1
|
Zhang H, Li J, Diao M, Li J, Xie N. Production and pharmaceutical research of minor saponins in Panax notoginseng (Sanqi): Current status and future prospects. PHYTOCHEMISTRY 2024; 223:114099. [PMID: 38641143 DOI: 10.1016/j.phytochem.2024.114099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/21/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Panax notoginseng (Burk.) F.H. Chen is a traditional medicinal herb known as Sanqi or Tianqi in Asia and is commonly used worldwide. It is one of the main raw ingredients of Yunnan Baiyao, Fu fang dan shen di wan, and San qi shang yao pian. It is also a source of cardiotonic pill used to treat cardiovascular diseases in China, Korea, and Russia. Approximately 270 Panax notoginseng saponins have been isolated and identified as the major active components. Although the absorption and bioavailability of saponins are predominantly dependent on the gastrointestinal biotransformation capacity of an individual, minor saponins are better absorbed into the bloodstream and act as active substances than major saponins. Notably, minor saponins are absent or are present in minimal quantities under natural conditions. In this review, we focus on the strategies for the enrichment and production of minor saponins in P. notoginseng using physical, chemical, enzyme catalytic, and microbial methods. Moreover, pharmacological studies on minor saponins derived from P. notoginseng over the last decade are discussed. This review serves as a meaningful resource and guide, offering scholarly references for delving deeper into the exploration of the minor saponins in P. notoginseng.
Collapse
Affiliation(s)
- Hui Zhang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, China; National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
| | - Jianxiu Li
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
| | - Mengxue Diao
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, China.
| | - Nengzhong Xie
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China.
| |
Collapse
|
2
|
Wu Z, Dou W, Yang X, Niu T, Han Z, Yang L, Wang R, Wang Z. Novel glycosidase from Paenibacillus lactis 154 hydrolyzing the 28-O-β-D-glucopyranosyl ester bond of oleanane-type saponins. Appl Microbiol Biotechnol 2024; 108:282. [PMID: 38573330 PMCID: PMC10995091 DOI: 10.1007/s00253-024-13109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Oleanane-type ginsenosides are a class of compounds with remarkable pharmacological activities. However, the lack of effective preparation methods for specific rare ginsenosides has hindered the exploration of their pharmacological properties. In this study, a novel glycoside hydrolase PlGH3 was cloned from Paenibacillus lactis 154 and heterologous expressed in Escherichia coli. Sequence analysis revealed that PlGH3 consists of 749 amino acids with a molecular weight of 89.5 kDa, exhibiting the characteristic features of the glycoside hydrolase 3 family. The enzymatic characterization results of PlGH3 showed that the optimal reaction pH and temperature was 8 and 50 °C by using p-nitrophenyl-β-D-glucopyranoside as a substrate, respectively. The Km and kcat values towards ginsenoside Ro were 79.59 ± 3.42 µM and 18.52 s-1, respectively. PlGH3 exhibits a highly specific activity on hydrolyzing the 28-O-β-D-glucopyranosyl ester bond of oleanane-type saponins. The mechanism of hydrolysis specificity was then presumably elucidated through molecular docking. Eventually, four kinds of rare oleanane-type ginsenosides (calenduloside E, pseudoginsenoside RP1, zingibroside R1, and tarasaponin VI) were successfully prepared by biotransforming total saponins extracted from Panax japonicus. This study contributes to understanding the mechanism of enzymatic hydrolysis of the GH3 family and provides a practical route for the preparation of rare oleanane-type ginsenosides through biotransformation. KEY POINTS: • The glucose at C-28 in oleanane-type saponins can be directionally hydrolyzed. • Mechanisms to interpret PlGH3 substrate specificity by molecular docking. • Case of preparation of low-sugar alternative saponins by directed hydrolysis.
