1
|
Pradhan A, Yadav SK, Jha G. Glycosyltransferase-Like Toxin of Burkholderia gladioli Strain NGJ1 Is a Potent Antifungal Protein with Potential for Control of Sheath Blight Disease in Rice. PHYTOPATHOLOGY 2025; 115:485-494. [PMID: 39913896 DOI: 10.1094/phyto-12-24-0383-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Sheath blight disease caused by the fungal pathogen Rhizoctonia solani poses a significant challenge for sustainable rice cultivation. It is important to develop environmentally friendly measures for its control. Previously, a rice-associated Burkholderia gladioli strain NGJ1 was shown to exhibit mycophagous and antifungal activity on R. solani. Here, we report that a B. gladioli glycosyltransferase-like 1 (BGT1) protein with a canonical D×D (aspartic acid × aspartic acid) motif that is homologous to the glycosyltransferase toxin of different bacteria is encoded in the antibacterial type VI secretion system-encoding gene cluster of NGJ1. The recombinant BGT1 protein purified from Escherichia coli exhibits antifungal activity on R. solani, Magnaporthe oryzae, Fusarium oxysporum, Saccharomyces cerevisiae, and Candida albicans under laboratory conditions. Using a variant of the BGT1 protein (BGT1D168L/D170L), we demonstrate that the D×D motif is important for its antifungal activity. The heterologous expression of native BGT1 but not the BGT1D168L/D170L protein prevents the growth of yeast cells. Moreover, treatment with BGT1 but not BGT1D168L/D170L significantly reduces sheath blight disease severity in rice. BGT1 treatment does not elicit adverse effects on plants. In conclusion, we emphasize that BGT1 protein-based or transgene-based biotechnological interventions can be exploited for effective control of sheath blight disease in rice.
Collapse
Affiliation(s)
- Amrita Pradhan
- BRIC-National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sunil K Yadav
- BRIC-National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gopaljee Jha
- BRIC-National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
2
|
Aonofriesei F. Surfactants' Interplay with Biofilm Development in Staphylococcus and Candida. Pharmaceutics 2024; 16:657. [PMID: 38794319 PMCID: PMC11125353 DOI: 10.3390/pharmaceutics16050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The capacity of micro-organisms to form biofilms is a pervasive trait in the microbial realm. For pathogens, biofilm formation serves as a virulence factor facilitating successful host colonization. Simultaneously, infections stemming from biofilm-forming micro-organisms pose significant treatment challenges due to their heightened resistance to antimicrobial agents. Hence, the quest for active compounds capable of impeding microbial biofilm development stands as a pivotal pursuit in biomedical research. This study presents findings concerning the impact of three surfactants, namely, polysorbate 20 (T20), polysorbate 80 (T80), and sodium dodecyl sulfate (SDS), on the initial stage of biofilm development in both Staphylococcus aureus and Candida dubliniensis. In contrast to previous investigations, we conducted a comparative assessment of the biofilm development capacity of these two taxonomically distant groups, predicated on their shared ability to reduce TTC. The common metabolic trait shared by S. aureus and C. dubliniensis in reducing TTC to formazan facilitated a simultaneous evaluation of biofilm development under the influence of surfactants across both groups. Our results revealed that surfactants could impede the development of biofilms in both species by disrupting the initial cell attachment step. The observed effect was contingent upon the concentration and type of compound, with a higher inhibition observed in culture media supplemented with SDS. At maximum concentrations (5%), T20 and T80 significantly curtailed the formation and viability of S. aureus and C. dubliniensis biofilms. Specifically, T20 inhibited biofilm development by 75.36% in S. aureus and 71.18% in C. dubliniensis, while T80 exhibited a slightly lower inhibitory effect, with values ranging between 66.68% (C. dubliniensis) and 65.54% (S. aureus) compared to the controls. Incorporating these two non-toxic surfactants into pharmaceutical formulations could potentially enhance the inhibitory efficacy of selected antimicrobial agents, particularly in external topical applications.
