1
|
Bandeira L, Faria C, Cavalcante F, Mesquita A, Martins C, Martins S. Metabarcoding expands knowledge on diversity and ecology of rare actinobacteria in the Brazilian Cerrado. Folia Microbiol (Praha) 2025; 70:159-175. [PMID: 38961050 DOI: 10.1007/s12223-024-01184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Rare and unknown actinobacteria from unexplored environments have the potential to produce new bioactive molecules. This study aimed to use 16 s rRNA metabarcoding to determine the composition of the actinobacterial community, particularly focusing on rare and undescribed species, in a nature reserve within the Brazilian Cerrado called Sete Cidades National Park. Since this is an inaccessible area without due legal authorization, it is understudied, and, therefore, its diversity and biotechnological potential are not yet fully understood, and it may harbor species with groundbreaking genetic potential. In total, 543 operational taxonomic units (OTUs) across 14 phyla were detected, with Actinobacteria (41.2%), Proteobacteria (26.5%), and Acidobacteria (14.3%) being the most abundant. Within Actinobacteria, 107 OTUs were found, primarily from the families Mycobacteriaceae, Pseudonocardiaceae, and Streptomycetaceae. Mycobacterium and Streptomyces were the predominant genera across all samples. Seventeen rare OTUs with relative abundance < 0.1% were identified, with 82.3% found in only one sample yet 25.5% detected in all units. Notable rare and transient genera included Salinibacterium, Nocardia, Actinomycetospora_01, Saccharopolyspora, Sporichthya, and Nonomuraea. The high diversity and distribution of Actinobacteria OTUs indicate the area's potential for discovering new rare species. Intensified prospection on underexplored environments and characterization of their actinobacterial diversity could lead to the discovery of new species capable of generating innovative natural products.
Collapse
Affiliation(s)
- Leonardo Bandeira
- Ecology and Natural Resources, Federal University of Ceará, Fortaleza, Brazil.
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil.
| | | | - Fernando Cavalcante
- Ecology and Natural Resources, Federal University of Ceará, Fortaleza, Brazil
| | - Ariel Mesquita
- Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Martins
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| | - Suzana Martins
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| |
Collapse
|
2
|
Dos Reis JBA, do Vale HMM, Lorenzi AS. Insights into taxonomic diversity and bioprospecting potential of Cerrado endophytic fungi: a review exploring an unique Brazilian biome and methodological limitations. World J Microbiol Biotechnol 2022; 38:202. [PMID: 35999403 DOI: 10.1007/s11274-022-03386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
Cerrado is the second largest biome in Brazil, and it is known for harboring a wide variety of endemic plant and microbial species, among which are endophytic fungi. Endophytic fungi are microorganisms capable of colonizing the interior of plant tissues without causing disease in host plants. Especially in the Cerrado biome, this group of microorganisms is still poorly studied and information on species estimation, ecological and evolutionary importance is not accurate and remains unknown. Also, it is extremely important to emphasize that great part of studies available on Cerrado endophytic fungi are national literature, including master's dissertations, course conclusion works or unpublished doctoral theses. The majority of these studies has highlighted that the endemic plant species are an important habitat for fungal endophytes, and new species have increasingly been described. Due to the lack of international literature on Cerrado endophytic fungi, the present review brings a bibliographic survey on taxonomic diversity and bioprospecting potential of fungal endophytes from a unique environment. This review also emphasizes the importance of studying Brazilian endophytic fungi from Cerrado as a source of new technologies (biofertilizer and biocontroller), since they are secondary metabolite-producing organisms with different biological activities for biotechnological, agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
| | - Helson Mário Martins do Vale
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília-UnB, Brasília, DF, Brazil
| | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília-UnB, Brasília, DF, Brazil.
