1
|
Panyushkina A, Matyushkina D, Pobeguts O, Muravyov M, Letarov A. Mechanisms of microbial hyper-resistance to heavy metals: Cellular metal accumulation, metabolic reorganization, and GroEL chaperonin in extremophilic bacterium Sulfobacillus thermotolerans in response to zinc. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137490. [PMID: 39919630 DOI: 10.1016/j.jhazmat.2025.137490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
Mine waste disposal in dumps and stockpiles causes environmental pollution, particularly through microbe-assisted acid mine drainage (AMD) generation and groundwater contamination with hazardous heavy metal(loid)s. Metal hyper-resistance in acidophilic microorganisms remains an underexplored intriguing phenomenon. Using a multi-level approach, we provide the first data on extreme zinc resistance mechanisms in Sulfobacillus thermotolerans, recognized as one of the most metal-resistant organisms known. Under high zinc levels, Sb. thermotolerans cells exhibited efficient zinc sorption and low intracellular accumulation. Remarkably, mechanisms involved the upregulation of stress response and metabolic pathway proteins, including different GroEL chaperonin forms. Moreover, overexpression of the Sb. thermotolerans StGroEL chaperonin in Escherichia coli enhanced its growth and zinc resistance under zinc stress. 3D structure modeling and ion binding site prediction in StGroEL revealed 46 amino acid residues potentially involved in zinc docking. Thriving in natural and engineered environments, such as sulfide mines, mine waste disposal sites, and AMD, Sb. thermotolerans is a key member of acidophilic microbial communities used in commercial biotechnologies for sulfidic raw material processing. These findings, beyond their fundamental scientific relevance, have important implications for environmental protection, including AMD management, safe hazardous waste disposal, and a broader application of eco-friendly biomining technologies using metal-resistant microbial communities.
Collapse
Affiliation(s)
- Anna Panyushkina
- Winogradsky Institute of Microbiology, Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow 119071, Russia.
| | - Daria Matyushkina
- Scientific Research Institute for Systems Biology and Medicine, Scientific Driveway, 18, Moscow 117246, Russia
| | - Olga Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, Moscow 119435, Russia
| | - Maxim Muravyov
- Winogradsky Institute of Microbiology, Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow 119071, Russia
| | - Andrey Letarov
- Winogradsky Institute of Microbiology, Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow 119071, Russia
| |
Collapse
|
2
|
Hertle E, Ursinus A, Martin J. Low-temperature features of the psychrophilic chaperonin from Pseudoalteromonas haloplanktis. Arch Microbiol 2024; 206:299. [PMID: 38861015 PMCID: PMC11166852 DOI: 10.1007/s00203-024-04019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Chaperonins from psychrophilic bacteria have been shown to exist as single-ring complexes. This deviation from the standard double-ring structure has been thought to be a beneficial adaptation to the cold environment. Here we show that Cpn60 from the psychrophile Pseudoalteromonas haloplanktis (Ph) maintains its double-ring structure also in the cold. A strongly reduced ATPase activity keeps the chaperonin in an energy-saving dormant state, until binding of client protein activates it. Ph Cpn60 in complex with co-chaperonin Ph Cpn10 efficiently assists in protein folding up to 55 °C. Moreover, we show that recombinant expression of Ph Cpn60 can provide its host Escherichia coli with improved viability under low temperature growth conditions. These properties of the Ph chaperonin may make it a valuable tool in the folding and stabilization of psychrophilic proteins.
Collapse
Affiliation(s)
- Eva Hertle
- Department of Protein Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Astrid Ursinus
- Department of Protein Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Jörg Martin
- Department of Protein Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| |
Collapse
|
3
|
Cho M, Lee SJ, Choi E, Kim J, Choi S, Lee JH, Park H. An Antarctic lichen isolate (Cladonia borealis) genome reveals potential adaptation to extreme environments. Sci Rep 2024; 14:1342. [PMID: 38228797 PMCID: PMC10792129 DOI: 10.1038/s41598-024-51895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
Cladonia borealis is a lichen that inhabits Antarctica's harsh environment. We sequenced the whole genome of a C. borealis culture isolated from a specimen collected in Antarctica using long-read sequencing technology to identify specific genetic elements related to its potential environmental adaptation. The final genome assembly produced 48 scaffolds, the longest being 2.2 Mbp, a 1.6 Mbp N50 contig length, and a 36 Mbp total length. A total of 10,749 protein-coding genes were annotated, containing 33 biosynthetic gene clusters and 102 carbohydrate-active enzymes. A comparative genomics analysis was conducted on six Cladonia species, and the genome of C. borealis exhibited 45 expanded and 50 contracted gene families. We identified that C. borealis has more Copia transposable elements and expanded transporters (ABC transporters and magnesium transporters) compared to other Cladonia species. Our results suggest that these differences contribute to C. borealis' remarkable adaptability in the Antarctic environment. This study also provides a useful resource for the genomic analysis of lichens and genetic insights into the survival of species isolated from Antarctica.