Collapse
Affiliation(s)
- Florin Aonofriesei
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanta, 1, University Street, 900470 Constanța, Romania
| |
Collapse
|
3
|
Das J, Kumar R, Yadav SK, Jha G. Nicotinic Acid Catabolism Modulates Bacterial Mycophagy in Burkholderia gladioli Strain NGJ1. Microbiol Spectr 2023; 11:e0445722. [PMID: 37014254 PMCID: PMC10269826 DOI: 10.1128/spectrum.04457-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
Burkholderia gladioli strain NGJ1 exhibits mycophagous activity on a broad range of fungi, including Rhizoctonia solani, a devastating plant pathogen. Here, we demonstrate that the nicotinic acid (NA) catabolic pathway in NGJ1 is required for mycophagy. NGJ1 is auxotrophic to NA and it potentially senses R. solani as a NA source. Mutation in the nicC and nicX genes involved in NA catabolism renders defects in mycophagy and the mutant bacteria are unable to utilize R. solani extract as the sole nutrient source. As supplementation of NA, but not FA (fumaric acid, the end product of NA catabolism) restores the mycophagous ability of ΔnicC/ΔnicX mutants, we anticipate that NA is not required as a carbon source for the bacterium during mycophagy. Notably, nicR, a MarR-type of transcriptional regulator that functions as a negative regulator of the NA catabolic pathway is upregulated in ΔnicC/ΔnicX mutant and upon NA supplementation the nicR expression is reduced to the basal level in both the mutants. The ΔnicR mutant produces excessive biofilm and is completely defective in swimming motility. On the other hand, ΔnicC/ΔnicX mutants are compromised in swimming motility as well as biofilm formation, potentially due to the upregulation of nicR. Our data suggest that a defect in NA catabolism alters the NA pool in the bacterium and upregulates nicR which in turn suppresses bacterial motility as well as biofilm formation, leading to mycophagy defects. IMPORTANCE Mycophagy is an important trait through which certain bacteria forage over fungal mycelia and utilize fungal biomass as a nutrient source to thrive in hostile environments. The present study emphasizes that nicotinic acid (NA) is important for bacterial motility and biofilm formation during mycophagy by Burkholderia gladioli strain NGJ1. Defects in NA catabolism potentially alter the cellular NA pool, upregulate the expression of nicR, a negative regulator of biofilm, and therefore suppress bacterial motility as well as biofilm formation, leading to mycophagy defects.
Collapse
Affiliation(s)
- Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
4
|
Turhan EA, Akbaba S, Tezcaner A, Evis Z. Boron nitride nanofiber/Zn-doped hydroxyapatite/polycaprolactone scaffolds for bone tissue engineering applications. BIOMATERIALS ADVANCES 2023; 148:213382. [PMID: 36963343 DOI: 10.1016/j.bioadv.2023.213382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
In this study, Zn doped hydroxyapatite (Zn HA)/boron nitride nanofiber (BNNF)/poly-ε-caprolactone (PCL) composite aligned fibrous scaffolds are produced with rotary jet spinning (RJS) for bone tissue engineering applications. It is hypothesized that addition of Zn HA and BNNF will contribute to cell viability as well as mechanical and osteogenic properties of the PCL scaffolds. Zn HA was synthesized by mixing Ca and P sources followed by sonication and aging whereas BNNF was obtained by the reaction of melamine with boric acid followed by freeze-drying for annealing of fibers. It is found that incorporation of both Zn HA and BNNF in PCL fibers resulted in higher calcium phosphate (CaP) precipitation on the scaffolds. Also, in vitro cell culture studies showed that presence of both Zn HA and BNNF also had synergistic effect for enhanced proliferation and osteogenic activity of Saos-2 cells. Mechanical properties of PCL-Zn HA-BNNF were found similar to that of non-load bearing bones. Furthermore, the presence of Zn HA and BNNF had synergistic effects to cell attachment, proliferation and spreading without causing cytotoxic effect on cells. The highest ALP activity was obtained in the PCL-Zn HA- BNNF group at days 7 and 14 due to release of zinc, calcium, phosphate and boron. Considering its mechanical and bioactivity properties, PCL-Zn HA-BNNF composite scaffolds hold promise as non-load bearing bone substitutes.
Collapse
Affiliation(s)
- Emine Ayşe Turhan
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Sema Akbaba
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Boron Research Institute, Turkish Energy Nuclear and Mineral Research Agency, Ankara 06520, Turkey
| | - Ayşen Tezcaner
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Zafer Evis
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey.
| |
Collapse
|
5
|
Martínez-Servat S, Pinyol-Escala L, Daura-Pich O, Almazán M, Hernández I, López-García B, Fernández C. Characterization of Lysobacter enzymogenes B25, a potential biological control agent of plant-parasitic nematodes, and its mode of action. AIMS Microbiol 2023; 9:151-176. [PMID: 36891531 PMCID: PMC9988411 DOI: 10.3934/microbiol.2023010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
It is certainly difficult to estimate productivity losses due to the action of phytopathogenic nematodes but it might be about 12 % of world agricultural production. Although there are numerous tools to reduce the effect of these nematodes, there is growing concern about their environmental impact. Lysobacter enzymogenes B25 is an effective biological control agent against plant-parasitic nematodes, showing control over root-knot nematodes (RKN) such as Meloidogyne incognita and Meloidogyne javanica. In this paper, the efficacy of B25 to control RKN infestation in tomato plants (Solanum lycopersicum cv. Durinta) is described. The bacterium was applied 4 times at an average of concentration around 108 CFU/mL showing an efficacy of 50-95 % depending on the population and the pressure of the pathogen. Furthermore, the control activity of B25 was comparable to that of the reference chemical used. L. enzymogenes B25 is hereby characterized, and its mode of action studied, focusing on different mechanisms that include motility, the production of lytic enzymes and secondary metabolites and the induction of plant defenses. The presence of M. incognita increased the twitching motility of B25. In addition, cell-free supernatants obtained after growing B25, in both poor and rich media, showed efficacy in inhibiting RKN egg hatching in vitro. This nematicidal activity was sensitive to high temperatures, suggesting that it is mainly due to extracellular lytic enzymes. The secondary metabolites heat-stable antifungal factor and alteramide A/B were identified in the culture filtrate and their contribution to the nematicidal activity of B25 is discussed. This study points out L. enzymogenes B25 as a promising biocontrol microorganism against nematode infestation of plants and a good candidate to develop a sustainable nematicidal product.
