1
|
Hou XY, Qiao WT, Gu JD, Liu CY, Hussain MM, Du DL, Zhou Y, Wang YF, Li Q. Reforestation of Cunninghamia lanceolata changes the relative abundances of important prokaryotic families in soil. Front Microbiol 2024; 15:1312286. [PMID: 38414777 PMCID: PMC10896735 DOI: 10.3389/fmicb.2024.1312286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Over the past decades, many forests have been converted to monoculture plantations, which might affect the soil microbial communities that are responsible for governing the soil biogeochemical processes. Understanding how reforestation efforts alter soil prokaryotic microbial communities will therefore inform forest management. In this study, the prokaryotic communities were comparatively investigated in a secondary Chinese fir forest (original) and a reforested Chinese fir plantation (reforested from a secondary Chinese fir forest) in Southern China. The results showed that reforestation changed the structure of the prokaryotic community: the relative abundances of important prokaryotic families in soil. This might be caused by the altered soil pH and organic matter content after reforestation. Soil profile layer depth was an important factor as the upper layers had a higher diversity of prokaryotes than the lower ones (p < 0.05). The composition of the prokaryotic community presented a seasonality characteristic. In addition, the results showed that the dominant phylum was Acidobacteria (58.86%) with Koribacteraceae (15.38%) as the dominant family in the secondary Chinese fir forest and the reforested plantation. Furthermore, soil organic matter, total N, hydrolyzable N, and NH 4 + - N were positively correlated with prokaryotic diversity (p < 0.05). Also, organic matter and NO 3 - - N were positively correlated to prokaryotic abundance (p < 0.05). This study demonstrated that re-forest transformation altered soil properties, which lead to the changes in microbial composition. The changes in microbial community might in turn influence biogeochemical processes and the environmental variables. The study could contribute to forest management and policy-making.
Collapse
Affiliation(s)
- Xue-Yan Hou
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Wen-Tao Qiao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion Israel Institute of Technology, Shantou, China
| | - Chao-Ying Liu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Mahroz Hussain
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Dao-Lin Du
- Jingjiang College, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yi Zhou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Yong-Feng Wang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Qian Li
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Wang YF, Gu JD, Dick RP, Han W, Yang HX, Liao HQ, Zhou Y, Meng H. Distribution of ammonia-oxidizing archaea and bacteria along an engineered coastal ecosystem in subtropical China. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1769-1779. [PMID: 33432457 DOI: 10.1007/s10646-020-02327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) are the crucial players in nitrogen cycle. Both AOA and AOB were examined along a gradient of human activity in a coastal ecosystem from intertidal zone, grassland, and Casuarina equisetifolia forest to farmland. Results showed that the farmland soils had noticeably higher nitrate-N, available P than soils in the other three sites. Generally, AOA and AOB community structures varied across sites. The farmland mainly had Nitrosotalea-like AOA, intertidal zone was dominated by Nitrosopumilus AOA, while grassland and C. equisetifolia forest primarily harbored Nitrososphaera-like AOA. The farmland and C. equisetifolia forest owned Nitrosospira-like AOB, intertidal zone possessed Nitrosomonas-like AOB, and no AOB was detected in the grassland. AOA abundance was significantly greater than AOB in this coastal ecosystem (p < 0.05, n = 8). AOB diversity and abundance in the farmland were significantly higher than those in the other three sites (p < 0.05, n = 2). The biodiversity and abundance of AOA were not significantly correlated with any soil property (p < 0.05, n = 8). However, the diversity of AOB was significantly correlated with pH, available P and total P (p < 0.05, n = 6). The abundance of AOB was significantly correlated with pH, nitrite, available N, available P and total P (p < 0.05, n = 6). This study suggested that the community structures of AOA and AOB vary in the different parts in the bio-engineered coastal ecosystem and agricultural activity appears to influence these nitrifiers.
Collapse
Affiliation(s)
- Yong-Feng Wang
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, PR China.
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, PR China.
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, PR China
| | - Richard P Dick
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH, 43210-1085, USA
| | - Wei Han
- Agro-Technical Station of Shandong Province, Jinan, PR China
| | - Hui-Xiao Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, PR China
| | - Huan-Qin Liao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, PR China
| | - Yi Zhou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, PR China.