Collapse
Affiliation(s)
- Minjoo Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Seung Jae Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Eunkyung Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jinmu Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Soyun Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, South Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea.
| | - Hyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
4
|
Dopson M, González-Rosales C, Holmes DS, Mykytczuk N. Eurypsychrophilic acidophiles: From (meta)genomes to low-temperature biotechnologies. Front Microbiol 2023; 14:1149903. [PMID: 37007468 PMCID: PMC10050440 DOI: 10.3389/fmicb.2023.1149903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 03/17/2023] Open
Abstract
Low temperature and acidic environments encompass natural milieus such as acid rock drainage in Antarctica and anthropogenic sites including drained sulfidic sediments in Scandinavia. The microorganisms inhabiting these environments include polyextremophiles that are both extreme acidophiles (defined as having an optimum growth pH < 3), and eurypsychrophiles that grow at low temperatures down to approximately 4°C but have an optimum temperature for growth above 15°C. Eurypsychrophilic acidophiles have important roles in natural biogeochemical cycling on earth and potentially on other planetary bodies and moons along with biotechnological applications in, for instance, low-temperature metal dissolution from metal sulfides. Five low-temperature acidophiles are characterized, namely, Acidithiobacillus ferriphilus, Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, “Ferrovum myxofaciens,” and Alicyclobacillus disulfidooxidans, and their characteristics are reviewed. Our understanding of characterized and environmental eurypsychrophilic acidophiles has been accelerated by the application of “omics” techniques that have aided in revealing adaptations to low pH and temperature that can be synergistic, while other adaptations are potentially antagonistic. The lack of known acidophiles that exclusively grow below 15°C may be due to the antagonistic nature of adaptations in this polyextremophile. In conclusion, this review summarizes the knowledge of eurypsychrophilic acidophiles and places the information in evolutionary, environmental, biotechnological, and exobiology perspectives.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- *Correspondence: Mark Dopson
| | - Carolina González-Rosales
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Nadia Mykytczuk
- Goodman School of Mines, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
5
|
de Francisco Martínez P, Morgante V, González-Pastor JE. Isolation of novel cold-tolerance genes from rhizosphere microorganisms of Antarctic plants by functional metagenomics. Front Microbiol 2022; 13:1026463. [DOI: 10.3389/fmicb.2022.1026463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
The microorganisms that thrive in Antarctica, one of the coldest environments on the planet, have developed diverse adaptation mechanisms to survive in these extreme conditions. Through functional metagenomics, in this work, 29 new genes related to cold tolerance have been isolated and characterized from metagenomic libraries of microorganisms from the rhizosphere of two Antarctic plants. Both libraries were hosted in two cold-sensitive strains of Escherichia coli: DH10B ΔcsdA and DH10B ΔcsdA Δrnr. The csdA gene encodes a DEAD-box RNA helicase and rnr gene encodes an exoribonuclease, both essential for cold-adaptation. Cold-tolerance tests have been carried out in solid and liquid media at 15°C. Among the cold-tolerance genes identified, 12 encode hypothetical and unknown proteins, and 17 encode a wide variety of different proteins previously related to other well-characterized ones involved in metabolism reactions, transport and membrane processes, or genetic information processes. Most of them have been connected to cold-tolerance mechanisms. Interestingly, 13 genes had no homologs in E. coli, thus potentially providing entirely new adaptation strategies for this bacterium. Moreover, ten genes also conferred resistance to UV-B radiation, another extreme condition in Antarctica.
Collapse
|
6
|
KINASZ CAMILAT, KREUSCH MARIANNEG, BENDIA AMANDAG, PELLIZARI VIVIANH, DUARTE RUBENST. Taxonomic and functional diversity from Antarctic ice-tephra microbial community: ecological insights and potential for bioprospection. AN ACAD BRAS CIENC 2022; 94:e20210621. [DOI: 10.1590/0001-3765202220210621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
|
7
|
Li M, Wen J. Recent progress in the application of omics technologies in the study of bio-mining microorganisms from extreme environments. Microb Cell Fact 2021; 20:178. [PMID: 34496835 PMCID: PMC8425152 DOI: 10.1186/s12934-021-01671-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/30/2021] [Indexed: 11/11/2022] Open
Abstract
Bio-mining microorganisms are a key factor affecting the metal recovery rate of bio-leaching, which inevitably produces an extremely acidic environment. As a powerful tool for exploring the adaptive mechanisms of microorganisms in extreme environments, omics technologies can greatly aid our understanding of bio-mining microorganisms and their communities on the gene, mRNA, and protein levels. These omics technologies have their own advantages in exploring microbial diversity, adaptive evolution, changes in metabolic characteristics, and resistance mechanisms of single strains or their communities to extreme environments. These technologies can also be used to discover potential new genes, enzymes, metabolites, metabolic pathways, and species. In addition, integrated multi-omics analysis can link information at different biomolecular levels, thereby obtaining more accurate and complete global adaptation mechanisms of bio-mining microorganisms. This review introduces the current status and future trends in the application of omics technologies in the study of bio-mining microorganisms and their communities in extreme environments.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China.
