusitaniae strains. The greatest degree of polymorphism was found in the 90-bp structural motif of the D2 domain. The MSP-PCR technique was able to differentiate 100% of the isolates. This study provides significant insight into the genetic diversity of the mycobiota present during the henequen fermentation process, especially that of C. lusitaniae, for which only a few studies in plants have been published. The applied MSP-PCR markers were very efficient in revealing olymorphisms between isolates of this species.
Collapse
|
17
|
Corona-González RI, Pelayo-Ortiz C, Jacques G, Guatemala G, Arriola E, Arias JA, Toriz G. Production of fructanase by a wild strain of Saccharomyces cerevisiae on tequila agave fructan. Antonie van Leeuwenhoek 2014; 107:251-61. [PMID: 25432071 DOI: 10.1007/s10482-014-0323-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022]
Abstract
A new wild strain of Saccharomyces cerevisiae (CF3) isolated from tequila must was evaluated for production of fructanase on Agave tequilana Weber fructan (FT). Fructanase activity (F) was assessed by a 3(3) factorial design (substrate, temperature and pH). High enzymatic activity (31.1 U/ml) was found at 30 °C, pH 5, using FT (10 g/l) as substrate. The effect of initial substrate concentration on F (FT0, 5.7-66 g/l) was studied and it was found that F was highest (44.8 U/ml) at FT0 25 g/l. A 2(2) factorial experimental design with five central points was utilized to study the effect of stirring and aeration on fructanase activity; stirring exhibited a stronger effect on F. The ratio fructanase to invertase (F/S) was 0.57, which confirms that the enzymes are fructanase. Crude fructanase reached high substrate hydrolysis (48 wt%) in 10 h. It is shown that S. cerevisiae CF3 was able to produce large amounts of fructanase by growing it on fructan from A. tequilana.
Collapse
Affiliation(s)
- R I Corona-González
- Biotechnology Processes Lab, Center of Exact Sciences and Engineering, Department of Chemical Engineering, University of Guadalajara, Blvd. Marcelino García Barragán # 1421, C. P. 44430, Guadalajara, Jalisco, Mexico
| | | | | | | | | | | | | |
Collapse
|
18
|
Mukherjee V, Steensels J, Lievens B, Van de Voorde I, Verplaetse A, Aerts G, Willems KA, Thevelein JM, Verstrepen KJ, Ruyters S. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Appl Microbiol Biotechnol 2014; 98:9483-98. [PMID: 25267160 DOI: 10.1007/s00253-014-6090-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/17/2023]
Abstract
Saccharomyces cerevisiae is the organism of choice for many food and beverage fermentations because it thrives in high-sugar and high-ethanol conditions. However, the conditions encountered in bioethanol fermentation pose specific challenges, including extremely high sugar and ethanol concentrations, high temperature, and the presence of specific toxic compounds. It is generally considered that exploring the natural biodiversity of Saccharomyces strains may be an interesting route to find superior bioethanol strains and may also improve our understanding of the challenges faced by yeast cells during bioethanol fermentation. In this study, we phenotypically evaluated a large collection of diverse Saccharomyces strains on six selective traits relevant for bioethanol production with increasing stress intensity. Our results demonstrate a remarkably large phenotypic diversity among different Saccharomyces species and among S. cerevisiae strains from different origins. Currently applied bioethanol strains showed a high tolerance to many of these relevant traits, but several other natural and industrial S. cerevisiae strains outcompeted the bioethanol strains for specific traits. These multitolerant strains performed well in fermentation experiments mimicking industrial bioethanol production. Together, our results illustrate the potential of phenotyping the natural biodiversity of yeasts to find superior industrial strains that may be used in bioethanol production or can be used as a basis for further strain improvement through genetic engineering, experimental evolution, or breeding. Additionally, our study provides a basis for new insights into the relationships between tolerance to different stressors.