| |
Collapse
|
3
|
Costa DPD, Araujo ASF, Pereira APDA, Mendes LW, França RFD, Silva TDGED, Oliveira JBD, Araujo JS, Duda GP, Menezes RSC, Medeiros EVD. Forest-to-pasture conversion modifies the soil bacterial community in Brazilian dry forest Caatinga. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151943. [PMID: 34864020 DOI: 10.1016/j.scitotenv.2021.151943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/21/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Soils comprise a huge fraction of the world's biodiversity, contributing to several crucial ecosystem functions. However, how the forest-to-pasture conversion impact soil bacterial diversity remains poorly understood, mainly in the Caatinga biome, the largest tropical dry forest of the world. Here, we hypothesized that forest-to-pasture conversion would shape the microbial community. Thus, the soil bacterial community was assessed using the 16S rRNA gene sequencing into the Illumina MiSeq platform. Then, we analyzed ecological patterns and correlated the bacterial community with environmental parameters in forest, and two distinct pastures areas, one less productive and another more productive. The variation in soil properties in pastures and forest influenced the structure and diversity of the bacterial community. Thus, the more productive pasture positively influenced the proportion of specialists and the co-occurrence network compared to the less productive pasture. Also, Proteobacteria, Acidobacteria, and Verrucomicrobia were abundant under forest, while Actinobacteria, Firmicutes, and Chloroflexi were abundant under pastures. Also, the more productive pasture presented a higher bacterial diversity, which is important since that a more stable and connected bacterial community could benefit the agricultural environment and enhance plant performance, as can be observed by the highest network complexity in this pasture. Together, our findings elucidate a significant shift in soil bacterial communities as a consequence of forest-to-pasture conversion and bring important information for the development of preservation strategies.
Collapse
Affiliation(s)
- Diogo Paes da Costa
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| | | | | | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, 13400-970 Piracicaba, SP, Brazil.
| | - Rafaela Felix da França
- Department of Soils, Federal Rural University of Rio de Janeiro, 23890-000 Seropédica, RJ, Brazil.
| | | | - Julyana Braga de Oliveira
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| | - Jenifer Sthephanie Araujo
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| | - Gustavo Pereira Duda
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| | | | - Erika Valente de Medeiros
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| |
Collapse
|
4
|
de Souza LC, Procópio L. The adaptations of the microbial communities of the savanna soil over a period of wildfire, after the first rains, and during the rainy season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14070-14082. [PMID: 34601674 DOI: 10.1007/s11356-021-16731-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Annually, the Cerrado ecosystem alternates between dry periods and long rainy seasons. During the dry season, severe forest fires occur, consuming a considerable part of the native vegetation, which impacts directly on the microbiome of the soil. Evaluate the adaptations of the soil microbiome to drought, rain and wildfire. Sequencing of the 16S rRNA gene was carried out for three significant conditions: drought and forest fires ("Fire"), after the first recorded rains ("First_Rain"), and during the rainy season ("Rainy"). It has been shown that under the "Fire" condition, there was a predominance of Phylum Actinobacteria, followed by Proteobacteria and Firmicutes. With the advent of the rainy season, "First_Rain," there was a change in the predominant taxonomic groups, with a higher prevalence of members of Proteobacteria and Firmicutes. During the rainy season, Proteobacteria and Firmicutes continued as the most prevalent groups. However, it was noted that in this period, there was an increase in bacterial diversity when compared with other periods analyzed. These results show how environmental factors influence adaptations in microbial communities. This allows for a better understanding of how to link the structure of the microbial community to the performance of ecosystems, and assist in preventing the consequences of increased frequency of wildfires, and long periods of drought.
Collapse
Affiliation(s)
- Lucas Conceição de Souza
- Faculty of Geosciences (FAGEO), Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil
| | - Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
ARAUJO ADEMIRS, ROCHA SANDRAM, ANTUNES JADSONE, ARAUJO FABIOF, MENDES LUCASW. Ecosystem functions in different physiognomies of Cerrado through the Rapid Ecosystem Function Assessment (REFA). AN ACAD BRAS CIENC 2022; 94:e20200457. [DOI: 10.1590/0001-3765202220200457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
|
6
|
Yang R, Fang J, Cao Q, Zhao D, Dong J, Wang R, Liu J. The content, composition, and influencing factors of organic carbon in the sediments of two types of constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49206-49219. [PMID: 33932213 DOI: 10.1007/s11356-021-14134-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetland is a common measure for water purification and biodiversity conservation, but the mechanism of carbon storage is still unclear. Here, we researched the content and composition of soil organic carbon (SOC) and the influencing factors in surface sediment in surface flow constructed wetlands (SFCW) and subsurface flow constructed wetlands (SSFCW). Results showed that the content and storage of SOC in SSFCW were significantly higher than those in SFCW. However, the higher proportion of light fraction organic carbon (LFOC) and lower proportion of heavy fraction organic carbon (HFOC) in SSFCW indicated that SSFCW had less stable organic carbon storage than SFCW. The composition of SOC in the two types of constructed wetlands was mainly affected by total nitrogen, which suggesting carbon-nitrogen coupling in constructed wetlands. The abundant microbial species in SSFCW and their positive correlation with SOC could explain the higher carbon storage in SSFCW than in SFCW. In addition, plant biomass was the principle factor limiting LFOC proportion in SFCW, while it was moisture content in SSFCW. The study has important implications for understanding and management of ecological function of carbon sequestration in contrasted wetlands, and also provides a special perspective to understand the carbon storage mechanism in wetlands.