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China.
| |
Collapse
|
8
|
Chen Q, Wu Y, Huang Z, Zhang W, Mu W. Molecular Characterization of a Mesophilic Cellobiose 2-Epimerase That Maintains a High Catalytic Efficiency at Low Temperatures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8268-8275. [PMID: 34231359 DOI: 10.1021/acs.jafc.1c02025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cellobiose 2-epimerase (CE) can catalyze bioconversion of lactose to its prebiotic derivative epilactose. The catalytic property of a novel CE from Treponema brennaborense (Trbr-CE) was investigated. Trbr-CE showed the highest catalytic efficiency of epimerization toward lactose among all of the previously reported CEs. This enzyme's specific activity could reach as high as 208.5 ± 5.3 U/mg at its optimum temperature, which is 45 °C. More importantly, this enzyme demonstrated a considerably high activity at low temperatures, suggesting Trbr-CE as a promising enzyme for industrial low-temperature production of epilactose. This structurally flexible enzyme exhibited a comparatively high binding affinity toward substrates, which was confirmed by both experimental verification and computational analysis. Molecular dynamics (MD) simulations and binding free energy calculations were applied to provide insights into molecular recognition upon temperature changes. Compared with thermophilic CEs, Trbr-CE presents a more negative enthalpy change and a higher entropy change when the temperature drops.
Collapse
Affiliation(s)
- Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yanchang Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Zhao D, Yang J, Liu T, Lu D, Zhang S, Yan L, Ni Y. Complete Genome Sequence Analysis of Acidithiobacillus ferrivorans XJFY6S-08 Reveals Environmental Adaptation to Alpine Acid Mine Drainage. Curr Microbiol 2021; 78:1488-1498. [PMID: 33660044 DOI: 10.1007/s00284-021-02423-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/10/2021] [Indexed: 02/02/2023]
Abstract
The present work reported the complete genome sequence analysis of Acidithiobacillus ferrivorans strain XJFY6S-08 isolated from acid mine drainage in Fuyun copper mine in Xinjiang, China, revealing the potential for extreme environmental adaptation. The strain XJFY6S-08 possesses 3,161,380 bp in length and 56.55% GC content. Genomic analysis revealed that this strain harbors metal-tolerant genes coding for the mer operon, arsRBC operon and a variety of metal assimilation and efflux proteins. Genes coding for K+/H+ transporting ATPase and the Na+/H+ antiporter gene nhaA for pH adaptation were identified. The presence of genes associated with various DNA repair enzymes and the synthesis of mycosporine-like amino acids precursor support the UVR resistance mechanisms. The genes related to membrane modifications (ppiBCD, slyD, surA, cfa and fabF) and resistance-nodulation-division (RND) family can play a crucial role in organic solvents tolerance. The strain XJFY6S-08 resists low-temperature conditions by a set of mechanisms such as changes of RNA metabolism, transmembrane transport, compatible solutes and transport, biofilm and EPS formation, chemotaxis and motility and ROS scavenging. These findings can provide important information for further studying the comparative genome and environmental adaptation mechanism of A. ferrivorans.
Collapse
Affiliation(s)
- Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Jian Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Yongqing Ni
- School of Food Science, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China.
| |
Collapse
|
10
|
Debnath A, Mizuno T, Miyoshi SI. Comparative proteomic analysis to characterize temperature-induced viable but non-culturable and resuscitation states in Vibrio cholerae. MICROBIOLOGY-SGM 2019; 165:737-746. [PMID: 31124781 DOI: 10.1099/mic.0.000798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vibrio cholerae can survive environmental adversities by entering into a viable but non-culturable (VBNC) state and is able to resuscitate under favourable conditions. In this study, an environmental strain of V. cholerae (AN59) showed a decrease in culturability from 4×107 to ≤ 3 c.f.u. ml -1 in artificial seawater media at 4 °C within 35 days. During the course of VBNC progression, viability was confirmed by real-time RT-PCR which showed reduced but stable expression of molecular chaperones groEL and dnaK. Resuscitation was induced in VBNC microcosm by a temperature increase from 4 to 37 °C for 24 h. The results obtained from resuscitation and growth experiments suggest that 103-104 c.f.u. ml -1 of VBNC cells should recover upon temperature increase and grow to attain 107 c.f.u. ml -1. We used comparative proteomics to differentiate recovery from the VBNC state and selected 19 proteins whose expression was significantly variable between these two states. These proteins were mainly related to carbohydrate metabolism, phosphate utilization, stress response, transport and translation. The main difference in the proteome profile was higher protein expression in the recovery state compared to VBNC state. However, during recovery Pi-starvation led to expression of PhoX, PstB and Xds, which might help in utilization of extracellular DNA to promote growth after resuscitation. In addition, the expression of EctC suggests that osmotic adaptation is necessary to grow at high salinity. Detection of AhpC in the VBNC and recovery state indicates the significance of the oxidative stress response. A temperature-induced VBNC and recovery state is a combination of adaptive and survival responses under nutrient limitation.