| | - Han Meng
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| |
Collapse
|
3
|
Cai F, Luo P, Yang J, Irfan M, Zhang S, An N, Dai J, Han X. Effect of Long-Term Fertilization on Ammonia-Oxidizing Microorganisms and Nitrification in Brown Soil of Northeast China. Front Microbiol 2021; 11:622454. [PMID: 33613469 PMCID: PMC7890093 DOI: 10.3389/fmicb.2020.622454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to find out changes in ammonia oxidation microorganisms with respect to fertilizer as investigated by real-time polymerase chain reaction and high-throughput sequencing. The treatments included control (CK); chemical fertilizer nitrogen low (N) and high (N2); nitrogen and phosphorus (NP); nitrogen phosphorus and potassium (NPK) and organic manure fertilizer (M); MN; MN2; MNPK. The results showed that long-term fertilization influenced soil fertility and affected the abundance and community of ammonia-oxidizing microorganisms by changing the physical and chemical properties of the soil. The abundance and community structure of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was influenced by soil organic carbon, total nitrogen, total soil phosphorus, available phosphorus, available potassium, and soil nitrate. Soil environmental factors affected the nitrification potential by affecting the structure of ammonia-oxidizing microorganisms; specific and rare AOA and AOB rather than the whole AOA or AOB community played dominant role in nitrification.
Collapse
Affiliation(s)
- Fangfang Cai
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Peiyu Luo
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Jinfeng Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Shiyu Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Ning An
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Jian Dai
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an, China.,Northeast Scientific Observation Station of Corn Nutrition and Fertilization of Ministry of Agriculture, Shenyang, China
| |
Collapse
|
4
|
Ding J, Ma M, Jiang X, Liu Y, Zhang J, Suo L, Wang L, Wei D, Li J. Effects of applying inorganic fertilizer and organic manure for 35 years on the structure and diversity of ammonia-oxidizing archaea communities in a Chinese Mollisols field. Microbiologyopen 2020; 9:e00942. [PMID: 31568679 PMCID: PMC6957403 DOI: 10.1002/mbo3.942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, we investigated the physicochemical properties of soil, and the diversity and structure of the soil ammonia-oxidizing archaea (AOA) community, when subjected to fertilizer treatments for over 35 years. We collected soil samples from a black soil fertilization trial in northeast China. Four treatments were tested: no fertilization (CK); manure (M); nitrogen (N), phosphorus (P), and potassium (K) chemical fertilizer (NPK); and N, P, and K plus M (MNPK). We employed 454 high-throughput pyrosequencing to measure the response of the soil AOA community to the long-term fertilization. The fertilization treatments had different impacts on the shifts in the soil properties and AOA community. The utilization of manure alleviated soil acidification and enhanced the soybean yield. The soil AOA abundance was increased greatly by inorganic and organic fertilizers. In addition, the community Chao1 and ACE were highest in the MNPK treatment. In terms of the AOA community composition, Thaumarchaeota and Crenarchaeota were the main AOA phyla in all samples. Compared with CK and M, the abundances of Thaumarchaeota were remarkably lower in the MNPK and NPK treatments. There were distinct shifts in the compositions of the AOA operational taxonomic units (OTUs) under different fertilization management practices. OTU51 was the dominant OTU in all treatments, except for NPK. OTU79 and OTU11 were relatively abundant OTUs in NPK. Only Nitrososphaera AOA were tracked from the black soil. Redundancy analysis indicated that the soil pH and soil available P were the two main factors that affected the AOA community structure. The abundances of AOA were positively correlated with the total N and available P concentrations, and negatively correlated with the soil pH.
Collapse
Affiliation(s)
- Jianli Ding
- Institute of Plant Nutrition and ResourcesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Jiang
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Yao Liu
- National Center for Science and Technology EvaluationMOSTBeijingChina
| | - Junzheng Zhang
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
| | - Linna Suo
- Institute of Plant Nutrition and ResourcesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Lei Wang
- Institute of Plant Nutrition and ResourcesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Dan Wei
- Institute of Plant Nutrition and ResourcesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jun Li
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
5
|
Meng H, Zhou Z, Wu R, Wang Y, Gu JD. Diazotrophic microbial community and abundance in acidic subtropical natural and re-vegetated forest soils revealed by high-throughput sequencing of nifH gene. Appl Microbiol Biotechnol 2018; 103:995-1005. [PMID: 30474727 DOI: 10.1007/s00253-018-9466-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/17/2018] [Accepted: 10/09/2018] [Indexed: 01/09/2023]
Abstract
Biological nitrogen fixation (BNF) is an important natural biochemical process converting the inert dinitrogen gas (N2) in the atmosphere to ammonia (NH3) in the N cycle. In this study, the nifH gene was chosen to detect the diazotrophic microorganisms with high-throughput sequencing from five acidic forest soils, including three natural forests and two re-vegetated forests. Soil samples were taken in two seasons (summer and winter) at two depth layers (surface and lower depths). A dataset of 179,600 reads obtained from 20 samples were analyzed to provide the microbial community structure, diversity, abundance, and relationship with physiochemical parameters. Both archaea and bacteria were detected in these samples and diazotrophic bacteria were the dominant members contributing to the biological dinitrogen fixation in the acidic forest soils. Cyanobacteria, Firmicutes, Proteobacteria, Spirocheates, and Verrucomicrobia were observed, especially the Proteobacteria as the most abundant phylum. The core genera were Bradyrhizobium and Methylobacterium from α-Proteobacteia, and Desulfovibrio from δ-Proteobacteia in the phylum of Proteobacteia of these samples. The diversity indices and the gene abundances of all samples were higher in the surface layer than the lower layer. Diversity was apparently higher in re-vegetated forests than the natural forests. Significant positive correlation to the organic matter and nitrogen-related parameters was observed, but there was no significant seasonal variation on the community structure and diversity in these samples between the summer and winter. The application of high-throughput sequencing method provides a better understanding and more comprehensive information of diazotrophs in acidic forest soils than conventional and PCR-based ones.