Collapse
Affiliation(s)
- Ruirui Yang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Jiaohui Fang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Qingqing Cao
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan, 250101, China
| | - Di Zhao
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Junyu Dong
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Renqing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
- School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
7
|
Gnangui SLE, Fossou RK, Ebou A, Amon CER, Koua DK, Kouadjo CGZ, Cowan DA, Zézé A. The Rhizobial Microbiome from the Tropical Savannah Zones in Northern Côte d'Ivoire. Microorganisms 2021; 9:microorganisms9091842. [PMID: 34576737 PMCID: PMC8472840 DOI: 10.3390/microorganisms9091842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023] Open
Abstract
Over the past decade, many projects have been initiated worldwide to decipher the composition and function of the soil microbiome, including the African Soil Microbiome (AfSM) project that aims at providing new insights into the presence and distribution of key groups of soil bacteria from across the African continent. In this national study, carried out under the auspices of the AfSM project, we assessed the taxonomy, diversity and distribution of rhizobial genera in soils from the tropical savannah zones in Northern Côte d’Ivoire. Genomic DNA extracted from seven sampled soils was analyzed by sequencing the V4-V5 variable region of the 16S rDNA using Illumina’s MiSeq platform. Subsequent bioinformatic and phylogenetic analyses showed that these soils harbored 12 out of 18 genera of Proteobacteria harboring rhizobia species validly published to date and revealed for the first time that the Bradyrhizobium genus dominates in tropical savannah soils, together with Microvirga and Paraburkholderia. In silico comparisons of different 16S rRNA gene variable regions suggested that the V5-V7 region could be suitable for differentiating rhizobia at the genus level, possibly replacing the use of the V4-V5 region. These data could serve as indicators for future rhizobial microbiome explorations and for land-use decision-making.
Collapse
Affiliation(s)
- Sara Laetitia Elphège Gnangui
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
| | - Romain Kouakou Fossou
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
- Correspondence:
| | - Anicet Ebou
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
- Équipe Bioinformatique, Département de Formation et de Recherche Agriculture et Ressources Animales, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro 1313, Côte d’Ivoire;
| | - Chiguié Estelle Raïssa Amon
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
| | - Dominique Kadio Koua
- Équipe Bioinformatique, Département de Formation et de Recherche Agriculture et Ressources Animales, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro 1313, Côte d’Ivoire;
| | - Claude Ghislaine Zaka Kouadjo
- Laboratoire Central de Biotechnologies, Centre National de la Recherche Agronomique, 01 Abidjan 1740, Côte d’Ivoire;
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| | - Adolphe Zézé
- Laboratoire de Biotechnologies Végétale et Microbienne (LBVM), Unité Mixte de Recherche et d’Innovation en Sciences Agronomiques et Génie Rural, Institut National Polytechnique Felix Houphouët-Boigny, Yamoussoukro 1093, Côte d’Ivoire; (S.L.E.G.); (A.E.); (C.E.R.A.); (A.Z.)