Collapse
|
11
|
Virtanen JP, Keto-Timonen R, Jaakkola K, Salin N, Korkeala H. Changes in Transcriptome of Yersinia pseudotuberculosis IP32953 Grown at 3 and 28°C Detected by RNA Sequencing Shed Light on Cold Adaptation. Front Cell Infect Microbiol 2018; 8:416. [PMID: 30538955 PMCID: PMC6277586 DOI: 10.3389/fcimb.2018.00416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/09/2018] [Indexed: 11/17/2022] Open
Abstract
Yersinia pseudotuberculosis is a bacterium that not only survives, but also thrives, proliferates, and remains infective at cold-storage temperatures, making it an adept foodborne pathogen. We analyzed the differences in gene expression between Y. pseudotuberculosis IP32953 grown at 3 and 28°C to investigate which genes were significantly more expressed at low temperature at different phases of growth. We isolated and sequenced the RNA from six distinct corresponding growth points at both temperatures to also outline the expression patterns of the differentially expressed genes. Genes involved in motility, chemotaxis, phosphotransferase systems (PTS), and ATP-binding cassette (ABC) transporters of different nutrients such as fructose and mannose showed higher levels of transcripts at 3°C. At the beginning of growth, especially genes involved in securing nutrients, glycolysis, transcription, and translation were upregulated at 3°C. To thrive as well as it does at low temperature, Y. pseudotuberculosis seems to require certain cold shock proteins, especially those encoded by yptb3585, yptb3586, yptb2414, yptb2950, and yptb1423, and transcription factors, like Rho, IF-1, and RbfA, to maintain its protein synthesis. We also found that genes encoding RNA-helicases CsdA (yptb0468), RhlE (yptb1214), and DbpA (yptb1652), which unwind frozen secondary structures of nucleic acids with cold shock proteins, were significantly more expressed at 3°C, indicating that these RNA-helicases are important or even necessary during cold. Genes involved in excreting poisonous spermidine and acquiring compatible solute glycine betaine, by either uptake or biosynthesis, showed higher levels of transcripts at low temperatures. This is the first finding of a strong connection between the aforementioned genes and the cold adaptation of Y. pseudotuberculosis. Understanding the mechanisms behind the cold adaptation of Y. pseudotuberculosis is crucial for controlling its growth during cold storage of food, and will also shed light on microbial cold adaptation in general.
Collapse
Affiliation(s)
- Jussa-Pekka Virtanen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Keto-Timonen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kaisa Jaakkola
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Noora Salin
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Dopson M, Holmes DS, Lazcano M, McCredden TJ, Bryan CG, Mulroney KT, Steuart R, Jackaman C, Watkin ELJ. Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions. Front Microbiol 2017; 7:2132. [PMID: 28111571 PMCID: PMC5216662 DOI: 10.3389/fmicb.2016.02132] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/19/2016] [Indexed: 11/16/2022] Open
Abstract
Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of “biomining.” A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans. Ac. prosperus had optimum iron oxidation at 20 g L−1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L−1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F0F1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl− with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a model of chloride tolerance in the salt tolerant and susceptible species Ac. prosperus and At. ferrooxidans, respectively.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
| | - David S Holmes
- Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Genome Biology, Fundacion Ciencia y VidaSantiago, Chile
| | - Marcelo Lazcano
- Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Genome Biology, Fundacion Ciencia y VidaSantiago, Chile
| | - Timothy J McCredden
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Christopher G Bryan
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Kieran T Mulroney
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Robert Steuart
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Connie Jackaman
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Elizabeth L J Watkin
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| |
Collapse
|
13
|
Koh HY, Park H, Lee JH, Han SJ, Sohn YC, Lee SG. Proteomic and transcriptomic investigations on cold-responsive properties of the psychrophilic Antarctic bacterium Psychrobacter sp. PAMC 21119 at subzero temperatures. Environ Microbiol 2016; 19:628-644. [PMID: 27750393 DOI: 10.1111/1462-2920.13578] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/12/2016] [Indexed: 11/28/2022]
Abstract
Psychrobacter sp. PAMC 21119, isolated from Antarctic permafrost soil, grows and proliferates at subzero temperatures. However, its major mechanism of cold adaptation regulation remains poorly understood. We investigated the transcriptomic and proteomic responses of this species to cold temperatures by comparing profiles at -5°C and 20°C to understand how extreme microorganisms survive under subzero conditions. We found a total of 2,906 transcripts and 584 differentially expressed genes (≥ twofold, P <0.005) by RNA-seq. Genes for translation, ribosomal structure and biogenesis were upregulated, and lipid transport and metabolism was downregulated at low temperatures. A total of 60 protein spots (≥ 1.8 fold, P < 0.005) showed differential expression on two-dimensional gel electrophoresis and the proteins were identified by mass spectrometry. The most prominent upregulated proteins in response to cold were involved in metabolite transport, protein folding and membrane fluidity. Proteins involved in energy production and conversion, and heme protein synthesis were downregulated. Moreover, isoform exchange of cold-shock proteins was detected at both temperatures. Interestingly, pathways for acetyl-CoA metabolism, putrescine synthesis and amino acid metabolism were upregulated. This study highlights some of the strategies and different physiological states that Psychrobacter sp. PAMC 21119 has developed to adapt to the cold environment in Antarctica.