Collapse
Affiliation(s)
- Vaskar Mukherjee
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), Campus De Nayer, KU Leuven, Fortsesteenweg 30A, B-2860, Sint-Katelijne-Waver, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
de Souza RB, de Menezes JAS, de Souza RDFR, Dutra ED, de Morais MA. Mineral composition of the sugarcane juice and its influence on the ethanol fermentation. Appl Biochem Biotechnol 2014; 175:209-22. [PMID: 25248994 DOI: 10.1007/s12010-014-1258-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
In the present work, we evaluated the mineral composition of three sugarcane varieties from different areas in northeast Brazil and their influence on the fermentation performance of Saccharomyces cerevisiae. The mineral composition was homogeneous in the different areas investigated. However, large variation coefficients were observed for concentrations of copper, magnesium, zinc and phosphorus. Regarding the fermentation performances, the sugarcane juices with the highest magnesium concentration showed the highest ethanol yield. Synthetic media supplemented with magnesium also showed the highest yield (0.45 g g(-1)) while the excess of copper led to the lowest yield (0.35 g g(-1)). According to our results, the magnesium is the principal responsible for the increase on the ethanol yield, and it also seems to be able to disguise the inhibitory effects of the toxic minerals present in the sugarcane juice.
Collapse
Affiliation(s)
- Rafael Barros de Souza
- Interdepartmental Research Group in Metabolic Engineering, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, 50670-901, Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
20
|
Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 2014; 38:947-95. [PMID: 24724938 PMCID: PMC4293462 DOI: 10.1111/1574-6976.12073] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/31/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity.
Collapse
Affiliation(s)
- Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Tim Snoek
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Esther Meersman
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Martina Picca Nicolino
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Karin Voordeckers
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU LeuvenLeuven, Belgium
- Laboratory for Systems Biology, VIBLeuven, Belgium
| |
Collapse
|
21
|
Carvalho-Netto OV, Carazzolle MF, Rodrigues A, Bragança WO, Costa GG, Argueso JL, Pereira GA. A simple and effective set of PCR-based molecular markers for the monitoring of the Saccharomyces cerevisiae cell population during bioethanol fermentation. J Biotechnol 2013; 168:701-9. [DOI: 10.1016/j.jbiotec.2013.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
22
|
Antonangelo ATBF, Alonso DP, Ribolla PEM, Colombi D. Microsatellite marker-based assessment of the biodiversity of native bioethanol yeast strains. Yeast 2013; 30:307-17. [DOI: 10.1002/yea.2964] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 05/17/2013] [Accepted: 05/22/2013] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ana Teresa B. F. Antonangelo
- Laboratório de Pesquisas e Análises Genéticas (PANGENE), Depto de Parasitologia; IBB-UNESP; Botucatu; SP; Brazil
| | - Diego P. Alonso
- Laboratório de Pesquisas e Análises Genéticas (PANGENE), Depto de Parasitologia; IBB-UNESP; Botucatu; SP; Brazil
| | | | | |
Collapse
|
23
|
Brown NA, de Castro PA, de Castro Pimentel Figueiredo B, Savoldi M, Buckeridge MS, Lopes ML, de Lima Paullilo SC, Borges EP, Amorim HV, Goldman MH, Bonatto D, Malavazi I, Goldman GH. Transcriptional profiling of BrazilianSaccharomyces cerevisiaestrains selected for semi-continuous fermentation of sugarcane must. FEMS Yeast Res 2013; 13:277-90. [DOI: 10.1111/1567-1364.12031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/22/2013] [Accepted: 01/24/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Neil A. Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; São Paulo; Brazil
| | - Patrícia A. de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; São Paulo; Brazil
| | | | - Marcela Savoldi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto; Universidade de São Paulo; São Paulo; Brazil
| | - Marcos S. Buckeridge
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); Universidade de São Paulo; Campinas; Brazil
| | | | | | | | | | - Maria H.S. Goldman
- Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; São Paulo; Brazil
| | - Diego Bonatto
- Centro de Biotecnologia da UFRGS; Universidade Federal do Rio Grande do Sul; Porto Alegre; Brazil
| | | | | |
Collapse
|
24
|
What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 2012; 97:979-91. [DOI: 10.1007/s00253-012-4631-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
|
25
|
de Lucena RM, Elsztein C, Simões DA, de Morais MA. Participation of CWI, HOG and Calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid. J Appl Microbiol 2012; 113:629-40. [PMID: 22702539 DOI: 10.1111/j.1365-2672.2012.05362.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/26/2012] [Accepted: 06/12/2012] [Indexed: 02/03/2023]
Abstract
AIMS The present work aimed at identifying the metabolic response to acid stress and the mechanisms that lead to cell tolerance and adaptation. METHODS AND RESULTS Two strategies were used: screening deletion mutants for cell growth at neutral and acid pH compared to wild type and measurement by qPCR of the expression of yeast genes involved in different pathways. CONCLUSIONS The results complement our previous findings and showed that the Cell Wall Integrity pathway is the main mechanism for cell tolerance to acid pH, and this damage triggers the protein kinase C (PKC) pathway mainly via the Wsc1p membrane sensor. In addition, cell wall injury might mimic the effects of high osmotic shock and activates the High Osmolarity Glycerol pathway, which amplifies the signal in the upper part of PKC pathway and leads to the activation of Ca(2+) channels by SLT2 overexpression and this Ca(2+) influx further activates calcineurin. Together, these mechanisms induce the expression of genes involved in cell cycle regulation and cell wall regeneration. SIGNIFICANCE AND IMPACT OF THE STUDY These interactions are responsible for long-term adaptation of yeast cells to the acidic environment, and the results could drive future work on the genetic modification of yeast strains for high tolerance to the stresses of the bioethanol fermentation process.