Collapse
Affiliation(s)
- Zongzhan Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Wenyu Dou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xiaolin Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Tengfei Niu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Zhuzhen Han
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Rufeng Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
3
|
Yang W, Su Y, Wang R, Zhang H, Jing H, Meng J, Zhang G, Huang L, Guo L, Wang J, Gao W. Microbial production and applications of β-glucosidase-A review. Int J Biol Macromol 2024; 256:127915. [PMID: 37939774 DOI: 10.1016/j.ijbiomac.2023.127915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
β-Glucosidase exists in all areas of living organisms, and microbial β-glucosidase has become the main source of its production because of its unique physicochemical properties and the advantages of high-yield production by fermentation. With the rise of the green circular economy, the production of enzymes through the fermentation of waste as the substrate has become a popular trend. Lignocellulosic biomass is an easily accessible and sustainable feedstock that exists in nature, and the production of biofuels from lignocellulosic biomass requires the involvement of β-glucosidase. This review proposes ways to improve β-glucosidase yield and catalytic efficiency. Optimization of growth conditions and purification strategies of enzymes can increase enzyme yield, and enzyme immobilization, genetic engineering, protein engineering, and whole-cell catalysis provide solutions to enhance the catalytic efficiency and activity of β-glucosidase. Besides, the diversified industrial applications, challenges and prospects of β-glucosidase are also described.
Collapse
Affiliation(s)
- Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Hongyan Jing
- Traditional Chinese Medicine College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Guoqi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs.
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Cui J, Wang Y, Zhou A, He S, Mao Z, Cao T, Wang N, Yuan Y. Cloning, Expression, Purification, and Characterization of a Novel β-Galactosidase/α-L-Arabinopyranosidase from Paenibacillus polymyxa KF-1. Molecules 2023; 28:7464. [PMID: 38005185 PMCID: PMC10673005 DOI: 10.3390/molecules28227464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Glycosidases are essential for the industrial production of functional oligosaccharides and many biotech applications. A novel β-galactosidase/α-L-arabinopyranosidase (PpBGal42A) of the glycoside hydrolase family 42 (GH42) from Paenibacillus polymyxa KF-1 was identified and functionally characterized. Using pNPG as a substrate, the recombinant PpBGal42A (77.16 kD) was shown to have an optimal temperature and pH of 30 °C and 6.0. Using pNPαArap as a substrate, the optimal temperature and pH were 40 °C and 7.0. PpBGal42A has good temperature and pH stability. Furthermore, Na+, K+, Li+, and Ca2+ (5 mmol/L) enhanced the enzymatic activity, whereas Mn2+, Cu2+, Zn2+, and Hg2+ significantly reduced the enzymatic activity. PpBGal42A hydrolyzed pNP-β-D-galactoside and pNP-α-L-arabinopyranoside. PpBGal42A liberated galactose from β-1,3/4/6-galactobiose and galactan. PpBGal42A hydrolyzed arabinopyranose at C20 of ginsenoside Rb2, but could not cleave arabinofuranose at C20 of ginsenoside Rc. Meanwhile, the molecular docking results revealed that PpBGal42A efficiently recognized and catalyzed lactose. PpBGal42A hydrolyzes lactose to galactose and glucose. PpBGal42A exhibits significant degradative activity towards citrus pectin when combined with pectinase. Our findings suggest that PpBGal42A is a novel bifunctional enzyme that is active as a β-galactosidase and α-L-arabinopyranosidase. This study expands on the diversity of bifunctional enzymes and provides a potentially effective tool for the food industry.