Collapse
Affiliation(s)
- Hye Yeon Koh
- Unit of Polar Genomics Korea Polar Research Institute, Incheon, South Korea.,Department of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Hyun Park
- Unit of Polar Genomics Korea Polar Research Institute, Incheon, South Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, South Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics Korea Polar Research Institute, Incheon, South Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, South Korea
| | - Se Jong Han
- Unit of Polar Genomics Korea Polar Research Institute, Incheon, South Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, South Korea
| | - Young Chang Sohn
- Department of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Sung Gu Lee
- Unit of Polar Genomics Korea Polar Research Institute, Incheon, South Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, South Korea
| |
Collapse
|
14
|
Fatemi F, Miri S, Jahani S. Effect of metal sulfide pulp density on gene expression of electron transporters in Acidithiobacillus sp. FJ2. Arch Microbiol 2016; 199:521-530. [PMID: 27885407 DOI: 10.1007/s00203-016-1318-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 11/30/2022]
Abstract
In Acidithiobacillus ferrooxidans, one of the most important bioleaching bacterial species, the proteins encoded by the rus operon are involved in the electron transfer from Fe2+ to O2. To obtain further knowledge about the mechanism(s) involved in the adaptive responses of the bacteria to growth on the different uranium ore pulp densities, we analyzed the expression of the four genes from the rus operon by real-time PCR, when Acidithiobacillus sp. FJ2 was grown in the presence of different uranium concentrations. The uranium bioleaching results showed the inhibitory effects of the metal pulp densities on the oxidation activity of the bacteria which can affect Eh, pH, Fe oxidation and uranium extractions. Gene expression analysis indicated that Acidithiobacillus sp. FJ2 tries to survive in the stress with increasing in the expression levels of cyc2, cyc1, rus and coxB, but the metal toxicity has a negative effect on the gene expression in different pulp densities. These results indicated that Acidithiobacillus sp. FJ2 could leach the uranium even in high pulp density (50%) by modulation in rus operon gene responses.
Collapse
Affiliation(s)
- Faezeh Fatemi
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Saba Miri
- Department of Biotechnology, Faculty of Life Science, Alzahra University, Tehran, Iran
| | - Samaneh Jahani
- Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University, Qom, Iran
| |
Collapse
|
15
|
Christel S, Fridlund J, Watkin EL, Dopson M. Acidithiobacillus ferrivorans SS3 presents little RNA transcript response related to cold stress during growth at 8 °C suggesting it is a eurypsychrophile. Extremophiles 2016; 20:903-913. [PMID: 27783177 PMCID: PMC5085989 DOI: 10.1007/s00792-016-0882-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/10/2016] [Indexed: 11/17/2022]
Abstract
Acidithiobacillus ferrivorans is an acidophilic bacterium that represents a substantial proportion of the microbial community in a low temperature mining waste stream. Due to its ability to grow at temperatures below 15 °C, it has previously been classified as 'psychrotolerant'. Low temperature-adapted microorganisms have strategies to grow at cold temperatures such as the production of cold acclimation proteins, DEAD/DEAH box helicases, and compatible solutes plus increasing their cellular membrane fluidity. However, little is known about At. ferrivorans adaptation strategies employed during culture at its temperature extremes. In this study, we report the transcriptomic response of At. ferrivorans SS3 to culture at 8 °C compared to 20 °C. Analysis revealed 373 differentially expressed genes of which, the majority were of unknown function. Only few changes in transcript counts of genes previously described to be cold adaptation genes were detected. Instead, cells cultured at cold (8 °C) altered the expression of a wide range of genes ascribed to functions in transcription, translation, and energy production. It is, therefore, suggested that a temperature of 8 °C imposed little cold stress on At. ferrivorans, underlining its adaptation to growth in the cold as well as suggesting it should be classified as a 'eurypsychrophile'.
Collapse
Affiliation(s)
- Stephan Christel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| | - Jimmy Fridlund
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Elizabeth L Watkin
- School of Biomedical Sciences, Curtin University, Perth, 6845, Australia
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
16
|
Draft Genome Sequence of Psychrobacter piscatorii Strain LQ58, a Psychrotolerant Bacterium Isolated from a Deep-Sea Hydrothermal Vent. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00044-16. [PMID: 26941137 PMCID: PMC4777748 DOI: 10.1128/genomea.00044-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Here, we report the 3.1-Mb draft genome sequence of Psychrobacter piscatorii strain LQ58, isolated from a deep-sea hydrothermal vent on the East Pacific Rise. The sequence will provide further insight into the environmental adaptation of psychrotolerant bacteria and the development of novel cold-active enzymes for industrial application.
