1
|
Zhang L, Zhang X, Bai H, Li T, Zhang Z, Zong X, Shang X, Liu Z, Fan L. Characterization and Genome Analysis of the Delftia lacustris Strain LzhVag01 Isolated from Vaginal Discharge. Curr Microbiol 2024; 81:232. [PMID: 38898312 PMCID: PMC11186869 DOI: 10.1007/s00284-024-03758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Delftia has been separated from freshwater, sludge, and soil and has emerged as a novel opportunistic pathogen in the female vagina. However, the genomic characteristics, pathogenicity, and biotechnological properties still need to be comprehensively investigated. In this study, a Delftia strain was isolated from the vaginal discharge of a 43-year-old female with histologically confirmed cervical intraepithelial neoplasm (CIN III), followed by whole-genome sequencing. Phylogenetic analysis and average nucleotide identity (ANI) analysis demonstrated that it belongs to Delftia lacustris, named D. lacustris strain LzhVag01. LzhVag01 was sensitive to β-lactams, macrolides, and tetracyclines but exhibited resistance to lincoamines, nitroimidazoles, aminoglycosides, and fluoroquinolones. Its genome is a single, circular chromosome of 6,740,460 bp with an average GC content of 66.59%. Whole-genome analysis identified 16 antibiotic resistance-related genes, which match the antimicrobial susceptibility profile of this strain, and 11 potential virulence genes. These pathogenic factors may contribute to its colonization in the vaginal environment and its adaptation and accelerate the progression of cervical cancer. This study sequenced and characterized the whole-genome of Delftia lacustris isolated from vaginal discharge, which provides investigators and clinicians with valuable insights into this uncommon species.
Collapse
Affiliation(s)
- Li Zhang
- Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Xin Zhang
- Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Huihui Bai
- Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Ting Li
- Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhan Zhang
- Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Xiaonan Zong
- Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Xiang Shang
- Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhaohui Liu
- Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China.
| | - Linyuan Fan
- Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
2
|
Bhat SV, Maughan H, Cameron ADS, Yost CK. Phylogenomic analysis of the genus Delftia reveals distinct major lineages with ecological specializations. Microb Genom 2022; 8:mgen000864. [PMID: 36107145 PMCID: PMC9676026 DOI: 10.1099/mgen.0.000864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/15/2022] [Indexed: 04/01/2024] Open
Abstract
Delftia is a diverse betaproteobacterial genus with many strains having agricultural and industrial relevance, including plant-growth promotion, bioremediation of hydrocarbon-contaminated soils, and heavy metal immobilization. Delftia spp. are broadly distributed in the environment, and have been isolated from plant hosts as well as healthy and diseased animal hosts, yet the genetic basis of this ecological versatility has not been characterized. Here, we present a phylogenomic comparison of published Delftia genomes and show that the genus is divided into two well-supported clades: one 'Delftia acidovorans' clade with isolates from soils and plant rhizospheres, and a second 'Delftia lacustris and Delftia tsuruhatensis' clade with isolates from humans and sludge. The pan-genome inferred from 61 Delftia genomes contained over 28 000 genes, of which only 884 were found in all genomes. Analysis of industrially relevant functions highlighted the ecological versatility of Delftia and supported their role as generalists.