Collapse
Affiliation(s)
- R M de Lucena
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Recife, Brazil
| | | | | | | |
Collapse
|
26
|
Graves T, Narendranath N, Power R. Development of a “Stress Model” Fermentation System for Fuel Ethanol Yeast Strains. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2007.tb00286.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Mol Genet Genomics 2012; 287:485-94. [PMID: 22562254 DOI: 10.1007/s00438-012-0695-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
The Saccharomyces cerevisiae strains widely used for industrial fuel-ethanol production have been developed by selection, but their underlying beneficial genetic polymorphisms remain unknown. Here, we report the draft whole-genome sequence of the S. cerevisiae strain CAT-1, which is a dominant fuel-ethanol fermentative strain from the sugarcane industry in Brazil. Our results indicate that strain CAT-1 is a highly heterozygous diploid yeast strain, and the ~12-Mb genome of CAT-1, when compared with the reference S228c genome, contains ~36,000 homozygous and ~30,000 heterozygous single nucleotide polymorphisms, exhibiting an uneven distribution among chromosomes due to large genomic regions of loss of heterozygosity (LOH). In total, 58 % of the 6,652 predicted protein-coding genes of the CAT-1 genome constitute different alleles when compared with the genes present in the reference S288c genome. The CAT-1 genome contains a reduced number of transposable elements, as well as several gene deletions and duplications, especially at telomeric regions, some correlated with several of the physiological characteristics of this industrial fuel-ethanol strain. Phylogenetic analyses revealed that some genes were likely associated with traits important for bioethanol production. Identifying and characterizing the allelic variations controlling traits relevant to industrial fermentation should provide the basis for a forward genetics approach for developing better fermenting yeast strains.
Collapse
|
28
|
Gomes DG, Guimarães PMR, Pereira FB, Teixeira JA, Domingues L. Plasmid-mediate transfer of FLO1 into industrial Saccharomyces cerevisiae PE-2 strain creates a strain useful for repeat-batch fermentations involving flocculation-sedimentation. BIORESOURCE TECHNOLOGY 2012; 108:162-168. [PMID: 22285899 DOI: 10.1016/j.biortech.2011.12.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/04/2011] [Accepted: 12/16/2011] [Indexed: 05/31/2023]
Abstract
The flocculation gene FLO1 was transferred into the robust industrial strain Saccharomyces cerevisiae PE-2 by the lithium acetate method. The recombinant strain showed a fermentation performance similar to that of the parental strain. In 10 repeat-batch cultivations in VHG medium with 345 g glucose/L and cell recycling by flocculation-sedimentation, an average final ethanol concentration of 142 g/L and an ethanol productivity of 2.86 g/L/h were achieved. Due to the flocculent nature of the recombinant strain it is possible to reduce the ethanol production cost because of lower centrifugation and distillation costs.