Collapse
|
17
|
Yan S, Wu G. Large-scale evolutionary analyses on SecB subunits of bacterial sec system. PLoS One 2015; 10:e0120417. [PMID: 25775430 PMCID: PMC4361572 DOI: 10.1371/journal.pone.0120417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023] Open
Abstract
Protein secretion systems are extremely important in bacteria because they are involved in many fundamental cellular processes. Of the various secretion systems, the Sec system is composed of seven different subunits in bacteria, and subunit SecB brings secreted preproteins to subunit SecA, which with SecYEG and SecDF forms a complex for the translocation of secreted preproteins through the inner membrane. Because of the wide existence of Sec system across bacteria, eukaryota, and archaea, each subunit of the Sec system has a complicated evolutionary relationship. Until very recently, 5,162 SecB sequences have been documented in UniProtKB, however no phylogenetic study has been conducted on a large sampling of SecBs from bacterial Sec secretion system, and no statistical study has been conducted on such size of SecBs in order to exhaustively investigate their variances of pairwise p-distance along taxonomic lineage from kingdom to phylum, to class, to order, to family, to genus and to organism. To fill in these knowledge gaps, 3,813 bacterial SecB sequences with full taxonomic lineage from kingdom to organism covering 4 phyla, 11 classes, 41 orders, 82 families, 269 genera, and 3,744 organisms were studied. Phylogenetic analysis revealed how the SecBs evolved without compromising their function with examples of 3-D structure comparison of two SecBs from Proteobacteria, and possible factors that affected the SecB evolution were considered. The average pairwise p-distances showed that the variance varied greatly in each taxonomic group. Finally, the variance was further partitioned into inter- and intra-clan variances, which could correspond to vertical and horizontal gene transfers, with relevance for Achromobacter, Brevundimonas, Ochrobactrum, and Pseudoxanthomonas.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Guang Wu
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Industrialization Engineering Institute, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
- * E-mail:
| |
Collapse
|
18
|
Activities of Alkyl Hydroperoxide Reductase Subunits C1 and C2 of Vibrio parahaemolyticus against Different Peroxides. Appl Environ Microbiol 2014; 80:7398-404. [PMID: 25239899 DOI: 10.1128/aem.02701-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/17/2014] [Indexed: 01/06/2023] Open
Abstract
Alkyl hydroperoxide reductase subunit C gene (ahpC) functions were characterized in Vibrio parahaemolyticus, a commonly occurring marine food-borne enteropathogenic bacterium. Two ahpC genes, ahpC1 (VPA1683) and ahpC2 (VP0580), encoded putative two-cysteine peroxiredoxins, which are highly similar to the homologous proteins of Vibrio vulnificus. The responses of deletion mutants of ahpC genes to various peroxides were compared with and without gene complementation and at different incubation temperatures. The growth of the ahpC1 mutant and ahpC1 ahpC2 double mutant in liquid medium was significantly inhibited by organic peroxides, cumene hydroperoxide and tert-butyl hydroperoxide. However, inhibition was higher at 12°C and 22°C than at 37°C. Inhibiting effects were prevented by the complementary ahpC1 gene. Inconsistent detoxification of H2O2 by ahpC genes was demonstrated in an agar medium but not in a liquid medium. Complementation with an ahpC2 gene partially restored the peroxidase effect in the double ahpC1 ahpC2 mutant at 22°C. This investigation reveals that ahpC1 is the chief peroxidase gene that acts against organic peroxides in V. parahaemolyticus and that the function of the ahpC genes is influenced by incubation temperature.