Collapse
Affiliation(s)
| | | | | | - Marta Almazán
- Futureco Bioscience, S.A, Olèrdola, Barcelona, Spain
| | | | | | | |
Collapse
|
6
|
Proteomic analysis of antifungal mechanism of star anise essential oil against Aspergillus niger and its application potential in prolonging bread shelf life. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Wu Y, Cheng JH, Sun DW. Subcellular damages of Colletotrichum asianum and inhibition of mango anthracnose by dielectric barrier discharge plasma. Food Chem 2022; 381:132197. [PMID: 35121319 DOI: 10.1016/j.foodchem.2022.132197] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022]
Abstract
Colletotrichum asianum (C. asianum) is a new pathogenic fungus that causes mango anthracnose. Cold plasma is a novel non-thermal decontamination technology, which has been proven to be effective in controlling postharvest fungus. Herein, dielectric barrier discharge (DBD) plasma was used to treat C. asianum spores in sterile phosphate-buffered saline, the damages in subcellular structures of C. asianum and inhibition of mango anthracnose were evaluated. Results showed that after 9 min treatment, the spore germination rate and spore viability were decreased by 95.48% and 98.82%, respectively, and the subcellular structures were damaged (P < 0.05), leading to spores death. Besides, DBD plasma treatments could control mango anthracnose and maintain mango quality, and the disease incidence and lesion diameter of mango treated for 9 min were decreased by 48.00% and 62.95%, respectively. Therefore DBD plasma inactivated C. asianum spore, providing an alternative technique for preventing and controlling mango anthracnose.
Collapse
Affiliation(s)
- Yue Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Gajera HP, Hirpara DG, Bhadani RV, Golakiya BA. Green synthesis and characterization of nanosilver derived from extracellular metabolites of potent Bacillus subtilis for antifungal and eco-friendly action against phytopathogen. Biometals 2022; 35:479-497. [PMID: 35332436 DOI: 10.1007/s10534-022-00382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
The potent antagonist Bacillus isolated from the soil rhizosphere elucidated the highest antagonism against the phytopathogen Fusarium oxysporum f. sp. cumini and was identified as Bacillus subtilis strain JSD-RSCu-8D based on molecular recognition by 16S rRNA sequencing (NCBI Accession No. KT894724). Live Bacillus may not work as effectively against phytopathogen under unfavorable environmental conditions like temperature, humidity, or other abiotic stresses. The extracellular metabolites, obtained from culturing potent B. subtilis, were exploited for the creation of green nanosilver for proficient actions in a changing climate. The synthesized green nanosilver was illustrated for shape (spherical with 65.21 ± 3.71 nm under SEM), size (70.9 nm in PSA), purity (2.69 keV peak corresponded to the binding energy of silver under EDAX), and stability (44.2 mV as ZETA). The formation of green Ag-NPs from extracellular metabolites was confirmed by a comparative appraisal of the electromagnetic peak of the metabolite's functional groups, silver nitrate, and green nanoparticles in Fourier transform infrared spectroscopy. The novel mode of action of pathogen mycelium degradation was elucidated by the minimum inhibitory concentration (MIC) of green nanosilver as 40 µg Ag ml-1 to diminish F. oxysporum (SEM morphology). The green nanosilver at 2 DAI renowned the leakage of sugars from mycelia of the cell membrane and defeated the activity of respiratory chain dehydrogenases, followed by lipid peroxidation and the highest leakage of proteins at 3 DAI on MIC. The in-vivo study might allow for novel insight to utilize green nanosilver at MIC (40 µg Ag ml-1) as an eco-friendly and fungicide alternate way for antifungal action to demolish Fusarium wilt infection under harsh conditions.