Collapse
Affiliation(s)
- Daniel G Gomes
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | |
Collapse
|
29
|
Beckner M, Ivey M, Phister T. Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 2011; 53:387-94. [DOI: 10.1111/j.1472-765x.2011.03124.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Lucena BTL, dos Santos BM, Moreira JL, Moreira APB, Nunes AC, Azevedo V, Miyoshi A, Thompson FL, de Morais MA. Diversity of lactic acid bacteria of the bioethanol process. BMC Microbiol 2010; 10:298. [PMID: 21092306 PMCID: PMC2999616 DOI: 10.1186/1471-2180-10-298] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 11/23/2010] [Indexed: 12/04/2022] Open
Abstract
Background Bacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB) present in the bioethanol industrial processes in different distilleries of Brazil. Results A total of 489 LAB isolates were obtained from four distilleries in 2007 and 2008. The abundance of LAB in the fermentation tanks varied between 6.0 × 105 and 8.9 × 108 CFUs/mL. Crude sugar cane juice contained 7.4 × 107 to 6.0 × 108 LAB CFUs. Most of the LAB isolates belonged to the genus Lactobacillus according to rRNA operon enzyme restriction profiles. A variety of Lactobacillus species occurred throughout the bioethanol process, but the most frequently found species towards the end of the harvest season were L. fermentum and L. vini. The different rep-PCR patterns indicate the co-occurrence of distinct populations of the species L. fermentum and L. vini, suggesting a great intraspecific diversity. Representative isolates of both species had the ability to grow in medium containing up to 10% ethanol, suggesting selection of ethanol tolerant bacteria throughout the process. Conclusions This study served as a first survey of the LAB diversity in the bioethanol process in Brazil. The abundance and diversity of LAB suggest that they have a significant impact in the bioethanol process.
Collapse
Affiliation(s)
- Brigida T L Lucena
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pereira FB, Guimarães PMR, Teixeira JA, Domingues L. Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes. Biotechnol Lett 2010; 32:1655-61. [DOI: 10.1007/s10529-010-0330-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/14/2010] [Indexed: 11/28/2022]
|
32
|
De Melo H, Bonini B, Thevelein J, Simões D, Morais M. Physiological and molecular analysis of the stress response of
Saccharomyces cerevisiae
imposed by strong inorganic acid with implication to industrial fermentations. J Appl Microbiol 2010; 109:116-27. [PMID: 20002866 DOI: 10.1111/j.1365-2672.2009.04633.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- H.F. De Melo
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - B.M. Bonini
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Molecular Microbiology, VIB, Leuven‐Heverlee, Flanders, Belgium
| | - J. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Molecular Microbiology, VIB, Leuven‐Heverlee, Flanders, Belgium
| | - D.A. Simões
- Department of Biochemistry, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - M.A. Morais
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
33
|
Duval EH, Alves SL, Dunn B, Sherlock G, Stambuk BU. Microarray karyotyping of maltose-fermenting Saccharomyces yeasts with differing maltotriose utilization profiles reveals copy number variation in genes involved in maltose and maltotriose utilization. J Appl Microbiol 2009; 109:248-59. [PMID: 20070441 DOI: 10.1111/j.1365-2672.2009.04656.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS We performed an analysis of maltotriose utilization by 52 Saccharomyces yeast strains able to ferment maltose efficiently and correlated the observed phenotypes with differences in the copy number of genes possibly involved in maltotriose utilization by yeast cells. METHODS AND RESULTS The analysis of maltose and maltotriose utilization by laboratory and industrial strains of the species Saccharomyces cerevisiae and Saccharomyces pastorianus (a natural S. cerevisiae/Saccharomyces bayanus hybrid) was carried out using microscale liquid cultivation, as well as in aerobic batch cultures. All strains utilize maltose efficiently as a carbon source, but three different phenotypes were observed for maltotriose utilization: efficient growth, slow/delayed growth and no growth. Through microarray karyotyping and pulsed-field gel electrophoresis blots, we analysed the copy number and localization of several maltose-related genes in selected S. cerevisiae strains. While most strains lacked the MPH2 and MPH3 transporter genes, almost all strains analysed had the AGT1 gene and increased copy number of MALx1 permeases. CONCLUSIONS Our results showed that S. pastorianus yeast strains utilized maltotriose more efficiently than S. cerevisiae strains and highlighted the importance of the AGT1 gene for efficient maltotriose utilization by S. cerevisiae yeasts. SIGNIFICANCE AND IMPACT OF THE STUDY Our results revealed new maltotriose utilization phenotypes, contributing to a better understanding of the metabolism of this carbon source for improved fermentation by Saccharomyces yeasts.