Collapse
|
19
|
D’Heygère F, Rabhi M, Boudvillain M. Phyletic distribution and conservation of the bacterial transcription termination factor Rho. Microbiology (Reading) 2013; 159:1423-1436. [DOI: 10.1099/mic.0.067462-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- François D’Heygère
- Ecole doctorale Santé, Sciences Biologiques et Chimie du Vivant (ED 549), Université d’Orléans, France
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Makhlouf Rabhi
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Marc Boudvillain
- ITP Sciences Biologiques et Chimie du Vivant, Université d’Orléans, France
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| |
Collapse
|
20
|
Wang HW, Chung CH, Ma TY, Wong HC. Roles of alkyl hydroperoxide reductase subunit C (AhpC) in viable but nonculturable Vibrio parahaemolyticus. Appl Environ Microbiol 2013; 79:3734-43. [PMID: 23563952 PMCID: PMC3675929 DOI: 10.1128/aem.00560-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/03/2013] [Indexed: 11/20/2022] Open
Abstract
Alkyl hydroperoxide reductase subunit C (AhpC) is the catalytic subunit responsible for the detoxification of reactive oxygen species that form in bacterial cells or are derived from the host; thus, AhpC facilitates the survival of pathogenic bacteria under environmental stresses or during infection. This study investigates the role of AhpC in the induction and maintenance of a viable but nonculturable (VBNC) state in Vibrio parahaemolyticus. In this investigation, ahpC1 (VPA1683) and ahpC2 (VP0580) were identified in chromosomes II and I of this pathogen, respectively. Mutants with deletions of these two ahpC genes and their complementary strains were constructed from the parent strain KX-V231. The growth of these strains was monitored on tryptic soy agar-3% NaCl in the presence of the extrinsic peroxides H(2)O(2) and tert-butyl hydroperoxide (t-BOOH) at different incubation temperatures. The results revealed that both ahpC genes were protective against t-BOOH, while ahpC1 was protective against H(2)O(2). The protective function of ahpC2 at 4°C was higher than that of ahpC1. The times required to induce the VBNC state (4.7 weeks) at 4°C in a modified Morita mineral salt solution with 0.5% NaCl and then to maintain the VBNC state (4.7 weeks) in an ahpC2 mutant and an ahpC1 ahpC2 double mutant were significantly shorter than those for the parent strain (for induction, 6.2 weeks; for maintenance, 7.8 weeks) and the ahpC1 mutant (for induction, 6.0 weeks; for maintenance, 8.0 weeks) (P < 0.03). Complementation with an ahpC2 gene reversed the effects of the ahpC2 mutation in shortening the times for induction and maintenance of the VBNC state. This investigation identified the different functions of the two ahpC genes and confirmed the particular role of ahpC2 in the VBNC state of V. parahaemolyticus.
Collapse
Affiliation(s)
- Hen-Wei Wang
- Department of Microbiology, Soochow University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
21
|
Tu B, Li J, Guo Y, Guo X, Lu X, Han X. Compensation phenomena found inAcidithiobacillus ferrooxidansafter starvation stress. J Basic Microbiol 2013; 54:598-606. [DOI: 10.1002/jobm.201200637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/26/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Bowen Tu
- Jiangsu Key Laboratory of Molecular Medicine; Nanjing University; Nanjing P.R. China
- Centers for Disease Control and Prevention of Changzhou; Changzhou P.R. China
- State Key Laboratory of Analytical Chemistry for Life Science; Nanjing University; Nanjing P.R. China
| | - Juan Li
- State Key Laboratory of Mineral Deposits Research; School of Earth Sciences and Engineering, Nanjing University; Nanjing P.R. China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology; Nanjing Medical University; Nanjing P.R. China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology; Nanjing Medical University; Nanjing P.R. China
| | - Xiancai Lu
- State Key Laboratory of Mineral Deposits Research; School of Earth Sciences and Engineering, Nanjing University; Nanjing P.R. China
| | - Xiaodong Han
- Jiangsu Key Laboratory of Molecular Medicine; Nanjing University; Nanjing P.R. China
| |
Collapse
|
22
|
Psychrophily and catalysis. BIOLOGY 2013; 2:719-41. [PMID: 24832805 PMCID: PMC3960892 DOI: 10.3390/biology2020719] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 11/24/2022]
Abstract
Polar and other low temperature environments are characterized by a low content in energy and this factor has a strong incidence on living organisms which populate these rather common habitats. Indeed, low temperatures have a negative effect on ectothermic populations since they can affect their growth, reaction rates of biochemical reactions, membrane permeability, diffusion rates, action potentials, protein folding, nucleic acids dynamics and other temperature-dependent biochemical processes. Since the discovery that these ecosystems, contrary to what was initially expected, sustain a rather high density and broad diversity of living organisms, increasing efforts have been dedicated to the understanding of the molecular mechanisms involved in their successful adaptation to apparently unfavorable physical conditions. The first question that comes to mind is: How do these organisms compensate for the exponential decrease of reaction rate when temperature is lowered? As most of the chemical reactions that occur in living organisms are catalyzed by enzymes, the kinetic and thermodynamic properties of cold-adapted enzymes have been investigated. Presently, many crystallographic structures of these enzymes have been elucidated and allowed for a rather clear view of their adaptation to cold. They are characterized by a high specific activity at low and moderate temperatures and a rather low thermal stability, which induces a high flexibility that prevents the freezing effect of low temperatures on structure dynamics. These enzymes also display a low activation enthalpy that renders them less dependent on temperature fluctuations. This is accompanied by a larger negative value of the activation entropy, thus giving evidence of a more disordered ground state. Appropriate folding kinetics is apparently secured through a large expression of trigger factors and peptidyl–prolyl cis/trans-isomerases.
Collapse
|
23
|
Goordial J, Lamarche-Gagnon G, Lay CY, Whyte L. Left Out in the Cold: Life in Cryoenvironments. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-94-007-6488-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
24
|
Feller G. Psychrophilic enzymes: from folding to function and biotechnology. SCIENTIFICA 2013; 2013:512840. [PMID: 24278781 PMCID: PMC3820357 DOI: 10.1155/2013/512840] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/06/2012] [Indexed: 05/10/2023]
Abstract
Psychrophiles thriving permanently at near-zero temperatures synthesize cold-active enzymes to sustain their cell cycle. Genome sequences, proteomic, and transcriptomic studies suggest various adaptive features to maintain adequate translation and proper protein folding under cold conditions. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, therefore reducing the free energy barrier of the transition state. Furthermore, a weak temperature dependence of activity ensures moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, the optimization to low temperature activity is reached via destabilization of the structures bearing the active site or by destabilization of the whole molecule. This involves a reduction in the number and strength of all types of weak interactions or the disappearance of stability factors, resulting in improved dynamics of active site residues in the cold. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Several open questions in the field are also highlighted.