Collapse
Affiliation(s)
- H P Gajera
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, 362001, India.
| | - Darshna G Hirpara
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, 362001, India
| | - Rushita V Bhadani
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, 362001, India
| | - B A Golakiya
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, 362001, India
| |
Collapse
|
9
|
Das J, Kumar R, Yadav SK, Jha G. The alternative sigma factors, rpoN1 and rpoN2 are required for mycophagous activity of Burkholderia gladioli strain NGJ1. Environ Microbiol 2021; 24:2781-2796. [PMID: 34766435 DOI: 10.1111/1462-2920.15836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Abstract
Bacteria utilize RpoN, an alternative sigma factor (σ54) to grow in diverse habitats, including nitrogen-limiting conditions. Here, we report that a rice-associated mycophagous bacterium Burkholderia gladioli strain NGJ1 encodes two paralogues of rpoN viz. rpoN1 and rpoN2. Both of them are upregulated during 24 h of mycophagous interaction with Rhizoctonia solani, a polyphagous fungal pathogen. Disruption of either one of rpoNs renders the mutant NGJ1 bacterium defective in mycophagy, whereas ectopic expression of respective rpoN genes restores mycophagy in the complementing strains. NGJ1 requires rpoN1 and rpoN2 for efficient biocontrol to prevent R. solani to establish disease in rice and tomato. Further, we have identified 17 genes having RpoN regulatory motif in NGJ1, majority of them encode potential type III secretion system (T3SS) effectors, nitrogen assimilation, and cellular transport-related functions. Several of these RpoN regulated genes as well as certain previously reported T3SS apparatus (hrcC and hrcN) and effector (Bg_9562 and endo-β-1,3-glucanase) encoding genes are upregulated in NGJ1 but not in ΔrpoN1 or ΔrpoN2 mutant bacterium, during mycophagous interaction with R. solani. This highlights that RpoN1 and RpoN2 modulate T3SS, nitrogen assimilation as well as cellular transport systems in NGJ1 and thereby promote bacterial mycophagy.
Collapse
Affiliation(s)
- Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| |
Collapse
|
10
|
Wurster S, Sass G, Albert ND, Nazik H, Déziel E, Stevens DA, Kontoyiannis DP. Live imaging and quantitative analysis of Aspergillus fumigatus growth and morphology during inter-microbial interaction with Pseudomonas aeruginosa. Virulence 2021; 11:1329-1336. [PMID: 33017225 PMCID: PMC7549912 DOI: 10.1080/21505594.2020.1827885] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa (PA) and Aspergillus fumigatus (AF) chronically colonize the airways of patients with cystic fibrosis or chronic immunosuppression and mutually affect each other’s pathogenesis. Here, we evaluated IncuCyte time-lapse imaging and NeuroTrackTM (NT) analysis (Wurster et al., 2019, mBio) as a toolbox to study mycelial expansion and morphogenesis of AF during interaction with PA. Co-incubation of AF with supernatant filtrates of wild-type (WT) PA strains strongly inhibited hyphal growth and branching. Consonant with prior metabolic studies, pyoverdine-deficient PA mutants had significantly attenuated inhibitory capacity. Accordingly, purified PA products pyoverdine and pyocyanin suppressed mycelial expansion of AF in a concentration-dependent way. Using fluorescence-guided tracking of GFP-AF293 mycelia during co-culture with live WT PA cells, we found significant inoculum-dependent mycelial growth inhibition and robust precision of the NT algorithm. Collectively, our experiments position IncuCyte NT as an efficient platform for longitudinal analysis of fungal growth and morphogenesis during bacterial co-infection.
Collapse
Affiliation(s)
- Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Gabriele Sass
- California Institute for Medical Research , San Jose, CA, USA
| | - Nathaniel D Albert
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Hasan Nazik
- California Institute for Medical Research , San Jose, CA, USA
| | - Eric Déziel
- INRS-Centre Armand-Frappier Santé Biotechnologie , Laval, Quebec, Canada
| | - David A Stevens
- California Institute for Medical Research , San Jose, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, CA, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
11
|
Chlorogenic acid induces ROS-dependent apoptosis in Fusarium fujikuroi and decreases the postharvest rot of cherry tomato. World J Microbiol Biotechnol 2021; 37:93. [PMID: 33948741 DOI: 10.1007/s11274-021-03062-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Chlorogenic acid is a plant polyphenol with antioxidant and antimicrobial activities. Fusarium fujikuroi is a fungal pathogen that causes many vegetables and fruits, including tomato, to rot. The effects of chlorogenic acid on the development of Fusarium rot of cherry tomato fruit were examined in the present study. Results showed that conidial germination, germ tube elongation, cell viability, and mycelial growth of F. fujikuroi were all significantly inhibited by chlorogenic acid. Chlorogenic acid stimulated the accumulation of reactive oxygen species (ROS), leading to cell apoptosis in F. fujikuroi. The addition of N-acetylcysteine partially recovered the mycelial growth, implying the antifungal activity of chlorogenic acid is related to a ROS burst. The application of chlorogenic acid decreased disease incidence and severity in cherry tomato fruit in a concentration-dependent manner. Taken together, these results suggest that chlorogenic acid inhibits the postharvest rot of cherry tomato fruit caused by F. fujikuroi by inducing cellular oxidative stress in the pathogen.