Collapse
Affiliation(s)
- Jing Cui
- Institute of Innovation Science & Technology, Central Laboratory, Changchun Normal University, Changchun 130031, China;
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| | - Yibing Wang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| | - Andong Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| | - Shuhui He
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| | - Zihan Mao
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| | - Ting Cao
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| | - Nan Wang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| | - Ye Yuan
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| |
Collapse
|
5
|
Tran TNA, Son JS, Awais M, Ko JH, Yang DC, Jung SK. β-Glucosidase and Its Application in Bioconversion of Ginsenosides in Panax ginseng. Bioengineering (Basel) 2023; 10:bioengineering10040484. [PMID: 37106671 PMCID: PMC10136122 DOI: 10.3390/bioengineering10040484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Ginsenosides are a group of bioactive compounds isolated from Panax ginseng. Conventional major ginsenosides have a long history of use in traditional medicine for both illness prevention and therapy. Bioconversion processes have the potential to create new and valuable products in pharmaceutical and biological activities, making them both critical for research and highly economic to implement. This has led to an increase in the number of studies that use major ginsenosides as a precursor to generate minor ones using β-glucosidase. Minor ginsenosides may also have useful properties but are difficult to isolate from raw ginseng because of their scarcity. Bioconversion processes have the potential to create novel minor ginsenosides from the more abundant major ginsenoside precursors in a cost-effective manner. While numerous bioconversion techniques have been developed, an increasing number of studies have reported that β-glucosidase can effectively and specifically generate minor ginsenosides. This paper summarizes the probable bioconversion mechanisms of two protopanaxadiol (PPD) and protopanaxatriol (PPT) types. Other high-efficiency and high-value bioconversion processes using complete proteins isolated from bacterial biomass or recombinant enzymes are also discussed in this article. This paper also discusses the various conversion and analysis methods and their potential applications. Overall, this paper offers theoretical and technical foundations for future studies that will be both scientifically and economically significant.
Collapse
Affiliation(s)
- Thi Ngoc Anh Tran
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jin-Sung Son
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Muhammad Awais
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seok-Kyu Jung
- Department of Horticulture, Kongju National University, Yesan 32439, Republic of Korea
| |
Collapse
|
6
|
Insights into Recent Studies on Biotransformation and Pharmacological Activities of Ginsenoside Rd. Biomolecules 2022; 12:biom12040512. [PMID: 35454101 PMCID: PMC9031344 DOI: 10.3390/biom12040512] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
It is well known that ginsenosides—major bioactive constituents of Panax ginseng—are attracting more attention due to their beneficial pharmacological activities. Ginsenoside Rd, belonging to protopanaxadiol (PPD)-type ginsenosides, exhibits diverse and powerful pharmacological activities. In recent decades, nearly 300 studies on the pharmacological activities of Rd—as a potential treatment for a variety of diseases—have been published. However, no specific, comprehensive reviews have been documented to date. The present review not only summarizes the in vitro and in vivo studies on the health benefits of Rd, including anti-cancer, anti-diabetic, anti-inflammatory, neuroprotective, cardioprotective, ischemic stroke, immunoregulation, and other pharmacological effects, it also delves into the inclusion of potential molecular mechanisms, providing an overview of future prospects for the use of Rd in the treatment of chronic metabolic diseases and neurodegenerative disorders. Although biotransformation, pharmacokinetics, and clinical studies of Rd have also been reviewed, clinical trial data of Rd are limited; the only data available are for its treatment of acute ischemic stroke. Therefore, clinical evidence of Rd should be considered in future studies.
Collapse
|
7
|
Yan C, Hao C, Jin W, Dong WW, Quan LH. Biotransformation of Ginsenoside Rb1 to Ginsenoside F2 by Recombinant β-glucosidase from Rat Intestinal Enterococcus gallinarum. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0008-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Status of the application of exogenous enzyme technology for the development of natural plant resources. Bioprocess Biosyst Eng 2020; 44:429-442. [PMID: 33146790 DOI: 10.1007/s00449-020-02463-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
Exogenous enzymes are extraneous enzymes that are not intrinsic to the subject. The exogenous enzyme industry has been rapidly developing recently. Successful application of recombinant DNA amplification, high-efficiency expression, and immobilization technology to genetically engineered bacteria provides a rich source of enzymes. Amylase, cellulase, protease, pectinase, glycosidase, tannase, and polyphenol oxidase are among the most widely used such enzymes. Currently, the application of exogenous enzyme technology in the development of natural plant resources mainly focuses on improving the taste and flavor of the product, enriching the active ingredient contents, deriving and transforming the structure of a chosen compound, and enhancing the biological activity and utilization of the functional ingredient. In this review, we discuss the application status of exogenous enzyme technology for the development of natural plant resources using typical natural active ingredients from plant, such as resveratrol, steviosides, catechins, mogrosides, and ginsenosides, as examples, to provide basis for further exploitation and utilization of exogenous enzyme technology.