Collapse
Affiliation(s)
- Georges Feller
- Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry, University of Liège, B6a, 4000 Liège, Belgium
- *Georges Feller:
| |
Collapse
|
25
|
Trevors JT, Bej AK, Mojib N, van Elsas JD, Van Overbeek L. Bacterial gene expression at low temperatures. Extremophiles 2012; 16:167-76. [PMID: 22212655 DOI: 10.1007/s00792-011-0423-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/13/2011] [Indexed: 01/26/2023]
Abstract
Under suboptimal environmental conditions such as low temperatures, many bacteria have an extended lag phase, altered cell structures, and composition such as a less fluid (more rigid) and leaky cytoplasmic membrane. As a result, cells may die, enter into a starvation mode of metabolism or a physiologically viable but non-culturable (VBNC) state. In the latter state, the amount of gene expression per cell is virtually undetectable. In this article, gene expression under (suboptimal) low temperature conditions in non-psychrophilic environmental bacteria is examined. The pros and cons of some of the molecular methodologies for gene expression analysis are also discussed.
Collapse
Affiliation(s)
- J T Trevors
- Laboratory of Microbiology, School of Environmental Sciences, Rm. 3220 Bovey Bldg., University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | | | | | | | | |
Collapse
|
26
|
Ribeiro DA, Ferraz LFC, Vicentini R, Ottoboni LMM. Gene expression modulation by heat stress in Acidithiobacillus ferrooxidans LR. Antonie van Leeuwenhoek 2011; 101:583-93. [PMID: 22086463 DOI: 10.1007/s10482-011-9673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/03/2011] [Indexed: 11/27/2022]
Abstract
During bioleaching, Acidithiobacillus ferrooxidans is subjected to different types of stress, including heat stress, which affect bacterial growth. In this work, real time quantitative PCR was used to analyze the expression of heat shock genes, as well as genes that encode proteins related to several functional categories in A. ferrooxidans. Cells were submitted to long-term growth and heat shock, both at 40°C. The results showed that heat shock affected the expression levels of most genes investigated, whilst long-term growth at 40°C resulted in minor changes in gene expression, except for certain genes related to iron transport, which were strongly down-regulated, suggesting that the iron processing capability of A. ferrooxidans was affected by long-term growth at 40°C. A bioinformatic analysis of the genes' promoter regions indicated a putative transcriptional regulation by the σ(32) factor in 12 of the 31 genes investigated, suggesting the involvement of other regulatory mechanisms in the response of A. ferrooxidans to heat stress.
Collapse
Affiliation(s)
- Daniela A Ribeiro
- Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
27
|
Kucera J, Bouchal P, Cerna H, Potesil D, Janiczek O, Zdrahal Z, Mandl M. Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. Antonie van Leeuwenhoek 2011; 101:561-73. [PMID: 22057833 DOI: 10.1007/s10482-011-9670-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/27/2011] [Indexed: 11/25/2022]
Abstract
Elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans was investigated. The apparent Michaelis constant for ferric iron was 18.6 mM. An absence of anaerobic ferric iron reduction ability was observed in bacteria maintained on elemental sulfur for an extended period of time. Upon transition from ferrous iron to elemental sulfur medium, the cells exhibited similar kinetic characteristics of ferric iron reduction under anaerobic conditions to those of cells that were originally maintained on ferrous iron. Nevertheless, a total loss of anaerobic ferric iron reduction ability after the sixth passage in elemental sulfur medium was demonstrated. The first proteomic screening of total cell lysates of anaerobically incubated bacteria resulted in the detection of 1599 protein spots in the master two-dimensional electrophoresis gel. A set of 59 more abundant and 49 less abundant protein spots that changed their protein abundances in an anaerobiosis-dependent manner was identified and compared to iron- and sulfur-grown cells, respectively. Proteomic analysis detected a significant increase in abundance under anoxic conditions of electron transporters, such as rusticyanin and cytochrome c(552), involved in the ferrous iron oxidation pathway. Therefore we suggest the incorporation of rus-operon encoded proteins in the anaerobic respiration pathway. Two sulfur metabolism proteins were identified, pyridine nucleotide-disulfide oxidoreductase and sulfide-quinone reductase. The important transcription regulator, ferric uptake regulation protein, was anaerobically more abundant. The anaerobic expression of several proteins involved in cell envelope formation indicated a gradual adaptation to elemental sulfur oxidation.
Collapse
Affiliation(s)
- Jiri Kucera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|