1
|
Colin R, Ni B, Laganenka L, Sourjik V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 2021; 45:fuab038. [PMID: 34227665 PMCID: PMC8632791 DOI: 10.1093/femsre/fuab038] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Most swimming bacteria are capable of following gradients of nutrients, signaling molecules and other environmental factors that affect bacterial physiology. This tactic behavior became one of the most-studied model systems for signal transduction and quantitative biology, and underlying molecular mechanisms are well characterized in Escherichia coli and several other model bacteria. In this review, we focus primarily on less understood aspect of bacterial chemotaxis, namely its physiological relevance for individual bacterial cells and for bacterial populations. As evident from multiple recent studies, even for the same bacterial species flagellar motility and chemotaxis might serve multiple roles, depending on the physiological and environmental conditions. Among these, finding sources of nutrients and more generally locating niches that are optimal for growth appear to be one of the major functions of bacterial chemotaxis, which could explain many chemoeffector preferences as well as flagellar gene regulation. Chemotaxis might also generally enhance efficiency of environmental colonization by motile bacteria, which involves intricate interplay between individual and collective behaviors and trade-offs between growth and motility. Finally, motility and chemotaxis play multiple roles in collective behaviors of bacteria including swarming, biofilm formation and autoaggregation, as well as in their interactions with animal and plant hosts.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| | - Bin Ni
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Yuanmingyuan Xilu No. 2, Beijing 100193, China
| | - Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| |
Collapse
|
2
|
Karmakar R. State of the art of bacterial chemotaxis. J Basic Microbiol 2021; 61:366-379. [PMID: 33687766 DOI: 10.1002/jobm.202000661] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4-6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve "run" and "tumble." The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis.
Collapse
Affiliation(s)
- Richa Karmakar
- Department of Physics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis: Relevance to Human Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:2767-2787. [PMID: 27824648 DOI: 10.1097/mib.0000000000000970] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. METHODS The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. RESULTS Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. CONCLUSIONS Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.
Collapse
|
4
|
Horne SM, Sayler J, Scarberry N, Schroeder M, Lynnes T, Prüß BM. Spontaneous mutations in the flhD operon generate motility heterogeneity in Escherichia coli biofilm. BMC Microbiol 2016; 16:262. [PMID: 27821046 PMCID: PMC5100188 DOI: 10.1186/s12866-016-0878-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/28/2016] [Indexed: 12/02/2022] Open
Abstract
Background Heterogeneity and niche adaptation in bacterial biofilm involve changes to the genetic makeup of the bacteria and gene expression control. We hypothesized that i) spontaneous mutations in the flhD operon can either increase or decrease motility and that ii) the resulting motility heterogeneity in the biofilm might lead to a long-term increase in biofilm biomass. Results We allowed the highly motile E. coli K-12 strain MC1000 to form seven- and fourteen-day old biofilm, from which we recovered reduced motility isolates at a substantially greater frequency (5.4 %) than from a similar experiment with planktonic bacteria (0.1 %). Biofilms formed exclusively by MC1000 degraded after 2 weeks. In contrast, biofilms initiated with a 1:1 ratio of MC1000 and its isogenic flhD::kn mutant remained intact at 4 weeks and the two strains remained in equilibrium for at least two weeks. These data imply that an ‘optimal’ biofilm may contain a mixture of motile and non-motile bacteria. Twenty-eight of the non-motile MC1000 isolates contained an IS1 element in proximity to the translational start of FlhD or within the open reading frames for FlhD or FlhC. Two isolates had an IS2 and one isolate had an IS5 in the open reading frame for FlhD. An additional three isolates contained deletions that included the RNA polymerase binding site, five isolates contained point mutations and small deletions in the open reading frame for FlhC. The locations of all these mutations are consistent with the lack of motility and further downstream within the flhD operon than previously published IS elements that increased motility. We believe that the location of the mutation within the flhD operon determines whether the effect on motility is positive or negative. To test the second part of our hypothesis where motility heterogeneity in a biofilm may lead to a long-term increase in biofilm biomass, we quantified biofilm biomass by MC1000, MC1000 flhD::kn, and mixtures of the two strains at ratios of 1:1, 10:1, and 1:10. After 3 weeks, biofilm of the mixed cultures contained up to five times more biomass than biofilm of each of the individual strains. Conclusion Mutations in the flhD operon can exert positive or negative effects on motility, depending on the site of the mutation. We believe that this is a mechanism to generate motility heterogeneity within E. coli biofilm, which may help to maintain biofilm biomass over extended periods of time. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0878-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shelley M Horne
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, 58103, USA
| | - Joseph Sayler
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, 58103, USA
| | - Nicholas Scarberry
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, 58103, USA
| | - Meredith Schroeder
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, 58103, USA
| | - Ty Lynnes
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, 58103, USA
| | - Birgit M Prüß
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, 58103, USA.