Collapse
|
12
|
Zdarta A, Smułek W, Pacholak A, Dudzińska-Bajorek B, Kaczorek E. Surfactant addition in diesel oil degradation - how can it help the microbes? JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:677-686. [PMID: 33312593 PMCID: PMC7721782 DOI: 10.1007/s40201-020-00494-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/08/2020] [Indexed: 05/07/2023]
Abstract
PURPOSE Despite wide research on bioremediation of hydrocarbon-contaminated soil, the mechanisms of surfactant-enhanced bioavailability of the contaminants are still unclear. The presented study was focused on the in-depth description of relationships between hydrocarbons, bacteria, and surfactants. In order to that, the biodegradation experiments and cell viability measurements were conducted, and the properties of cell surface were characterized. METHODS MTT assay was employed to measure plant extracts toxicity to microbes. Then, membrane permeability changes were evaluated, followed by diesel oil biodegradation in the presence of surfactants measurements by GCxGC-TOFMS and PCR-RAPD analysis. RESULTS Our study undoubtedly proves that different surfactants promote assimilation of different groups of hydrocarbons and modify cell surface properties in different ways. Increased biodegradation of diesel oil was observed when cultures with Acinetobacter calcoaceticus M1B were supplemented with Saponaria officinalis and Verbascum nigrum extracts. Interestingly, these surfactants exhibit different influences on cell surface properties and their viability in contrast to the other surfactants. Moreover, the preliminary analyses have shown changes in the genome caused by exposure to surfactants. CONCLUSIONS The results indicated that the benefits of surfactant use may be related to deep modification at the omics level, not only that of cell surface properties and confirms the complexity of the interactions between bacterial cells, pollutants and surfactants.
Collapse
Affiliation(s)
- Agata Zdarta
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | | | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
13
|
Effect of chlorogenic acid on controlling kiwifruit postharvest decay caused by Diaporthe sp. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Hirpara DG, Gajera H. Green synthesis and antifungal mechanism of silver nanoparticles derived from chitin‐ induced exometabolites ofTrichodermainterfusant. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5407] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Darshna G. Hirpara
- Department of Biotechnology, College of AgricultureJunagadh Agricultural University Junagadh Gujarat 362 001 India
| | - H.P. Gajera
- Department of Biotechnology, College of AgricultureJunagadh Agricultural University Junagadh Gujarat 362 001 India
| |
Collapse
|
15
|
Hua C, Kai K, Bi W, Shi W, Liu Y, Zhang D. Curcumin Induces Oxidative Stress in Botrytis cinerea, Resulting in a Reduction in Gray Mold Decay in Kiwifruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7968-7976. [PMID: 31062982 DOI: 10.1021/acs.jafc.9b00539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Curcumin exhibits efficient antimicrobial activity; nevertheless, its effect on the postharvest decay of fruit has not been examined. Here, effects of curcumin on the fruit gray mold of kiwifruit infected by Botrytis cinerea were analyzed. Results demonstrated that curcumin induced reactive oxygen species (ROS) production and triggered apoptosis in B. cinerea hyphae. Use of N-acetylcysteine, a ROS scavenger, partially ameliorated the inhibition of curcumin on B. cinerea. The NADPH oxidase inhibitor, diphenyleneiodonium chlorine, abrogated the ROS production induced by curcumin, suggesting that curcumin induces oxidative stress in B. cinerea via a NADPH-oxidase-dependent mechanism. Disease severity of gray mold in curcumin-treated kiwifruit was significantly reduced. The malondialdehyde content decreased while the antioxidant enzyme activity increased in kiwifruit with the application of increasing concentrations of curcumin. Collectively, these results indicate that curcumin can be used to control gray mold and elevate antioxidant activity in kiwifruit.
Collapse
Affiliation(s)
- Chenyan Hua
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , People's Republic of China
| | - Kai Kai
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , People's Republic of China
| | - Wanling Bi
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , People's Republic of China
| | - Wei Shi
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , People's Republic of China
| | - Yongsheng Liu
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , People's Republic of China
| | - Danfeng Zhang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , People's Republic of China
| |
Collapse
|
16
|
Al-Jwaid AK, Berillo D, Savina IN, Cundy AB, Caplin JL. One-step formation of three-dimensional macroporous bacterial sponges as a novel approach for the preparation of bioreactors for bioremediation and green treatment of water. RSC Adv 2018; 8:30813-30824. [PMID: 35548719 PMCID: PMC9085471 DOI: 10.1039/c8ra04219e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/14/2018] [Indexed: 11/21/2022] Open
Abstract
Immobilisation of bacteria on or into a polymer support is a common method for the utilisation of bacteria as biocatalysts for many biotechnological, medical and environmental applications. The main challenge in this approach is the time taken for the formation of stable biofilms, and the typically low percentage of bacterial cells present on or in the polymer matrix. In this work we propose a novel method for producing a porous bacteria based structure with the properties of a sponge (bacterial sponge) that we then use as a bioreactor for water treatment. Cryogelation has been used as a tool to create macroporous (i.e. with pores in the range 10-100 μm), highly permeable systems with low diffusion constraints and high bacterial content (more than 98% to total material content). A novel crosslinking system was used to form stable bacterial sponges with a high percentage of live bacteria organized in a 3D porous structure. The bacterial sponge was produced in a one step process and can be made from one or several bacterial strains (in this case, two bacterial strains Pseudomonas mendocina and Rhodoccocus koreensis (and a mixture of both) were used). Reduction of the total polymer content to 2% makes the system more sustainable and environmentally friendly under disposal as it can be simply composted. The bacterial sponges have good mechanical stability and cell viability, which enables repeated use of the materials for phenol degradation for up to five weeks. The material can be stored and transported in cryogenic conditions (-80 °C) for prolonged periods of time, retaining its bioremediation activity following 4-6 weeks of frozen storage. The proposed method of producing bioreactors with a high number of live immobilised bacteria, low polymer content and controlled 3D structure is a promising tool for developing novel materials based on active bacterial cells for various environmental, biotechnological, biological and medical applications.