Collapse
Affiliation(s)
- Supriya V. Bhat
- Department of Biology, University of Regina, Regina, SK, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, SK, Canada
| | | | - Andrew D. S. Cameron
- Department of Biology, University of Regina, Regina, SK, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, SK, Canada
| | - Christopher K. Yost
- Department of Biology, University of Regina, Regina, SK, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, SK, Canada
| |
Collapse
|
3
|
Cheng C, Zhou W, Dong X, Zhang P, Zhou K, Zhou D, Qian C, Lin X, Li P, Li K, Bao Q, Xu T, Lu J, Ying J. Genomic Analysis of Delftia tsuruhatensis Strain TR1180 Isolated From A Patient From China With In4-Like Integron-Associated Antimicrobial Resistance. Front Cell Infect Microbiol 2021; 11:663933. [PMID: 34222039 PMCID: PMC8248536 DOI: 10.3389/fcimb.2021.663933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/31/2021] [Indexed: 12/04/2022] Open
Abstract
Delftia tsuruhatensis has become an emerging pathogen in humans. There is scant information on the genomic characteristics of this microorganism. In this study, we determined the complete genome sequence of a clinical D. tsuruhatensis strain, TR1180, isolated from a sputum specimen of a female patient in China in 2019. Phylogenetic and average nucleotide identity analysis demonstrated that TR1180 is a member of D. tsuruhatensis. TR1180 exhibited resistance to β-lactam, aminoglycoside, tetracycline and sulphonamide antibiotics, but was susceptible to phenicols, fluoroquinolones and macrolides. Its genome is a single, circular chromosome measuring 6,711,018 bp in size. Whole-genome analysis identified 17 antibiotic resistance-related genes, which match the antimicrobial susceptibility profile of this strain, as well as 24 potential virulence factors and a number of metal resistance genes. Our data showed that Delftia possessed an open pan-genome and the genes in the core genome contributed to the pathogenicity and resistance of Delftia strains. Comparative genomics analysis of TR1180 with other publicly available genomes of Delftia showed diverse genomic features among these strains. D. tsuruhatensis TR1180 harbored a unique 38-kb genomic island flanked by a pair of 29-bp direct repeats with the insertion of a novel In4-like integron containing most of the specific antibiotic resistance genes within the genome. This study reports the findings of a fully sequenced genome from clinical D. tsuruhatensis, which provide researchers and clinicians with valuable insights into this uncommon species.
Collapse
Affiliation(s)
- Cong Cheng
- Vocational and Technical College, Lishui University, Lishui, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wangxiao Zhou
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xu Dong
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peiyao Zhang
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kexin Zhou
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Danying Zhou
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Changrui Qian
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peizhen Li
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| | - Junwan Lu
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Ying
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Riley NG, Goller CC, Leggett ZH, Lewis DM, Ciccone K, Dunn RR. Catalyzing rapid discovery of gold-precipitating bacterial lineages with university students. PeerJ 2020; 8:e8925. [PMID: 32322441 PMCID: PMC7164421 DOI: 10.7717/peerj.8925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Intriguing and potentially commercially useful microorganisms are found in our surroundings and new tools allow us to learn about their genetic potential and evolutionary history. Engaging students from different disciplines and courses in the search for microbes requires an exciting project with innovative but straightforward procedures and goals. Here we describe an interdisciplinary program to engage students from different courses in the sampling, identification and analysis of the DNA sequences of a unique yet common microbe, Delftia spp. A campus-wide challenge was created to identify the prevalence of this genus, able to precipitate gold, involving introductory level environmental and life science courses, upper-level advanced laboratory modules taken by undergraduate students (juniors and seniors), graduate students and staff from the campus. The number of participants involved allowed for extensive sampling while undergraduate researchers and students in lab-based courses participated in the sample processing and analyses, helping contextualize and solidify their learning of the molecular biology techniques. The results were shared at each step through publicly accessible websites and workshops. This model allows for the rapid discovery of Delftia presence and prevalence and is adaptable to different campuses and experimental questions.