| |
Collapse
|
5
|
Bernal V, Castaño-Cerezo S, Cánovas M. Acetate metabolism regulation in Escherichia coli: carbon overflow, pathogenicity, and beyond. Appl Microbiol Biotechnol 2016; 100:8985-9001. [DOI: 10.1007/s00253-016-7832-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/11/2022]
|
6
|
The role of motility and chemotaxis in the bacterial colonization of protected surfaces. Sci Rep 2016; 6:19616. [PMID: 26792493 PMCID: PMC4726332 DOI: 10.1038/srep19616] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/14/2015] [Indexed: 01/04/2023] Open
Abstract
Internal epithelial surfaces in humans are both oxygenated and physically protected by a few hundred microns thick hydrogel mucosal layer, conditions that might support bacterial aerotaxis. However, the potential role of aerotaxis in crossing such a thin hydrogel layer is not clear. Here, we used a new setup to study the potential role of motility and chemotaxis in the bacterial colonization of surfaces covered by a thin hydrogel layer and subjected to a vertical oxygen gradient. Using the bacterium Escherichia coli, we show that both non-motile and motile-but-non-chemotactic bacteria could barely reach the surface. However, an acquired mutation in the non-chemotactic bacteria that altered their inherent swimming behavior led to a critical enhancement of surface colonization. Most chemotactic strains accumulated within the bulk of the hydrogel layer, except for the MG1655 strain, which showed a unique tendency to accumulate directly at the oxygenated surface and thus exhibited distinctly enhanced colonization. Even after a long period of bacterial growth, non-motile bacteria could not colonize the hydrogel. Thus, switching motility, which can be spontaneously acquired or altered in vivo, is critical for the colonization of such protected surfaces, whereas aerotaxis capacity clearly expedites surface colonization, and can lead to diverse colonization patterns.
Collapse
|
7
|
Lynnes T, Prüss BM, Samanta P. Acetate metabolism and Escherichia coli biofilm: new approaches to an old problem. FEMS Microbiol Lett 2013; 344:95-103. [PMID: 23651469 DOI: 10.1111/1574-6968.12174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/29/2013] [Accepted: 05/04/2013] [Indexed: 10/26/2022] Open
Abstract
Current antibiotics continue to lose effectiveness for infectious diseases, especially in cases where the bacteria from a biofilm. This review article summarizes control mechanisms for bacterial biofilm, with an emphasis on the modification of signal transduction pathways, such as quorum sensing and two-component signaling, by externally added metabolic intermediates. As a link between central metabolism and signal transduction, we discuss the activation of two-component response regulators by activated acetate intermediates in response to signals from the environment. These signals constitute 'nutrients' for the bacteria in most cases. Depending on the identity of the nutrient, biofilm amounts may be reduced. The nutrient may then be used for the development of both novel prevention and treatment options for biofilm-associated infectious diseases.
Collapse
Affiliation(s)
- Ty Lynnes
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | | | | |
Collapse
|
8
|
Rivera-Chávez F, Winter SE, Lopez CA, Xavier MN, Winter MG, Nuccio SP, Russell JM, Laughlin RC, Lawhon SD, Sterzenbach T, Bevins CL, Tsolis RM, Harshey R, Adams LG, Bäumler AJ. Salmonella uses energy taxis to benefit from intestinal inflammation. PLoS Pathog 2013; 9:e1003267. [PMID: 23637594 PMCID: PMC3630101 DOI: 10.1371/journal.ppat.1003267] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 02/08/2013] [Indexed: 01/18/2023] Open
Abstract
Chemotaxis enhances the fitness of Salmonella enterica serotype Typhimurium (S. Typhimurium) during colitis. However, the chemotaxis receptors conferring this fitness advantage and their cognate signals generated during inflammation remain unknown. Here we identify respiratory electron acceptors that are generated in the intestinal lumen as by-products of the host inflammatory response as in vivo signals for methyl-accepting chemotaxis proteins (MCPs). Three MCPs, including Trg, Tsr and Aer, enhanced the fitness of S. Typhimurium in a mouse colitis model. Aer mediated chemotaxis towards electron acceptors (energy taxis) in vitro and required tetrathionate respiration to confer a fitness advantage in vivo. Tsr mediated energy taxis towards nitrate but not towards tetrathionate in vitro and required nitrate respiration to confer a fitness advantage in vivo. These data suggest that the energy taxis receptors Tsr and Aer respond to distinct in vivo signals to confer a fitness advantage upon S. Typhimurium during inflammation by enabling this facultative anaerobic pathogen to seek out favorable spatial niches containing host-derived electron acceptors that boost its luminal growth.