Collapse
|
9
|
Biochemical characterization of a novel hyperthermophilic α-l-rhamnosidase from Thermotoga petrophila and its application in production of icaritin from epimedin C with a thermostable β-glucosidase. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Cao L, Wu H, Zhang H, Zhao Q, Yin X, Zheng D, Li C, Kim MJ, Kim P, Xue Z, Wang Y, Li Y. Highly efficient production of diverse rare ginsenosides using combinatorial biotechnology. Biotechnol Bioeng 2020; 117:1615-1627. [PMID: 32144753 DOI: 10.1002/bit.27325] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 12/29/2022]
Abstract
The rare ginsenosides are recognized as the functionalized molecules after the oral administration of Panax ginseng and its products. The sources of rare ginsenosides are extremely limited because of low ginsenoside contents in wild plants, hindering their application in functional foods and drugs. We developed an effective combinatorial biotechnology approach including tissue culture, immobilization, and hydrolyzation methods. Rh2 and nine other rare ginsenosides were produced by methyl jasmonate-induced culture of adventitious roots in a 10 L bioreactor associated with enzymatic hydrolysis using six β-glycosidases and their combination with yields ranging from 5.54 to 32.66 mg L-1 . The yield of Rh2 was furthermore increased by 7% by using immobilized BglPm and Bgp1 in optimized pH and temperature conditions, with the highest yield reaching 51.17 mg L-1 (17.06% of protopanaxadiol-type ginsenosides mixture). Our combinatorial biotechnology method provides a highly efficient approach to acquiring diverse rare ginsenosides, replacing direct extraction from Panax plants, and can also be used to supplement yeast cell factories.
Collapse
Affiliation(s)
- Linggai Cao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Hao Wu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - He Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Quan Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Xue Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Dongran Zheng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Chuanwang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Min-Jun Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Pyol Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Institute of Biotechnology, Wonsan University of Agriculture, Wonsan, Democratic People's Republic of Korea
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, China
| |
Collapse
|
11
|
Kim JH, Oh JM, Chun S, Park HY, Im WT. Enzymatic Biotransformation of Ginsenoside Rb 2 into Rd by Recombinant α-L-Arabinopyranosidase from Blastococcus saxobsidens. J Microbiol Biotechnol 2020; 30:391-397. [PMID: 31893597 PMCID: PMC9728169 DOI: 10.4014/jmb.1910.10065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we used a novel α-L-arabinopyranosidase (AbpBs) obtained from ginsenoside-converting Blastococcus saxobsidens that was cloned and expressed in Escherichia coli BL21 (DE3), and then applied it in the biotransformation of ginsenoside Rb2 into Rd. The gene, termed AbpBs, consisting of 2,406 nucleotides (801 amino acid residues), and with a predicted translated protein molecular mass of 86.4 kDa, was cloned into a pGEX4T-1 vector. A BLAST search using the AbpBs amino acid sequence revealed significant homology with a family 2 glycoside hydrolase (GH2). The over-expressed recombinant AbpBs in Escherichia coli BL21 (DE3) catalyzed the hydrolysis of the arabinopyranose moiety attached to the C-20 position of ginsenoside Rb2 under optimal conditions (pH 7.0 and 40°;C). Kinetic parameters for α-Larabinopyranosidase showed apparent Km and Vmax values of 0.078 ± 0.0002 micrometer and 1.4 ± 0.1 μmol/min/mg of protein against p-nitrophenyl-α-L-arabinopyranoside. Using a purified AbpBs (1 μg/ml), 0.1% of ginsenoside Rb2 was completely converted to ginsenoside Rd within 1 h. The recombinant AbpBs could be useful for high-yield, rapid, and low-cost preparation of ginsenoside Rd from Rb2.