Collapse
Affiliation(s)
- Areej K Al-Jwaid
- School of Environment and Technology, University of Brighton Brighton UK
- Engineering Technical College/Basrah, Southern Technical University Basrah Iraq
| | - Dmitriy Berillo
- School of Pharmacy and Biomolecular Sciences, University of Brighton Brighton UK
| | - Irina N Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton Brighton UK
| | - Andrew B Cundy
- School of Ocean and Earth Science, University of Southampton Southampton UK
| | - Jonathan L Caplin
- School of Environment and Technology, University of Brighton Brighton UK
| |
Collapse
|
17
|
Leylaie S, Zafari D. Antiproliferative and Antimicrobial Activities of Secondary Metabolites and Phylogenetic Study of Endophytic Trichoderma Species From Vinca Plants. Front Microbiol 2018; 9:1484. [PMID: 30050508 PMCID: PMC6051055 DOI: 10.3389/fmicb.2018.01484] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 06/14/2018] [Indexed: 01/30/2023] Open
Abstract
Endophytic fungi have been recognized as a potential source of bioactive secondary metabolites. The endophytic Trichoderma species were isolated from Vinca plants (Vinca major, Vinca herbacea, and Vinca minor), found in Iran and screened for antimicrobial and anti-proliferative activity. Based on morphological and phylogenetic analyses, four fungal species were identified: T. asperellum, T. brevicompactum, T. koningiopsis, and T. longibrachiatum. In addition, endophytic fungi bioactivity of methanol and ethyl acetate extracts (7.8–250 μgml−1) were assessed against a panel of pathogenic fungi and bacteria and IC80 was calculated. Data showed that both methanol and ethyl acetate extracts from all endophytic isolates had significant cytotoxic effects against the model target fungus Pyricularia oryzae. Further research indicated that they had significant antimicrobial bioactivity against the human pathogenic bacteria Staphylococcus aureus and Escherichia coli, and plant pathogenic bacteria Ralstonia solanacearum and Clavibacter michiganensis as well. According to the bioactivity results, crude ethyl acetate extract of T. koningiopsis VM115 isolate was determined for TLC and GC-MS analysis. An antifungal compound was isolated from ethyl acetate extract of T. koningiopsis VM115 based on bioassay guided fractionation. The 1H-NMR and 13C-NMR spectroscopic data showed that the compound was trichodermin, which exhibited strong fungicidal effects against P. oryzae, Aspergillus fumigatus, and Botrytis cinera with MICs of 31.25 μg ml−1 through in vitro antifungal tests. GC-MS analysis identified six classes of volatile compound produced by T. koningiopsis VM115 (alcohols, esters, pyrones (lactones), acids, furanes and lipids). 6-n-pentyl-6H-pyran-2-one (6PP) was identified as one of the most abundant metabolites in this research. These results indicate that the fungal endophytes from Vinca plants had antibacterial and cytotoxic activities; evidence that endophytes are a good source of biological activity and compounds. This work is the first report of Trichodermin production by T. koningiopsis species.
Collapse
Affiliation(s)
- Sahar Leylaie
- Department of Plant protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Doustmorad Zafari
- Department of Plant protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
18
|
Wang R, Xu H, Zhao Y, Zhang J, Yuen GY, Qian G, Liu F. Lsp family proteins regulate antibiotic biosynthesis in Lysobacter enzymogenes OH11. AMB Express 2017; 7:123. [PMID: 28618714 PMCID: PMC5469723 DOI: 10.1186/s13568-017-0421-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Ax21 family proteins have been shown to play regulatory roles in plant- and animal-pathogenic species in the bacterial family Xanthomonadaceae, but the protein have not been investigated previously in the non-pathogenic members of this bacterial family. Lysobacter enzymogenes, is a non-pathogenic species known for its capacity as a biocontrol agent of plant pathogens. It is also noted for the production of antimicrobial secondary metabolites, heat stable antifungal factor (HSAF) and WAP-8294A2, that have potential for agricultural and pharmaceutical applications. The species also displays type IV pili-dependent twitching motility and the production of multiple extracellular lytic enzymes as additional biocontrol-related traits. Here, we show that L. enzymogenes strain OH11 possesses three genes widely separated in the OH11 genome that code for unique Ax21-like proteins (Lsp). By comparing the wildtype OH11 with mutant strains having a single lsp gene or a combination of lsp genes deleted, we found that each Lsp protein individually is involved in positive regulation of HSAF and WAP-8294A2 biosynthesis, but the proteins collectively do not exert additive effects in this regulation. None of the Lsp proteins were found to influence twitching motility or the production of three extracellular lytic enzymes. This study is the first to provide evidence linking Ax21-family proteins to antibiotic biosynthesis and, hence, adds new insights into the diversity of regulatory functions of Ax21 family proteins in bacteria.