Collapse
Affiliation(s)
- Fabian Rivera-Chávez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Sebastian E. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Christopher A. Lopez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Mariana N. Xavier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Maria G. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Joseph M. Russell
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Richard C. Laughlin
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Torsten Sterzenbach
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Charles L. Bevins
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Renée M. Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Rasika Harshey
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, Texas, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Regulation of cell division, biofilm formation, and virulence by FlhC in Escherichia coli O157:H7 grown on meat. Appl Environ Microbiol 2011; 77:3653-62. [PMID: 21498760 DOI: 10.1128/aem.00069-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand the continuous problems that Escherichia coli O157:H7 causes as food pathogen, this study assessed global gene regulation in bacteria growing on meat. Since FlhD/FlhC of E. coli K-12 laboratory strains was previously established as a major control point in transducing signals from the environment to several cellular processes, this study compared the expression pattern of an E. coli O157:H7 parent strain to that of its isogenic flhC mutant. This was done with bacteria that had been grown on meat. Microarray experiments revealed 287 putative targets of FlhC. Real-time PCR was performed as an alternative estimate of transcription and confirmed microarray data for 13 out of 15 genes tested (87%). The confirmed genes are representative of cellular functions, such as central metabolism, cell division, biofilm formation, and pathogenicity. An additional 13 genes from the same cellular functions that had not been hypothesized as being regulated by FlhC by the microarray experiment were tested with real-time PCR and also exhibited higher expression levels in the flhC mutant than in the parent strain. Physiological experiments were performed and confirmed that FlhC reduced the cell division rate, the amount of biofilm biomass, and pathogenicity in a chicken embryo lethality model. Altogether, this study provides valuable insight into the complex regulatory network of the pathogen that enables its survival under various environmental conditions. This information may be used to develop strategies that could be used to reduce the number of cells or pathogenicity of E. coli O157:H7 on meat by interfering with the signal transduction pathways.
Collapse
|
10
|
Genotype and phenotypes of an intestine-adapted Escherichia coli K-12 mutant selected by animal passage for superior colonization. Infect Immun 2011; 79:2430-9. [PMID: 21422176 DOI: 10.1128/iai.01199-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously isolated a spontaneous mutant of Escherichia coli K-12, strain MG1655, following passage through the streptomycin-treated mouse intestine, that has colonization traits superior to the wild-type parent strain (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). This intestine-adapted strain (E. coli MG1655*) grew faster on several different carbon sources than the wild type and was nonmotile due to deletion of the flhD gene. We now report the results of several high-throughput genomic analysis approaches to further characterize E. coli MG1655*. Whole-genome pyrosequencing did not reveal any changes on its genome, aside from the deletion at the flhDC locus, that could explain the colonization advantage of E. coli MG1655*. Microarray analysis revealed modest yet significant induction of catabolic gene systems across the genome in both E. coli MG1655* and an isogenic flhD mutant constructed in the laboratory. Catabolome analysis with Biolog GN2 microplates revealed an enhanced ability of both E. coli MG1655* and the isogenic flhD mutant to oxidize a variety of carbon sources. The results show that intestine-adapted E. coli MG1655* is more fit than the wild type for intestinal colonization, because loss of FlhD results in elevated expression of genes involved in carbon and energy metabolism, resulting in more efficient carbon source utilization and a higher intestinal population. Hence, mutations that enhance metabolic efficiency confer a colonization advantage.
Collapse
|
11
|
Schweinitzer T, Josenhans C. Bacterial energy taxis: a global strategy? Arch Microbiol 2010; 192:507-20. [PMID: 20411245 PMCID: PMC2886117 DOI: 10.1007/s00203-010-0575-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 03/31/2010] [Accepted: 04/06/2010] [Indexed: 12/24/2022]
Abstract
A functional energy metabolism is one of the most important requirements for survival of all kinds of organisms including bacteria. Therefore, many bacteria actively seek conditions of optimal metabolic activity, a behaviour which can be termed "energy taxis". Motility, combined with the sensory perception of the internal energetic conditions, is prerequisite for tactic responses to different energy levels and metabolic yields. Diverse mechanisms of energy sensing and tactic response have evolved among various bacteria. Many of the known energy taxis sensors group among the methyl-accepting chemotaxis protein (MCP)-like sensors. This review summarizes recent advances in the field of energy taxis and explores the current concept that energy taxis is an important part of the bacterial behavioural repertoire in order to navigate towards more favourable metabolic niches and to survive in a specific habitat.
Collapse
Affiliation(s)
- Tobias Schweinitzer
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | |
Collapse
|