Collapse
Affiliation(s)
- Noah G Riley
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Carlos C Goller
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Biotechnology Program (BIT), North Carolina State University, Raleigh, NC, USA
| | - Zakiya H Leggett
- Department of Forestry and Environmental Resources (FER), North Carolina State University, Raleigh, NC, USA
| | - Danica M Lewis
- North Carolina State University Libraries, North Carolina State University, Raleigh, NC, USA
| | - Karen Ciccone
- North Carolina State University Libraries, North Carolina State University, Raleigh, NC, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA.,University of Copenhagen, Natural History Museum of Denmark, Copenhagen, Denmark.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| |
Collapse
|
5
|
Khalifa AY, AlMalki M. Polyphasic characterization of Delftia acidovorans ESM-1, a facultative methylotrophic bacterium isolated from rhizosphere of Eruca sativa. Saudi J Biol Sci 2019; 26:1262-1267. [PMID: 31516356 PMCID: PMC6733694 DOI: 10.1016/j.sjbs.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 11/25/2022] Open
Abstract
In this study, one bacterial strain, ESM-1, was isolated from rhizosphere of Eruca sativa, growing in Al Hofouf, Saudia Arabia, after enrichment with methanol as a sole carbon and energy source in a batch culture. ESM-1 was characterized by a polyphasic approach. The strain was identified as Delftia acidovorans at similarity level of 99.9% of the 16S rRNA gene sequences. Results of the Biolog Gen III MicroPlate test system showed that strain ESM-1 reacted positively to 47 (50%) including the one-carbon compound formic acid, and partially positive to 6 (∼6.4%) out of the 94 different the traits examined. The total cellular fatty acids composition of the strain ESM-1 was (C16:1ω7c/C16:1ω6c) and C16:0) and matched that of Delftia acidovorans at a similarity index of 0.9, providing a robustness to the ESM-1 identification. Furthermore, ESM-1 displayed a complex polar lipid profile consisting of phosphatidylethanolamine, phosphatidylglycerol, glycolipid, aminolipid, in addition to uncharacterized lipids. The DNA G+C content of the strain was 66.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain ESM1-1 was clearly clustered within the Delftia clade and constructed a monophyletic subcluster with Delftia acidovorans NBRC14950. The results addressed that ESM-1 is a facultative methylotrophic bacterium indigenous to Al Hofouf region and opens the door for potential biotechnological applications (e.g., bioremediation) of this strain, in future. Additionally, these findings assure that the total cellular fatty acid analysis and 16S rRNA gene are reliable tool for bacterial characterization and identification.
Collapse
Affiliation(s)
- Ashraf Y.Z. Khalifa
- Biological Sciences Department, College of Science, King Faisal University, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, University of Beni-Suef, Beni-Suef, Egypt
| | - M. AlMalki
- Biological Sciences Department, College of Science, King Faisal University, Saudi Arabia
| |
Collapse
|
6
|
Liu Y, Tie B, Li Y, Lei M, Wei X, Liu X, Du H. Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:223-229. [PMID: 30055387 DOI: 10.1016/j.ecoenv.2018.07.081] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Bioremediation of heavy metal polluted soil using metal-resistant bacteria has received increasing attentions. In the present study, we isolated a heavy metal-resistant bacterial strain from a Cd-contaminated soil, and conducted pot experiments to evaluate the effect of bacterial inoculation in soil on soil Cd speciation, rice grain biomass and Cd accumulation. We find that the isolated bacterial strain is a Gram-negative bacterium, and named as Delftia sp. B9 based on the 16S rDNA gene sequence analysis. TEM-EDS manifests that Cd can be bioaccumulated inside cell, resulting in intracellular dissolution. The Cd contents of rice grain in the two rice cultivars (early and late rice) are all below the standard limit for Food Safety of People's Republic of China (0.2 mg/kg) after the treatment of both living and non-living cells. Non-living cells are more applicable than the use of living cells for the short time bioremediation. The average content of soil exchangeable fraction of Cd decreases whereas the residual fraction increases with bacterial inoculation. All our results suggest Delftia sp. B9 is able to the stabilization of Cd in soil and reduce Cd accumulation in rice grain, therefore, this strain is potentially suitable for the bioremediation of Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Yuling Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Boqing Tie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China.
| | - Yuanxinglu Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Xiangdong Wei
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Xiaoli Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, People's Republic of China; Hunan Engineering Research Center for Safe and High-Efficient Utilization of Heavy Metal Pollution Farmland, Changsha 410128, People's Republic of China.