Collapse
Affiliation(s)
- Ju-Hyeon Kim
- Department of Biotechnology, Hankyong National University, Anseong 7579, Republic of Korea,HK Ginseng Research Center, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jung-Mi Oh
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Sungkun Chun
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Hye Yoon Park
- National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Wan Taek Im
- Department of Biotechnology, Hankyong National University, Anseong 7579, Republic of Korea,HK Ginseng Research Center, Hankyong National University, Anseong 17579, Republic of Korea,AceEMzyme Co., Ltd., Anseong 1779, Republic of Korea,Corresponding author Phone: +82-31-6705335 Fax: +82-31-6705339 E-mail:
| |
Collapse
|
12
|
Ahn HJ, You HJ, Park MS, Li Z, Choe D, Johnston TV, Ku S, Ji GE. Microbial biocatalysis of quercetin-3-glucoside and isorhamnetin-3-glucoside in Salicornia herbacea and their contribution to improved anti-inflammatory activity. RSC Adv 2020; 10:5339-5350. [PMID: 35498283 PMCID: PMC9049170 DOI: 10.1039/c9ra08059g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Salicornia herbacea (glasswort) is a traditional Asian medicinal plant which exhibits multiple nutraceutical and pharmaceutical properties. Quercetin-3-glucoside and isorhamnetin-3-glucoside are the major flavonoid glycosides found in S. herbacea. Multiple researchers have shown that flavonoid glycosides can be structurally transformed into minor aglycone molecules, which play a significant role in exerting physiological responses in vivo. However, minor aglycone molecule levels in S. herbacea are very low. In this study, Bifidobacterium animalis subsp. lactis AD011, isolated from infant feces, catalyzed >85% of quercetin-3-glucoside and isorhamnetin-3-glucoside into quercetin and isorhamnetin, respectively, in 2 h, without breaking down flavonoid backbones. Functionality analysis demonstrated that the quercetin and isorhamnetin produced showed improved anti-inflammatory activity vs. the original source molecules against lipopolysaccharide induced RAW 264.7 macrophages. Our report highlights a novel protocol for rapid quercetin and isorhamnetin production from S. herbacea flavonoids and the applicability of quercetin and isorhamnetin as nutraceutical molecules with enhanced anti-inflammatory properties.
Collapse
Affiliation(s)
- Hyung Jin Ahn
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University Seoul 08826 Republic of Korea
| | - Hyun Ju You
- Center for Human and Environmental Microbiome, Institute of Health and Environment Seoul 08826 Republic of Korea
| | - Myeong Soo Park
- Research Center, BIFIDO Co., Ltd. Hongcheon 25117 Republic of Korea
| | - Zhipeng Li
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University Seoul 08826 Republic of Korea
| | - Deokyeong Choe
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University Murfreesboro TN 37132 USA
| | - Tony Vaughn Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University Murfreesboro TN 37132 USA
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University Murfreesboro TN 37132 USA
| | - Geun Eog Ji
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University Seoul 08826 Republic of Korea
- Research Center, BIFIDO Co., Ltd. Hongcheon 25117 Republic of Korea
| |
Collapse
|
13
|
Zhang S, Luo J, Xie J, Wang Z, Xiao W, Zhao L. Cooperated biotransformation of ginsenoside extracts into ginsenoside 20(
S
)‐Rg3 by three thermostable glycosidases. J Appl Microbiol 2019; 128:721-734. [DOI: 10.1111/jam.14513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
Affiliation(s)
- S. Zhang
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - J. Luo
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - J. Xie
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Z. Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd Lianyungang China
| | - W. Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd Lianyungang China
| | - L. Zhao
- Co‐Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| |
Collapse
|
14
|
Cui CH, Fu Y, Jeon BM, Kim SC, Im WT. Novel enzymatic elimination method for the chromatographic purification of ginsenoside Rb 3 in an isomeric mixture. J Ginseng Res 2019; 44:784-789. [PMID: 33192121 PMCID: PMC7655484 DOI: 10.1016/j.jgr.2019.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 05/22/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023] Open
Abstract
Background The separation of isomeric compounds from a mixture is a recurring problem in chemistry and phytochemistry research. The purification of pharmacologically active ginsenoside Rb3 from ginseng extracts is limited by the co-existence of its isomer Rb2. The aim of the present study was to develop an enzymatic elimination-combined purification method to obtain pure Rb3 from a mixture of isomers. Methods To isolate Rb3 from the isomeric mixture, a simple enzymatic selective elimination method was used. A ginsenoside-transforming glycoside hydrolase (Bgp2) was employed to selectively hydrolyze Rb2 into ginsenoside Rd. Ginsenoside Rb3 was then efficiently separated from the mixture using a traditional chromatographic method. Results Chromatographic purification of Rb3 was achieved using this novel enzymatic elimination-combined method, with 58.6-times higher yield and 13.1% less time than those of the traditional chromatographic method, with a lower minimum column length for purification. The novelty of this study was the use of a recombinant glycosidase for the selective elimination of the isomer. The isolated ginsenoside Rb3 can be used in further pharmaceutical studies. Conclusions Herein, we demonstrated a novel enzymatic elimination-combined purification method for the chromatographic purification of ginsenoside Rb3. This method can also be applied to purify other isomeric glycoconjugates in mixtures.