Collapse
|
19
|
Singh A, Kumari P, Raghuvanshi A, Mobin SM, Mathur P. Ferrocene‐substituted bis(ethynyl)anthracene compounds as anticancer agents. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ajeet Singh
- Discipline of Chemistry, School of Basic SciencesIndian Institute of Technology Indore Simrol 453552 India
| | - Pratibha Kumari
- Centre for Biosciences and Biomedical EngineeringIndian Institute of Technology Indore Simrol 453552 India
| | - Abhinav Raghuvanshi
- Discipline of Chemistry, School of Basic SciencesIndian Institute of Technology Indore Simrol 453552 India
| | - Shaikh M. Mobin
- Discipline of Chemistry, School of Basic SciencesIndian Institute of Technology Indore Simrol 453552 India
- Centre for Biosciences and Biomedical EngineeringIndian Institute of Technology Indore Simrol 453552 India
- Discipline of Metallurgical Engineering and Materials ScienceIndian Institute of Technology Indore Simrol 453552 India
| | - Pradeep Mathur
- Discipline of Chemistry, School of Basic SciencesIndian Institute of Technology Indore Simrol 453552 India
| |
Collapse
|
20
|
Use of predictive model to describe sporicidal and cell viability efficacy of betel leaf (Piper betle L.) essential oil on Aspergillus flavus and Penicillium expansum and its antifungal activity in raw apple juice. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
de Bruijn I, Cheng X, de Jager V, Expósito RG, Watrous J, Patel N, Postma J, Dorrestein PC, Kobayashi D, Raaijmakers JM. Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genomics 2015; 16:991. [PMID: 26597042 PMCID: PMC4657364 DOI: 10.1186/s12864-015-2191-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022] Open
Abstract
Background Lysobacter species are Gram-negative bacteria widely distributed in soil, plant and freshwater habitats. Lysobacter owes its name to the lytic effects on other microorganisms. To better understand their ecology and interactions with other (micro)organisms, five Lysobacter strains representing the four species L. enzymogenes, L. capsici, L. gummosus and L. antibioticus were subjected to genomics and metabolomics analyses. Results Comparative genomics revealed a diverse genome content among the Lysobacter species with a core genome of 2,891 and a pangenome of 10,028 coding sequences. Genes encoding type I, II, III, IV, V secretion systems and type IV pili were highly conserved in all five genomes, whereas type VI secretion systems were only found in L. enzymogenes and L. gummosus. Genes encoding components of the flagellar apparatus were absent in the two sequenced L. antibioticus strains. The genomes contained a large number of genes encoding extracellular enzymes including chitinases, glucanases and peptidases. Various nonribosomal peptide synthase (NRPS) and polyketide synthase (PKS) gene clusters encoding putative bioactive metabolites were identified but only few of these clusters were shared between the different species. Metabolic profiling by imaging mass spectrometry complemented, in part, the in silico genome analyses and allowed visualisation of the spatial distribution patterns of several secondary metabolites produced by or induced in Lysobacter species during interactions with the soil-borne fungus Rhizoctonia solani. Conclusions Our work shows that mining the genomes of Lysobacter species in combination with metabolic profiling provides novel insights into the genomic and metabolic potential of this widely distributed but understudied and versatile bacterial genus. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2191-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands. .,Wageningen University and Research Centre, Laboratory of Phytopathology, P.O. Box 8025, Wageningen, 6700 EE, The Netherlands.
| | - Xu Cheng
- Wageningen University and Research Centre, Laboratory of Phytopathology, P.O. Box 8025, Wageningen, 6700 EE, The Netherlands.
| | - Victor de Jager
- Department of Microbial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands.
| | - Ruth Gómez Expósito
- Department of Microbial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands. .,Wageningen University and Research Centre, Laboratory of Phytopathology, P.O. Box 8025, Wageningen, 6700 EE, The Netherlands.
| | - Jeramie Watrous
- Departments of Pharmacology, Chemistry and Biochemistry; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, San Diego, USA.
| | - Nrupali Patel
- Department of Plant Biology & Pathology, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901-8520, USA.
| | - Joeke Postma
- Wageningen University and Research Centre, Plant Research International, PO Box 16, Wageningen, 6700 AA, The Netherlands.
| | - Pieter C Dorrestein
- Departments of Pharmacology, Chemistry and Biochemistry; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, San Diego, USA.
| | - Donald Kobayashi
- Department of Plant Biology & Pathology, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901-8520, USA.