| |
Collapse
|
7
|
Dubuis ME, M'Bareche H, Veillette M, Bakhiyi B, Zayed J, Lavoie J, Duchaine C. Bioaerosols concentrations in working areas in biomethanization facilities. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2017; 67:1258-1271. [PMID: 28718709 DOI: 10.1080/10962247.2017.1356762] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED This study sought to fill the gap in information about the type and the concentration of bioaerosols present in the air of biomethanization facilities (BF). Evaluation of bioaerosol composition and concentration was achieved in two biomethanization facilities located in Eastern Canada, during summer and winter. In order to have a thorough understanding of the studied environment, the methodology combined culture of bacteria and molds, qualitiative polymerase chain reaction (qPCR) for specific microorganisms, endotoxin quantification, and next-generation sequencing (NGS) for bacterial diversity. Results revealed that workers in biomethanization facilities are exposed to bioaerosols and pathogenic microorganisms similar to those found in composting plants. However, human exposure levels to bioaerosols are lower in BF than in composting plants. Despite these differences, use of personal protective equipment is recommended to lower the risks of health problems. IMPLICATIONS Biomethanization is a new technology used in eastern Canada for waste management. In the next few years, it is expected that there will be an expansion of facilities in response of tight governmental regulations. Workers in biomethanization facilities are exposed to various amounts of bioaerosols composed of some harmful microorganisms. Therefore, monitoring this occupational exposure could be an interesting tool for improving worker's health.
Collapse
Affiliation(s)
- Marie-Eve Dubuis
- a Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval , Quebec City , Canada
- b Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie , Université Laval , Quebec City , Canada
| | - Hamza M'Bareche
- a Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval , Quebec City , Canada
| | - Marc Veillette
- a Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval , Quebec City , Canada
| | - Bouchra Bakhiyi
- c Department of Environmental and Occupational Health , School of Public Health, University of Montreal , Montreal , Canada
| | - Joseph Zayed
- c Department of Environmental and Occupational Health , School of Public Health, University of Montreal , Montreal , Canada
- d Institut de Recherche Robert-Sauvé en Santé et en Sécurité du travail (IRSST) , Montreal (Qc) , Canada
| | - Jacques Lavoie
- d Institut de Recherche Robert-Sauvé en Santé et en Sécurité du travail (IRSST) , Montreal (Qc) , Canada
| | - Caroline Duchaine
- a Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval , Quebec City , Canada
- b Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie , Université Laval , Quebec City , Canada
| |
Collapse
|
8
|
Singh VK, Mishra A, Jha B. Anti-quorum Sensing and Anti-biofilm Activity of Delftia tsuruhatensis Extract by Attenuating the Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2017; 7:337. [PMID: 28798903 PMCID: PMC5526841 DOI: 10.3389/fcimb.2017.00337] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
Multidrug-resistance bacteria commonly use cell-to-cell communication that leads to biofilm formation as one of the mechanisms for developing resistance. Quorum sensing inhibition (QSI) is an effective approach for the prevention of biofilm formation. A Gram-negative bacterium, Delftia tsuruhatensis SJ01, was isolated from the rhizosphere of a species of sedge (Cyperus laevigatus) grown along the coastal-saline area. The isolate SJ01 culture and bacterial crude extract showed QSI activity in the biosensor plate containing the reference strain Chromobacterium violaceum CV026. A decrease in the violacein production of approximately 98% was detected with the reference strain C. violaceum CV026. The bacterial extract (strain SJ01) exhibited anti-quorum sensing activity and inhibited the biofilm formation of clinical isolates wild-type Pseudomonas aeruginosa PAO1 and P. aeruginosa PAH. A non-toxic effect of the bacterial extract (SJ01) was detected on the cell growth of the reference strains as P. aeruginosa viable cells were present within the biofilm. It is hypothesized that the extract (SJ01) may change the topography of the biofilm and thus prevent bacterial adherence on the biofilm surface. The extract also inhibits the motility, virulence factors (pyocyanin and rhamnolipid) and activity (elastase and protease) in P. aeruginosa treated with SJ01 extract. The potential active compound present was identified as 1,2-benzenedicarboxylic acid, diisooctyl ester. Microarray and transcript expression analysis unveiled differential expression of quorum sensing regulatory genes. The key regulatory genes, LasI, LasR, RhlI, and RhlR were down-regulated in the P. aeruginosa analyzed by quantitative RT-PCR. A hypothetical model was generated of the transcriptional regulatory mechanism inferred in P. aeruginosa for quorum sensing, which will provide useful insight to develop preventive strategies against the biofilm formation. The potential active compound identified, 1,2-benzenedicarboxylic acid, diisooctyl ester, has the potential to be used as an anti-pathogenic drug for the treatment of biofilm-forming pathogenic bacteria. For that, a detailed study is needed to investigate the possible applications.