Collapse
Affiliation(s)
- Chang-Hao Cui
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu, China.,Intelligent Synthetic Biology Center, Daejeon, Republic of Korea
| | - Yaoyao Fu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Byeong-Min Jeon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sun-Chang Kim
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Wan-Taek Im
- Department of Biological Sciences, Hankyong National University, Anseong City, Kyonggi-Do, Republic of Korea
| |
Collapse
|
15
|
Enhancing Immunomodulatory Function of Red Ginseng Through Fermentation Using Bifidobacterium animalis Subsp. lactis LT 19-2. Nutrients 2019; 11:nu11071481. [PMID: 31261829 PMCID: PMC6682942 DOI: 10.3390/nu11071481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/19/2023] Open
Abstract
Removal of sugar moieties from ginsenosides has been proposed to increase their biological effects in various disease models. In order to identify strains that can increase aglycone contents, we performed a screening using bacteria isolated from the feces of infants focusing on acid tolerance and β-glucosidase activity. We isolated 565 bacteria and selected Bifidobacterium animalis subsp. lactis LT 19-2 (LT 19-2), which exhibited the highest β-glucosidase activity with strong acid tolerance. As red ginseng (RG) has been known to exert immunomodulatory functions, we fermented RG using LT 19-2 (FRG) and investigated whether this could alter the aglycone profile of ginsenosides and improve its immunomodulatory effect. FRG increased macrophage activity more potently compared to RG, demonstrated by higher TNF-α and IL-6 production. More importantly, the FRG treatment stimulated the proliferation of mouse splenocytes and increased TNF-α levels in bone marrow-derived macrophages, confirming that the enhanced immunomodulatory function can be recapitulated in primary immune cells. Examination of the molecular mechanism revealed that F-RG could induce phosphorylations of ERK, p38, JNK, and NF-κB. Analysis of the ginsenoside composition showed a decrease in Rb1, Re, Rc, and Rb3, accompanied by an increase in Rd, Rh1, F2, and Rg3, the corresponding aglycone metabolites, in FRG compared to RG. Collectively, LT 19-2 maybe used as a probiotic strain to improve the bioactivity of functional foods through modifying the aglycone/glycoside profile.
Collapse
|
16
|
Zhang S, Xie J, Zhao L, Pei J, Su E, Xiao W, Wang Z. Cloning, overexpression and characterization of a thermostable β-xylosidase from Thermotoga petrophila and cooperated transformation of ginsenoside extract to ginsenoside 20(S)-Rg3 with a β-glucosidase. Bioorg Chem 2019; 85:159-167. [DOI: 10.1016/j.bioorg.2018.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 11/26/2022]
|
17
|
Ginsenoside Re impacts on biotransformation products of ginsenoside Rb1 by Cellulosimicrobium cellulans sp. 21 and its mechanisms. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Fu Y. Biotransformation of ginsenoside Rb1 to Gyp-XVII and minor ginsenoside Rg3 by endophytic bacterium Flavobacterium
sp. GE 32 isolated from Panax ginseng. Lett Appl Microbiol 2019; 68:134-141. [DOI: 10.1111/lam.13090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Y. Fu
- College of Chemistry and Life Science; Anshan Normal University; Anshan China
| |
Collapse
|
19
|
Shin KC, Oh DK. Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides. Crit Rev Biotechnol 2015; 36:1036-1049. [PMID: 26383974 DOI: 10.3109/07388551.2015.1083942] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ginsenosides are the main compounds with pharmacological activities in ginseng. Deglycosylated ginsenosides, which are more pharmacologically active than glycosylated ginsenosides, can be produced by the specific or nonspecific hydrolysis of the sugar moieties in glycosylated ginsenosides using glycosidases. The enzymes that hydrolyze specifically ginsenosides with different types can be classified according to the enzymatic activity on the positions, inner and outer residues and types of sugar moieties in ginsenosides. Glycosylated ginsenosides are also hydrolyzed to deglycosylated ginsenosides with different hydrolytic pathways by cell conversion or fermentation. The biochemical properties of glycosidases involved in ginsenoside hydrolysis - ginsenosidases - were newly arranged and reviewed in accordance with different types. The combination of different-type ginsenosidases is suggested herein as an efficient tool to produce industrially important ginsenosides.