Collapse
Affiliation(s)
- Han Meng
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Zhichao Zhou
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Ruonan Wu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Yongfeng Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, People's Republic of China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
6
|
Lee KH, Wang YF, Wang Y, Gu JD, Jiao JJ. Abundance and Diversity of Aerobic/Anaerobic Ammonia/Ammonium-Oxidizing Microorganisms in an Ammonium-Rich Aquitard in the Pearl River Delta of South China. MICROBIAL ECOLOGY 2018; 76:81-91. [PMID: 27448106 DOI: 10.1007/s00248-016-0815-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Natural occurring groundwater with abnormally high ammonium concentrations was discovered in the aquifer-aquitard system in the Pearl River Delta, South China. The community composition and abundance of aerobic/anaerobic ammonia/ammonium-oxidizing microorganisms (AOM) in the aquitard were investigated in this study. The alpha subunit of ammonia monooxygenase gene (amoA) was used as the biomarker for the detection of aerobic ammonia-oxidizing archaea (AOA) and bacteria (AOB), and also partial 16S rRNA gene for Plantomycetes and anaerobic ammonium-oxidizing (anammox) bacteria. Phylogenetic analysis showed that AOA in this aquitard were affiliated with those from water columns and wastewater treatment plants; and AOB were dominated by sequences among the Nitrosomonas marina/Nitrosomonas oligotropha lineage, which were affiliated with environmental sequences from coastal eutrophic bay and subtropical estuary. The richness and diversity of both AOA and AOB communities had very little variations with the depth. Candidatus Scalindua-related sequences dominated the anammox bacterial community. AOB amoA gene abundances were always higher than those of AOA at different depths in this aquitard. The Pearson moment correlation analysis showed that AOA amoA gene abundance positively correlated with pH and ammonium concentration, whereas AOB amoA gene abundance negatively correlated with C/N ratio. This is the first report that highlights the presence with low diversity of AOM communities in natural aquitard of rich ammonium.
Collapse
Affiliation(s)
- Kwok-Ho Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Yong-Feng Wang
- Guangdong Provincial Key Laboratory of Bio-control for the Forest Disease and Pest, Guangdong Academy of Forestry, No. 233 Guangshan 1st Road, Guangzhou, People's Republic of China
| | - Ya Wang
- School of Earth Science and Geological Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China.
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| |
Collapse
|
7
|
Effects of reforestation on ammonia-oxidizing microbial community composition and abundance in subtropical acidic forest soils. Appl Microbiol Biotechnol 2018; 102:5309-5322. [DOI: 10.1007/s00253-018-8873-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 02/03/2018] [Accepted: 02/10/2018] [Indexed: 01/01/2023]
|
8
|
Distinct distribution patterns of ammonia-oxidizing archaea and bacteria in sediment and water column of the Yellow River estuary. Sci Rep 2018; 8:1584. [PMID: 29371667 PMCID: PMC5785527 DOI: 10.1038/s41598-018-20044-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
Ammonia oxidation is a critical process of estuarine nitrogen cycling involving ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the distribution patterns of ammonia-oxidizing microorganisms (AOMs) between different habitats in the same area remain unclear. The present study investigated the AOMs’ abundance and community compositions in both sediment and water habitats of the Yellow River estuary. Quantitative PCR (qPCR) revealed that AOA showed significant higher abundance than AOB both in sediment and water samples. AOA and AOB abundance distribution trends were consistent in sediment but distinct in water along the sampling sites. Clone library-based analyses showed that AOA sequences were affiliated with Nitrososphaera, Nitrosopumilus and Nitrosotalea clusters. Generally, Nitrososphaera was predominant in sediment, while Nitrosopumilus and Nitrosotalea dominated in water column. AOB sequences were classified into genera Nitrosospira and Nitrosomonas, and Nitrosospira dominated in both habitats. Principal coordinate analysis (PCoA) also indicated AOA community structures exhibited significant differences between two habitats, while AOB were not. Ammonium and carbon contents were the potential key factors to influence AOMs’ abundance and compositions in sediment, while no measured variables were determined to have major influences on communities in water habitat. These findings increase the understanding of the AOMs’ distribution patterns in estuarine ecosystems.