Collapse
Affiliation(s)
- Vijay K Singh
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - Avinash Mishra
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| |
Collapse
|
9
|
Carro L, Mulas R, Pastor-Bueis R, Blanco D, Terrón A, González-Andrés F, Peix A, Velázquez E. Delftia rhizosphaerae sp. nov. isolated from the rhizosphere of Cistus ladanifer. Int J Syst Evol Microbiol 2017. [PMID: 28629496 DOI: 10.1099/ijsem.0.001892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain, designated RA6T, was isolated from the rhizosphere of Cistus ladanifer. Phylogenetic analyses based on 16S rRNA gene sequence placed the isolate into the genus Delftia within a cluster encompassing the type strains of Delftia lacustris, Delftia tsuruhatensis, Delftia acidovorans and Delftia litopenaei, which presented greater than 97 % sequence similarity with respect to strain RA6T. DNA-DNA hybridization studies showed average relatedness ranging from of 11 to 18 % between these species of the genus Delftia and strain RA6T. Catalase and oxidase were positive. Casein was hydrolysed but gelatin and starch were not. Ubiquinone 8 was the major respiratory quinone detected in strain RA6T together with low amounts of ubiquinones 7 and 9. The major fatty acids were those from summed feature 3 (C16 : 1ω7c/C16 : 1 ω6c) and C16 : 0. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain RA6T should be considered as a representative of a novel species of genus Delftia, for which the name Delftia rhizosphaerae sp. nov. is proposed. The type strain is RA6T (=LMG 29737T= CECT 9171T).
Collapse
Affiliation(s)
- Lorena Carro
- Present address: School of Biology, Newcastle University, Newcastle upon Tyne, UK
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Rebeca Mulas
- Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, León, Spain
| | - Raquel Pastor-Bueis
- Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, León, Spain
| | - Daniel Blanco
- Bioenergía y Desarrollo Tecnológico, S.L. (BYDT), León, Spain
| | - Arsenio Terrón
- Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, León, Spain
| | - Fernando González-Andrés
- Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, León, Spain
| | - Alvaro Peix
- Unidad Asociada Grupo de Interacción Planta-Microorganismo Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, IRNASA-CSIC, Salamanca, Spain
| | - Encarna Velázquez
- Departamento de Microbiología y Genética and Instituto Hispanoluso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| |
Collapse
|
10
|
Genome Sequence of Delftia acidovorans HK171, a Nematicidal Bacterium Isolated from Tomato Roots. GENOME ANNOUNCEMENTS 2017; 5:5/9/e01746-16. [PMID: 28254991 PMCID: PMC5334598 DOI: 10.1128/genomea.01746-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Delftia acidovorans strain HK171, isolated from tomato roots, exhibited nematicidal activity against Meloidogyne incognita. Here, we present the genome sequence of D. acidovorans strain HK171, which consists of one circular chromosome of 6,430,384 bp, with 66.9% G+C content.
Collapse
|
11
|
Agafonova NV, Doronina NV, Kaparullina EN, Fedorov DN, Gafarov AB, Sazonova OI, Sokolov SL, Trotsenko YA. A novel Delftia plant symbiont capable of autotrophic methylotrophy. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2015. [DOI: 10.1099/ijsem.0.000464] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. Note that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in the nomenclature of prokaryotes. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | - George M. Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|