Collapse
Affiliation(s)
- Kyung-Chul Shin
- a Department of Bioscience and Biotechnology , Konkuk University , Seoul , Republic of Korea
| | - Deok-Kun Oh
- a Department of Bioscience and Biotechnology , Konkuk University , Seoul , Republic of Korea
| |
Collapse
|
20
|
An amino acid at position 512 in β-glucosidase from Clavibacter michiganensis determines the regioselectivity for hydrolyzing gypenoside XVII. Appl Microbiol Biotechnol 2015; 99:7987-96. [PMID: 25820645 DOI: 10.1007/s00253-015-6549-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/15/2015] [Indexed: 10/23/2022]
Abstract
A recombinant β-glucosidase from Clavibacter michiganensis specifically hydrolyzed the outer and inner glucose linked to the C-3 position in protopanaxadiol (PPD)-type ginsenosides and the C-6 position in protopanaxatriol (PPT)-type ginsenosides except for the hydrolysis of gypenoside LXXV (GypLXXV). The enzyme converted gypenoside XVII (GypXVII) to GypLXXV by hydrolyzing the inner glucose linked to the C-3 position. The substrate-binding residues obtained from the GypXVII-docked homology models of β-glucosidase from C. michiganensis were replaced with alanine, and the amino acid residue at position 512 was selected because of the changed regioselectivity of W512A. Site-directed mutagenesis for the amino acid residue at position 512 was performed. W512A and W512K hydrolyzed the inner glucose linked to the C-3 position and the outer glucose linked to the C-20 position of GypXVII to produce GypLXXV and F2. W512R hydrolyzed only the outer glucose linked to the C-20 position of GypXVII to produce F2. However, W512E and W512D exhibited no activity for GypXVII. Thus, the amino acid at position 512 is a critical residue to determine the regioselectivity for the hydrolysis of GypXVII. These wild-type and variant enzymes produced diverse ginsenosides, including GypXVII, GypLXXV, F2, and compound K, from ginsenoside Rb1. To the best of our knowledge, this is the first report of the alteration of regioselectivity on ginsenoside hydrolysis by protein engineering.
Collapse
|
21
|
Gao F, Zhang JM, Wang ZG, Peng W, Hu HL, Fu CM. Biotransformation, a promising technology for anti-cancer drug development. Asian Pac J Cancer Prev 2015; 14:5599-608. [PMID: 24289549 DOI: 10.7314/apjcp.2013.14.10.5599] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
With the high morbidity and mortality caused by cancer, finding new and more effective anti-cancer drugs is very urgent. In current research, biotransformation plays a vital role in the research and development of cancer drugs and has obtained some achievements. In this review, we have summarized four applications as follows: to exploit novel anti-cancer drugs, to improve existing anti-cancer drugs, to broaden limited anti-cancer drug resources and to investigate correlative mechanisms. Three different groups of important anti-cancer compounds were assessed to clarify the current practical applications of biotransformation in the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan China E-mail : ,
| | | | | | | | | | | |
Collapse
|
22
|
Grishko VV, Nogovitsina YM, Ivshina IB. Bacterial transformation of terpenoids. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v083n04abeh004396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|