| |
Collapse
|
8
|
Selari PJRG, Olchanheski LR, Ferreira AJ, Paim TDP, Calgaro Junior G, Claudio FL, Alves EM, Santos DDC, Araújo WL, Silva FG. Short-Term Effect in Soil Microbial Community of Two Strategies of Recovering Degraded Area in Brazilian Savanna: A Pilot Case Study. Front Microbiol 2021; 12:661410. [PMID: 34177841 PMCID: PMC8221397 DOI: 10.3389/fmicb.2021.661410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
The Brazilian Cerrado is a highland tropical savanna considered a biodiversity hotspot with many endemic species of plants and animals. Over the years, most of the native areas of this biome became arable areas, and with inadequate management, some are nowadays at varying levels of degradation stage. Crop-livestock integrated systems (CLIS) are one option for the recovery of areas in degradation, improving the physicochemical and biological characteristics of the soil while increasing income and mitigating risks due to product diversification. Little is known about the effect of CLIS on the soil microbial community. Therefore, we perform this pilot case study to support further research on recovering degraded areas. The bacterial and fungal soil communities in the area with CLIS were compared to an area under moderate recovery (low-input recovering - LI) and native savanna (NS) area. Bacterial and fungal communities were investigated by 16S and ITS rRNA gene sequencing (deep rRNA sequencing). Ktedonobacteraceae and AD3 families were found predominantly in LI, confirming the relationship of the members of the Chloroflexi phylum in challenging environmental conditions, which can be evidenced in LI. The CLIS soil presented 63 exclusive bacterial families that were not found in LI or NS and presented a higher bacterial richness, which can be related to good land management. The NS area shared 21 and 6 families with CLIS and LI, respectively, suggesting that the intervention method used in the analyzed period brings microbial diversity closer to the conditions of the native area, demonstrating a trend of approximation between NS and CLIS even in the short term. The most abundant fungal phylum in NS treatment was Basidiomycota and Mucoromycota, whereas Ascomycota predominated in CLIS and LI. The fungal community needs more time to recover and to approximate from the native area than the bacterial community. However, according to the analysis of bacteria, the CLIS area behaved differently from the LI area, showing that this treatment induces a faster response to the increase in species richness, tending to more accelerated recovery. Results obtained herein encourage CLIS as a sustainable alternative for recovery and production in degraded areas.
Collapse
Affiliation(s)
- Priscila Jane Romano Gonçalves Selari
- Laboratory of Microbiology, Department of Biology, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Ceres, Brazil
| | - Luiz Ricardo Olchanheski
- Laboratory of Microbiology, Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa, Brazil
| | - Almir José Ferreira
- Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Tiago do Prado Paim
- Laboratory of Education in Agriculture Production, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Iporá, Brazil
| | - Guido Calgaro Junior
- Laboratory of Education in Agriculture Production, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Iporá, Brazil
| | - Flavio Lopes Claudio
- Laboratory of Education in Agriculture Production, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Iporá, Brazil
| | - Estenio Moreira Alves
- Laboratory of Education in Agriculture Production, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Iporá, Brazil
| | - Darliane de Castro Santos
- Laboratory of Agricultural Chemistry, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Rio Verde, Brazil
| | - Welington Luiz Araújo
- Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Fabiano Guimarães Silva
- Laboratory of Plant Tissue and Culture, Instituto Federal de Educação, Ciência e Tecnologia Goiano (Federal Institute of Education, Science and Technology Goiano), Rio Verde, Brazil
| |
Collapse
|
9
|
de Souza LC, Procópio L. The profile of the soil microbiota in the Cerrado is influenced by land use. Appl Microbiol Biotechnol 2021; 105:4791-4803. [PMID: 34061229 DOI: 10.1007/s00253-021-11377-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 02/03/2023]
Abstract
Extensive areas of the Cerrado biome have been deforested by the rapid advance of agricultural frontiers, especially by agricultural monocultures, and cultivated pastures. The objective of this study was to characterize the soil microbial community of an environment without anthropogenic interference and to compare it with soybean soil and pasture areas. For that, metagenomic sequencing techniques of the 16S rRNA gene were employed. Consistent changes in the profiles of diversity and abundance were described between communities in relation to the type of soil. The soil microbiome of the native environment was influenced by the pH level and content of Al3+, whereas the soil microbiomes cultivated with soybean and pasture were associated with the levels of nutrients N and P and the ions Ca2+ and Mg2+, respectively. The analysis of bacterial communities in the soil of the native environment showed a high abundance of members of the Proteobacteria phylum, with emphasis on the Bradyrhizobium and Burkholderia genera. In addition, significant levels of species of the Bacillus genus, and Dyella ginsengisoli, and Edaphobacter aggregans of the Acidobacteria phylum were detected. In the soil community with soybean cultivation, there was a predominance of Proteobacteria, mainly of the Sphingobium and Sphingomonas genera. In the pasture, the soil microbiota was dominated by the Firmicutes, which was almost entirely represented by the Bacillus genus. These results suggest an adaptation of the bacterial community to the soybean and pasture cultivations and will support understanding how environmental and anthropogenic factors shape the soil microbial community. KEY POINTS: • The Cerrado soil microbiota is sensitive to impacts on the biome. • Microbial communities have been altered at all taxonomic levels.