Collapse
Affiliation(s)
- E H Duval
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
34
|
Stambuk BU, Dunn B, Alves SL, Duval EH, Sherlock G. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 2009; 19:2271-8. [PMID: 19897511 DOI: 10.1101/gr.094276.109] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fuel ethanol is now a global energy commodity that is competitive with gasoline. Using microarray-based comparative genome hybridization (aCGH), we have determined gene copy number variations (CNVs) common to five industrially important fuel ethanol Saccharomyces cerevisiae strains responsible for the production of billions of gallons of fuel ethanol per year from sugarcane. These strains have significant amplifications of the telomeric SNO and SNZ genes, which are involved in the biosynthesis of vitamins B6 (pyridoxine) and B1 (thiamin). We show that increased copy number of these genes confers the ability to grow more efficiently under the repressing effects of thiamin, especially in medium lacking pyridoxine and with high sugar concentrations. These genetic changes have likely been adaptive and selected for in the industrial environment, and may be required for the efficient utilization of biomass-derived sugars from other renewable feedstocks.
Collapse
Affiliation(s)
- Boris U Stambuk
- Department of Genetics, Stanford University, Stanford, California 94305-5120, USA.
| | | | | | | | | |
Collapse
|
35
|
Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MGS, Andrietta SR, Cunha AF, Gomes LH, Tavares FCA, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 2009; 19:2258-70. [PMID: 19812109 DOI: 10.1101/gr.091777.109] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (approximately 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.
Collapse
Affiliation(s)
- Juan Lucas Argueso
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Basílio ACM, de Araújo PRL, de Morais JOF, da Silva Filho EA, de Morais MA, Simões DA. Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 2008; 56:322-6. [PMID: 18188645 DOI: 10.1007/s00284-007-9085-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 10/06/2007] [Indexed: 11/26/2022]
Abstract
Monitoring for wild yeast contaminants is an essential component of the management of the industrial fuel ethanol manufacturing process. Here we describe the isolation and molecular identification of 24 yeast species present in bioethanol distilleries in northeast Brazil that use sugar cane juice or cane molasses as feeding substrate. Most of the yeast species could be identified readily from their unique amplification-specific polymerase chain reaction (PCR) fingerprint. Yeast of the species Dekkera bruxellensis, Candida tropicalis, Pichia galeiformis, as well as a species of Candida that belongs to the C. intermedia clade, were found to be involved in acute contamination episodes; the remaining 20 species were classified as adventitious. Additional physiologic data confirmed that the presence of these major contaminants cause decreased bioethanol yield. We conclude that PCR fingerprinting can be used in an industrial setting to monitor yeast population dynamics to early identify the presence of the most important contaminant yeasts.
Collapse
MESH Headings
- Brazil
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Intergenic/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Ethanol/metabolism
- Fermentation
- Genes, rRNA
- Industrial Microbiology
- Molasses/microbiology
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction/methods
- RNA, Fungal/genetics
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 5.8S/genetics
- Ribotyping
- Sequence Analysis, DNA
- Sucrose/metabolism
- Yeasts/classification
- Yeasts/isolation & purification
Collapse
Affiliation(s)
- A C M Basílio
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | | | | |
Collapse
|
37
|
Pérez-Brito D, Tapia-Tussell R, Quijano-Ramayo A, Larqué-Saavedra A, Lappe P. Molecular characterization of Kluyveromyces marxianus strains isolated from Agave fourcroydes (Lem.) in Yucatan, Mexico. Mol Biotechnol 2007; 37:181-6. [PMID: 17952662 DOI: 10.1007/s12033-007-0036-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 05/02/2007] [Indexed: 11/30/2022]
Abstract
The molecular characterization of 14 strains of Kluyveromyces marxianus isolated from Agave fourcroydes (Lem.) in Yucatan, Mexico, was performed by AP-PCR analysis, PCR-RFLP of 5.8S-ITS, and complete NTS regions. A sequence analysis of the D1/D2 domain of the 26S rDNA was also carried out in six selected strains. The AP-PCR approach had the highest discrimination power for the molecular characterization of new henequen K. marxianus strains. PCR-RFLP of 5.8S-ITS regions did not reveal polymorphisms in this group of strains. The restriction enzyme digestion analysis of NTS region enables the separation among strains which coincides with ascospore shape groups. The molecular tools used in this article may be useful to confirm a preliminary screen of yeasts isolated from henequen without the use of growth characteristics or morpho-physiological tests.