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands.
| |
Collapse
|
22
|
Zhou X, Qian G, Chen Y, Du L, Liu F, Yuen GY. PilG is Involved in the Regulation of Twitching Motility and Antifungal Antibiotic Biosynthesis in the Biological Control Agent Lysobacter enzymogenes. PHYTOPATHOLOGY 2015; 105:1318-1324. [PMID: 26360465 DOI: 10.1094/phyto-12-14-0361-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lysobacter enzymogenes strain C3 is a gliding bacterium which produces the antifungal secondary metabolite heat-stable antifungal factor (HSAF) and type IV pilus (T4P) as important mechanisms in biological control activity against fungal pathogens. To date, the regulators that control HSAF biosynthesis and T4P-dependent twitching motility in L. enzymogenes are poorly explored. In the present study, we addressed the role of pilG in the regulation of these two traits in L. enzymogenes. PilG of L. enzymogenes was found to be a response regulator, commonly known as a component of a two-component transduction system. Mutation of pilG in strain C3 abolished its ability to display spreading colony phenotype and cell movement at the colony margin, which is indicative of twitching motility; hence, PilG positively regulates twitching motility in L. enzymogenes. Mutation of pilG also enhanced HSAF production and the transcription of its key biosynthetic gene hsaf pks/nrps, suggesting that PilG plays a negative regulatory role in HSAF biosynthesis. This finding represents the first demonstration of the regulator PilG having a role in secondary metabolite biosynthesis in bacteria. Collectively, our results suggest that key ecological functions (HSAF production and twitching motility) in L. enzymogenes strain C3 are regulated in opposite directions by the same regulatory protein, PilG.
Collapse
Affiliation(s)
- Xue Zhou
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Guoliang Qian
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Yuan Chen
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Liangcheng Du
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Fengquan Liu
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Gary Y Yuen
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| |
Collapse
|
23
|
Orozco-Mosqueda MDC, Valencia-Cantero E, López-Albarrán P, Martínez-Pacheco M, Velázquez-Becerra C. [Bacterium Arthrobacter agilis UMCV2 and diverse amines inhibit in vitro growth of wood-decay fungi]. Rev Argent Microbiol 2015; 47:219-28. [PMID: 26350556 DOI: 10.1016/j.ram.2015.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022] Open
Abstract
The kingdom Fungi is represented by a large number of organisms, including pathogens that deteriorate the main structural components of wood, such as cellulose, hemicellulose and lignin. The aim of our work was to characterize the antifungal activity in Arthrobacter agilis UMCV2 and diverse amines against wood-decaying fungi. Four fungal organisms (designated as UMTM) were isolated from decaying wood samples obtained from a forest in Cuanajo-Michoacán, México. Two of them showed a clear enzymatic activity of cellulases, xylanases and oxido-reducing enzymes and were identified as Hypocrea (UMTM3 isolate) and Fusarium (UMTM13 isolate). In vitro, the amines showed inhibitory effect against UMTM growth and one of the amines, dimethylhexadecylamine (DMA16), exhibited strong potential as wood preventive treatment, against the attack of decaying fungi.
Collapse
Affiliation(s)
- M Del Carmen Orozco-Mosqueda
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Pablo López-Albarrán
- Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Mauro Martínez-Pacheco
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Crisanto Velázquez-Becerra
- Facultad de Ingeniería en Tecnología de la Madera, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.
| |
Collapse
|
24
|
Mathioni SM, Patel N, Riddick B, Sweigard JA, Czymmek KJ, Caplan JL, Kunjeti SG, Kunjeti S, Raman V, Hillman BI, Kobayashi DY, Donofrio NM. Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes. PLoS One 2013; 8:e76487. [PMID: 24098512 PMCID: PMC3789685 DOI: 10.1371/journal.pone.0076487] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/28/2013] [Indexed: 12/15/2022] Open
Abstract
Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response.
Collapse
Affiliation(s)
- Sandra M. Mathioni
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Nrupali Patel
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Bianca Riddick
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - James A. Sweigard
- DuPont Stine Haskell Research Center, Newark, Delaware, United States of America
| | - Kirk J. Czymmek
- Delaware Biotechnology Institute BioImaging Center, University of Delaware, Newark, Delaware, United States of America
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Jeffrey L. Caplan
- Delaware Biotechnology Institute BioImaging Center, University of Delaware, Newark, Delaware, United States of America
| | - Sridhara G. Kunjeti
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Saritha Kunjeti
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Vidhyavathi Raman
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Bradley I. Hillman
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Donald Y. Kobayashi
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Nicole M. Donofrio
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|