Collapse
Affiliation(s)
- Lucas Conceição de Souza
- Faculty of Geosciences (FAGEO), Universidade Federal do Mato Grosso (UFMT), Cuiabá, Mato Grosso, Brazil.
| | - Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Silveira R, Silva MRSS, de Roure Bandeira de Mello T, Alvim EACC, Marques NCS, Kruger RH, da Cunha Bustamante MM. Bacteria and Archaea Communities in Cerrado Natural Pond Sediments. MICROBIAL ECOLOGY 2021; 81:563-578. [PMID: 32829441 DOI: 10.1007/s00248-020-01574-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Natural ponds in the Brazilian Cerrado harbor high biodiversity but are still poorly studied, especially their microbial assemblage. The characterization of the microbial community in aquatic environments is fundamental for understanding its functioning, particularly under the increasing pressure posed by land conversion and climate change. Here, we aim to characterize the structure (abundance, richness, and diversity) and composition of the Bacteria and Archaea in the sediment of two natural ponds belonging to different basins that primarily differ in size and depth in the Cerrado. Sediment samples were collected in the dry and rainy seasons and the transition periods between both. The structure and composition of Bacteria and Archaea were assessed by 16S rRNA gene pyrosequencing. We identified 45 bacterial and four archaeal groups. Proteobacteria and Acidobacteria dominated the bacterial community, while Euryarchaeota and Thaumarchaeota dominated the archaeal community. Seasonal fluctuations in the relative abundance of microbial taxa were observed, but pond characteristics were more determinant to community composition differences. Microbial communities are highly diverse, and local variability could partially explain the microbial structure's main differences. Functional predictions based in 16S rRNA gene accessed with Tax4Fun indicated an enriched abundance of predicted methane metabolism in the deeper pond, where higher abundance of methanogenic archaea Methanocella, Methanosaeta, and Methanomicrobiaceae was detected. Our dataset encompasses the more comprehensive survey of prokaryotic microbes in Cerrado's aquatic environments. Here, we present basic and essential information about composition and diversity, for initial insights into the ecology of Bacteria and Archaea in these environments.
Collapse
Affiliation(s)
- Rafaella Silveira
- Microbial Biology, Cellular Biology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil.
- Enzymology Laboratory, Cellular Biology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil.
- Ecosystems Laboratory, Ecology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil.
| | | | | | | | - Nubia Carla Santos Marques
- Ecosystems Laboratory, Ecology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil
| | - Ricardo Henrique Kruger
- Microbial Biology, Cellular Biology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil
- Enzymology Laboratory, Cellular Biology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil
| | - Mercedes Maria da Cunha Bustamante
- Microbial Biology, Cellular Biology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil.
- Ecosystems Laboratory, Ecology Department, Biology Institute, University of Brasília, Brasilia, DF, 70919-970, Brazil.