Collapse
|
9
|
Jiang X, Wu Y, Liu G, Liu W, Lu B. The effects of climate, catchment land use and local factors on the abundance and community structure of sediment ammonia-oxidizing microorganisms in Yangtze lakes. AMB Express 2017; 7:173. [PMID: 28905318 PMCID: PMC5597559 DOI: 10.1186/s13568-017-0479-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in regulating the nitrification process in lake ecosystems. However, the relative effects of climate, catchment land use and local conditions on the sediment ammonia-oxidizing communities in lakes remain unclear. In this study, the diversity and abundance of AOA and AOB communities were investigated in ten Yangtze lakes by polymerase chain reaction (PCR), clone library and quantitative PCR techniques. The results showed that the abundances of both AOA and AOB in bare sediments were considerably but not significantly higher than those in vegetated sediments. Interestingly, AOB communities were more sensitive to changes in local environmental factors and vegetation characteristics than were AOA communities. Amongst climate and land use variables, mean annual precipitation, percentage of agriculture and percentage of vegetation were the key determinants of AOB abundance and diversity. Additionally, total organic carbon and chlorophyll-a concentrations in lake water were significantly related to AOB abundance and diversity. The results of the ordination analysis indicated that 81.2 and 84.3% of the cumulative variance for the species composition of AOA and AOB communities could be explained by the climate, land use and local factors. The climate and local environments played important roles in shaping AOA communities, whereas catchment agriculture and water chlorophyll-a concentration were key influencing factors of AOB communities. Our findings suggest that the composition and structure of sediment ammonia-oxidizing communities in Yangtze lakes are strongly influenced by different spatial scale factors.
Collapse
|
10
|
Meng H, Wu R, Wang YF, Gu JD. A comparison of denitrifying bacterial community structures and abundance in acidic soils between natural forest and re-vegetated forest of Nanling Nature Reserve in southern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 198:41-49. [PMID: 28500915 DOI: 10.1016/j.jenvman.2017.04.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/02/2017] [Accepted: 04/22/2017] [Indexed: 06/07/2023]
Abstract
Denitrification plays a key role in converting reactive nitrogen species to dinitrogen gas back into the atmosphere to maintain the equilibrium of nitrogen cycling in ecosystems. In this study, functional genes of nirK and nosZ were used to detect the community structure and abundance of denitrifying microorganisms in acidic forest soils in southern China. Three sets of factors were considered for a comparison among 5 forests, including forest types (natural vs. re-vegetated), depths (surface layer vs. lower layer) and seasons (winter vs. summer). The community of nirK gene detected from these acidic forest soils was closely related to Proteobacteria especially α-Proteobacteria and uncultured soil sequences, while that of nosZ gene was affiliated with the α-, β- and γ-Proteobacteria. Higher diversity of denitrifiers was observed in re-vegetated forest soils than natural ones. Not only the community but also the abundance showed significant differences between forest types as well as depths. The abundance of denitrifiers ranged from 105 to 107 gene copies g-1 dry soil in this study. For nirK gene, the abundance was much higher in the lower layer than surface layer in both forest types, and the differences between winter and summer in natural forest soils were higher than those in re-vegetated forest soils. The abundance of nosZ and nirK genes showed a similar trend in natural forest, but the former was higher in matured forest than re-vegetated forest. This study provided a direct comparison on community composition and abundance of denitrifying bacteria in natural and re-vegetated acidic forest soils to allow further assessment of the nitrogen cycling.
Collapse
Affiliation(s)
- Han Meng
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ruonan Wu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yong-Feng Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, No. 233, Guangshan 1st Road, Guangzhou, People's Republic of China.
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
11
|
Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils. Appl Microbiol Biotechnol 2016; 100:7727-39. [DOI: 10.1007/s00253-016-7585-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/24/2016] [Accepted: 04/27/2016] [Indexed: 01/01/2023]
|
12
|
Zhang FQ, Pan W, Gu JD, Xu B, Zhang WH, Zhu BZ, Wang YX, Wang YF. Dominance of ammonia-oxidizing archaea community induced by land use change from Masson pine to eucalypt plantation in subtropical China. Appl Microbiol Biotechnol 2016; 100:6859-6869. [DOI: 10.1007/s00253-016-7506-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 10/21/2022]
|