Collapse
Affiliation(s)
- Daisy Pérez-Brito
- Laboratorio GeMBio, Centro de Investigación Científica de Yucatán, Calle 43 # 130, Col. Chuburná de Hidalgo, Merida, Yucatan, Mexico,
| | | | | | | | | |
Collapse
|
38
|
Gomes F, Silva C, Marini M, Oliveira E, Rosa C. Use of selected indigenous Saccharomyces cerevisiae strains for the production of the traditional cachaça in Brazil. J Appl Microbiol 2007; 103:2438-47. [DOI: 10.1111/j.1365-2672.2007.03486.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Santos SKBD, Basílio ACM, Brasileiro BTRV, Simões DA, Silva-Filho EAD, de Morais M. Identification of yeasts within Saccharomyces sensu stricto complex by PCR-fingerprinting. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9407-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Vicente MDA, Fietto LG, Castro IDM, dos Santos ANG, Coutrim MX, Brandão RL. Isolation of Saccharomyces cerevisiae strains producing higher levels of flavoring compounds for production of "cachaça" the Brazilian sugarcane spirit. Int J Food Microbiol 2006; 108:51-9. [PMID: 16481057 DOI: 10.1016/j.ijfoodmicro.2005.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 09/28/2005] [Accepted: 10/12/2005] [Indexed: 11/29/2022]
Abstract
In Brazil, spontaneous fermentation and open vessels are still used to produce cachaça (the Brazilian sugarcane spirit) and this fermentation is characterized by mixed cultures with continuous succession of yeast species. This work shows the development of a methodology for isolation of yeasts, particularly Saccharomyces cerevisiae, used in the production of cachaça. According to the proposed strategy, the strains were selected for their ability to adapt to stress conditions encountered during fermentation of the sugarcane juice such as high sucrose concentration; high temperatures and high alcohol concentration; for their capacity to flocculate; and for their higher fermentative ability. For strains with such characteristics, specific procedures were employed to select for 5,5,5-trifluoro-DL-leucine (TFL) and cerulenin-resistant strains, since these characteristics are related to a higher capacity of production of the flavoring compounds isoamyl alcohol and caproic acid, respectively. The effectiveness of such a selection strategy was documented. Taken together, the results obtained present the development of a new strategy to isolate yeast strains with appropriated characteristics to be used in the cachaça industry. Moreover, the results obtained offer an explanation for the great variability in terms of chemical composition found in products obtained even in a single distillery.
Collapse
Affiliation(s)
- Maristela de Araújo Vicente
- Laboratório de Biologia Celular e Molecular, Núcleo de Pesquisas em Ciências Biológicas, ICEB II, Departamento de Fármacia, Escola de Fármacia, Universidade Federal de Ouro Preto, Campus do Morro do Cruzeiro. 35.400-000-Ouro Preto, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
da Silva Filho EA, de Melo HF, Antunes DF, dos Santos SKB, do Monte Resende A, Simões DA, de Morais MA. Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation. J Ind Microbiol Biotechnol 2005; 32:481-6. [PMID: 16175407 DOI: 10.1007/s10295-005-0027-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 07/31/2005] [Indexed: 11/28/2022]
Abstract
Fuel ethanol fermentation process is a complex environment with an intensive succession of yeast strains. The population stability depends on the use of a well-adapted strain that can fit to a particular industrial plant. This stability helps to keep high level of ethanol yield and it is absolutely required when intending to use recombinant strains. Yeast strains have been previously isolated from different distilleries in Northeast Brazil and clustered in genetic strains by PCR-fingerprinting. In this report we present the isolation and selection of a novel Saccharomyces cerevisiae strain by its high dominance in the yeast population. The new strain, JP1 strain, presented practically the same fermentative capacity and stress tolerance like the most used commercial strains, with advantages of being highly adapted to different industrial units in Northeast Brazil that used sugar cane juice as substrate. Moreover, it presented higher transformation efficiency that pointed out its potential for genetic manipulations. The importance of this strain selection programme for ethanol production is discussed.
Collapse
|