| |
Collapse
|
11
|
Myers KN, Conn D, Brown AMV. Essential Amino Acid Enrichment and Positive Selection Highlight Endosymbiont's Role in a Global Virus-Vectoring Pest. mSystems 2021; 6:e01048-20. [PMID: 33531407 PMCID: PMC7857533 DOI: 10.1128/msystems.01048-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
Host-associated microbes display remarkable convergence in genome repertoire resulting from selection to supplement missing host functions. Nutritional supplementation has been proposed in the verrucomicrobial endosymbiont Xiphinematobacter sp., which lives within a globally widespread group of plant-parasitic nematodes that vector damaging nepoviruses to plants. Only one genome sequence has been published from this symbiont, leaving unanswered questions about its diversity, host range, role, and selective pressures within its hosts. Because its hosts are exceptionally resistant to culturing, this symbiont is best studied through advanced genomic approaches. To analyze the role of Xiphinematobacter sp. in its host, sequencing was performed on nematode communities, and then genomes were extracted for comparative genomics, gene ontology enrichment tests, polymorphism analysis, de Bruijn-based genome-wide association studies, and tests of pathway- and site-specific selection on genes predicted play a role in the symbiosis. Results showed a closely clustered set of Xiphinematobacter isolates with reduced genomes of ∼917 kbp, for which a new species was proposed. Symbionts shared only 2.3% of genes with outgroup Verrucomicrobia, but comparative analyses showed high conservation of all 10 essential amino acid (EAA) biosynthesis pathways plus several vitamin pathways. These findings were supported by gene ontology enrichment tests and high polymorphisms in these pathways compared with background. Genome-wide association analysis confirmed high between-species fixation of alleles with significant functional enrichment for EAA and thiamine synthesis. Strong positive selection was detected on sites within these pathways, despite several being under increased purifying selection. Together, these results suggest that supplementation of EAAs missing in the host diet may drive this widespread symbiosis.IMPORTANCE Xiphinematobacter spp. are distinctly evolved intracellular symbionts in the phylum Verrucomicrobia, which includes the important human gut-associated microbe Akkermansia muciniphila and many highly abundant free-living soil microbes. Like Akkermansia sp., Xiphinematobacter sp. is obligately associated with the gut of its hosts, which in this case consists of a group of plant-parasitic nematodes that are among the top 10 most destructive species to global agriculture, by vectoring plant viruses. This study examined the hypothesis that the key to this symbiont's stable evolutionary association with its host is through provisioning nutrients that its host cannot make that may be lacking in the nematode's plant phloem diet, such as essential amino acids and several vitamins. The significance of our research is in demonstrating, using population genomics, the signatures of selective pressure on these hypothesized roles to ultimately learn how this independently evolved symbiont functionally mirrors symbionts of phloem-feeding insects.
Collapse
Affiliation(s)
- Kaitlyn N Myers
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Daniel Conn
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
12
|
Bonatelli ML, Lacerda-Júnior GV, dos Reis Junior FB, Fernandes-Júnior PI, Melo IS, Quecine MC. Beneficial Plant-Associated Microorganisms From Semiarid Regions and Seasonally Dry Environments: A Review. Front Microbiol 2021; 11:553223. [PMID: 33519722 PMCID: PMC7845453 DOI: 10.3389/fmicb.2020.553223] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Semiarid regions are apparently low biodiversity environments; however, these environments may host a phylogenetically diverse microbial community associated with plants. Their microbial inhabitants are often recruited to withstand stressful settings and improve plant growth under harsh conditions. Thus, plant-associated microorganisms isolated from semiarid and seasonally dry environments will be detailed in the present review, focusing on plant growth promotion potential and the microbial ability to alleviate plant abiotic stress. Initially, we explored the role of microbes from dry environments around the world, and then, we focused on seasonally dry Brazilian biomes, the Caatinga and the Cerrado. Cultivable bacteria from semiarid and seasonally dry environments have demonstrated great plant growth promotion traits such as plant hormone production, mobilization of insoluble nutrients, and mechanisms related to plant abiotic stress alleviation. Several of these isolates were able to improve plant growth under stressful conditions commonly present in typical semiarid regions, such as high salinity and drought. Additionally, we highlight the potential of plants highly adapted to seasonal climates from the Caatinga and Cerrado biomes as a suitable pool of microbial inoculants to maintain plant growth under abiotic stress conditions. In general, we point out the potential for the exploitation of new microbial inoculants from plants growing in dry environments to ensure a sustainable increase in agricultural productivity in a future climate change scenario.
Collapse
Affiliation(s)
- Maria Leticia Bonatelli
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | | | - Itamar Soares Melo
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
13
|
Venturini AM, Nakamura FM, Gontijo JB, da França AG, Yoshiura CA, Mandro JA, Tsai SM. Robust DNA protocols for tropical soils. Heliyon 2020; 6:e03830. [PMID: 32426533 PMCID: PMC7226647 DOI: 10.1016/j.heliyon.2020.e03830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 09/06/2019] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Studies in the Amazon are being intensified to evaluate the alterations in the microbial communities of soils and sediments in the face of increasing deforestation and land-use changes in the region. However, since these environments present highly heterogeneous physicochemical properties, including contaminants that hinder nucleic acids isolation and downstream techniques, the development of best molecular practices is crucial. This work aimed to optimize standard protocols for DNA extraction and gene quantification by quantitative real-time PCR (qPCR) based on natural and anthropogenic soils and sediments (primary forest, pasture, Amazonian Dark Earth, and várzea, a seasonally flooded area) of the Eastern Amazon. Our modified extraction protocol increased the fluorometric DNA concentration by 48%, reaching twice the original amount for most of the pasture and várzea samples, and the 260/280 purity ratio by 15% to values between 1.8 to 2.0, considered ideal for DNA. The addition of bovine serum albumin in the qPCR reaction improved the quantification of the 16S rRNA genes of Archaea and Bacteria and its precision among technical replicates, as well as allowed their detection in previously non-amplifiable samples. It is concluded that the changes made in the protocols improved the parameters of the DNA samples and their amplification, thus increasing the reliability of microbial communities' analysis and its ecological interpretations.
Collapse
Affiliation(s)
- Andressa Monteiro Venturini
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Fernanda Mancini Nakamura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Júlia Brandão Gontijo
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Aline Giovana da França
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Caio Augusto Yoshiura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Jéssica Adriele Mandro
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| | - Siu Mui Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário, 303, Piracicaba, SP, 13416-000, Brazil
| |
Collapse
|
14
|
Rocha SMB, Antunes JEL, Araujo FFDE, Mendes LW, Sousa RSDE, Araujo ASFDE. Soil microbial C:N:P ratio across physiognomies of Brazilian Cerrado Soil microbial biomass across a gradient of preserved native Cerrado. AN ACAD BRAS CIENC 2019; 91:e20190049. [PMID: 31721921 DOI: 10.1590/0001-3765201920190049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022] Open
Abstract
Different physiognomies across the Cerrado could influence the microbial C:N:P ratio in the soil since these physiognomies present different abundance and diversity of plant species. Thus, the aim of this study was to evaluate the microbial C:N:P ratio in soil across three different physiognomies of Cerrado in the Northeast, Brazil, namely campo graminóide (dominance of grasses), cerrado stricto sensu (dominance of grasses, shrubs, low trees, and woody stratum), and cerradão (dominance of woody stratum). Campo graminóide was characterized by lower values of total organic C, N, microbial C:P, N:P, and soil C:N. Cerrado stricto sensu presented average values for most of the measured parameters, while cerradão presented higher values of microbial C, N, P, organic C, N and soil C:P and C:N ratios. The principal component analysis showed that the samples grouped according to the sites, with a clear gradient from campo graminóide to cerradão. Therefore, the differences of vegetation across physiognomies of Cerrado influenced the soil microbial C:N:P ratio, where cerradão showed highest microbial C:N:P ratio than soil under campo graminóide.
Collapse
Affiliation(s)
- Sandra M B Rocha
- Laboratório de Qualidade do Solo, Centro de Ciências Agrárias, Universidade Federal do Piauí, Campus da Socopo, 64049-550 Teresina, PI, Brazil
| | - Jadson E L Antunes
- Laboratório de Qualidade do Solo, Centro de Ciências Agrárias, Universidade Federal do Piauí, Campus da Socopo, 64049-550 Teresina, PI, Brazil
| | - Fabio F DE Araujo
- Universidade do Oeste Paulista, Campus II, Rodovia SP-270, Km 572, 19067-175 Presidente Prudente, SP, Brazil
| | - Lucas W Mendes
- Laboratorio de Biologia Molecular e Celular, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário, 303, 13400-970 Piracicaba, SP, Brazil
| | - Ricardo S DE Sousa
- Laboratório de Qualidade do Solo, Centro de Ciências Agrárias, Universidade Federal do Piauí, Campus da Socopo, 64049-550 Teresina, PI, Brazil
| | - Ademir S F DE Araujo
- Laboratório de Qualidade do Solo, Centro de Ciências Agrárias, Universidade Federal do Piauí, Campus da Socopo, 64049-550 Teresina, PI, Brazil
| |
Collapse
|
15
|
Protist species richness and soil microbiome complexity increase towards climax vegetation in the Brazilian Cerrado. Commun Biol 2018; 1:135. [PMID: 30272014 PMCID: PMC6127325 DOI: 10.1038/s42003-018-0129-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/06/2018] [Indexed: 01/13/2023] Open
Abstract
Biodiversity underlies ecosystem functioning. While aboveground biodiversity is often well studied, the belowground microbiome, in particular protists, remains largely unknown. Indeed, holistic insights into soil microbiome structures in natural soils, especially in hyperdiverse biomes such as the Brazilian Cerrado, remain unexplored. Here, we study the soil microbiome across four major vegetation zones of the Cerrado, ranging from grass-dominated to tree-dominated vegetation with a focus on protists. We show that protist taxon richness increases towards the tree-dominated climax vegetation. Early successional habitats consisting of primary grass vegetation host most potential plant pathogens and least animal parasites. Using network analyses combining protist with prokaryotic and fungal sequences, we show that microbiome complexity increases towards climax vegetation. Together, this suggests that protists are key microbiome components and that vegetation succession towards climax vegetation is stimulated by higher loads of animal and plant pathogens. At the same time, an increase in microbiome complexity towards climax vegetation might enhance system stability. Araujo et al. investigate the soil microbiome across four major vegetation zones of the Brazilian Cerrado and find that protist taxon richness increases towards the tree-dominated climax vegetation. Their findings suggest that increased microbiome complexity might enhance system stability towards climax vegetation.
Collapse
|
16
|
Abstract
Some of the most agriculturally important plant-parasitic nematodes (PPNs) harbor endosymbionts. Extensive work in other systems has shown that endosymbionts can have major effects on host virulence and biology. This review highlights the discovery, development, and diversity of PPN endosymbionts, incorporating inferences from genomic data. Cardinium, reported from five PPN hosts to date, is characterized by its presence in the esophageal glands and other tissues, with a discontinuous distribution across populations, and genomic data suggestive of horizontal gene exchange. Xiphinematobacter occurs in at least 27 species of dagger nematode in the ovaries and gut epithelial cells, where genomic data suggest it may serve in nutritional supplementation. Wolbachia, reported in just three PPNs, appears to have an ancient history in the Pratylenchidae and displays broad tissue distribution and genomic features intermediate between parasitic and reproductive groups. Finally, a model is described that integrates these insights to explain patterns of endosymbiont replacement.
Collapse
Affiliation(s)
- Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79410, USA;
| |
Collapse
|
17
|
Archaea diversity in vegetation gradients from the Brazilian Cerrado. Braz J Microbiol 2018; 49:522-528. [PMID: 29459210 PMCID: PMC6066726 DOI: 10.1016/j.bjm.2017.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/07/2017] [Accepted: 08/25/2017] [Indexed: 02/01/2023] Open
Abstract
We used 16S rRNA sequencing to assess the archaeal communities across a gradient of Cerrado. The archaeal communities differed across the gradient. Crenarcheota was the most abundant phyla, with Nitrosphaerales and NRPJ as the predominant classes. Euryachaeota was also found across the Cerrado gradient, including the classes Metanocellales and Methanomassiliicoccaceae.
Collapse
|
18
|
Distinct taxonomic and functional composition of soil microbiomes along the gradient forest-restinga-mangrove in southeastern Brazil. Antonie van Leeuwenhoek 2017; 111:101-114. [PMID: 28831604 DOI: 10.1007/s10482-017-0931-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
Soil microorganisms play crucial roles in ecosystem functioning, and the central goal in microbial ecology studies is to elucidate which factors shape community structure. A better understanding of the relationship between microbial diversity, functions and environmental parameters would increase our ability to set conservation priorities. Here, the bacterial and archaeal community structure in Atlantic Forest, restinga and mangrove soils was described and compared based on shotgun metagenomics. We hypothesized that each distinct site would harbor a distinct taxonomic and functional soil community, which is influenced by environmental parameters. Our data showed that the microbiome is shaped by soil properties, with pH, base saturation, boron and iron content significantly correlated to overall community structure. When data of specific phyla were correlated to specific soil properties, we demonstrated that parameters such as boron, copper, sulfur, potassium and aluminum presented significant correlation with the most number of bacterial groups. Mangrove soil was the most distinct site and presented the highest taxonomic and functional diversity in comparison with forest and restinga soils. From the total 34 microbial phyla identified, 14 were overrepresented in mangrove soils, including several archaeal groups. Mangrove soils hosted a high abundance of sequences related to replication, survival and adaptation; forest soils included high numbers of sequences related to the metabolism of nutrients and other composts; while restinga soils included abundant genes related to the metabolism of carbohydrates. Overall, our finds show that the microbial community structure and functional potential were clearly different across the environmental gradient, followed by functional adaptation and both were related to the soil properties.
Collapse
|