1
|
Wang J, Wang X, Liu L, Wang X, Wang J, Zheng Y, Wang L, Pan X. Analyzing the Interaction between Tetrahymena pyriformis and Bacteria under Different Physicochemical Conditions When Infecting Guppy Using the eDNA Method. Animals (Basel) 2024; 14:2194. [PMID: 39123720 PMCID: PMC11310954 DOI: 10.3390/ani14152194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In the aquaculture system of ornamental fish, the interaction between bacterial microbiota and ciliate protozoa can prevent or promote disease outbreaks, and different physicochemical conditions will affect the relationships between them. We investigated the interaction between bacterial microbiota and the parasite Tetrahymena pyriformis when infecting Poecilia reticulata (guppy) under different physicochemical conditions. The abundance of T. pyriformis in water, the relative abundance of bacterial species, and histopathological observation were studied or monitored using environmental DNA (eDNA) extraction technology, the qPCR method, and 16s rRNA sequencing, respectively. The morphological identification and phylogenetic analysis of T. pyriformis were carried out. The infected guppy tissue was also stained by the hematoxylin and eosin methods. The results showed: (1) the bacterial communities of water samples were mainly composed of species assigned to Proteobacteria and Bacteroidetes, and Tabrizicola and Puniceicoccaceae were positively correlated with fish mortality, T. pyriformis abundance, and temperature. (2) Arcicella and Methyloversatilis universalis with different correlations between ciliates appeared in different treatment groups, the result of which proved that environmental factors affected the interaction between bacteria and T. pyriformis. (3) Lower temperatures and a higher pH were more beneficial for preventing disease outbreaks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xuming Pan
- Laboratory of Protozoology, Harbin Normal University, Harbin 150025, China; (J.W.); (X.W.); (L.L.); (X.W.); (J.W.); (Y.Z.); (L.W.)
| |
Collapse
|
2
|
Bruno A, Sandionigi A, Panio A, Rimoldi S, Orizio F, Agostinetto G, Hasan I, Gasco L, Terova G, Labra M. Aquaculture ecosystem microbiome at the water-fish interface: the case-study of rainbow trout fed with Tenebrio molitor novel diets. BMC Microbiol 2023; 23:248. [PMID: 37674159 PMCID: PMC10481543 DOI: 10.1186/s12866-023-02990-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Sustainable aquaculture relies on multiple factors, including water quality, fish diets, and farmed fish. Replacing fishmeal (FM) with alternative protein sources is key for improving sustainability in aquaculture and promoting fish health. Indeed, great research efforts have been made to evaluate novel feed formulations, focusing especially on the effects on the fish gut microbiome. Few studies have explored host-environment interactions. In the present study, we evaluated the influence of novel insect-based (Tenebrio molitor) fish diets on the microbiome at the water-fish interface in an engineered rainbow trout (Oncorhynchus mykiss) farming ecosystem. Using 16S rRNA gene metabarcoding, we comprehensively analyzed the microbiomes of water, tank biofilm, fish intestinal mucus, fish cutis, and feed samples. RESULTS Core microbiome analysis revealed the presence of a highly reduced core shared by all sample sources, constituted by Aeromonas spp., in both the control and novel feed test groups. Network analysis showed that samples were clustered based on the sample source, with no significant differences related to the feed formulation tested. Thus, the different diets did not seem to affect the environment (water and tank biofilm) and fish (cutis and intestinal mucus) microbiomes. To disentangle the contribution of feed at a finer scale, we performed a differential abundance analysis and observed differential enrichment/impoverishment in specific taxa, comparing the samples belonging to the control diet group and the insect-based diet group. CONCLUSIONS Omic exploration of the water-fish interface exposes patterns that are otherwise undetected. These data demonstrate a link between the environment and fish and show that subtle but significant differences are caused by feed composition. Thus, the research presented here is a step towards positively influencing the aquaculture environment and its microbiome.
Collapse
Affiliation(s)
- Antonia Bruno
- ZooPlantLab, Biotechnology and Biosciences Department, University of Milano-Bicocca, Milan, Italy.
| | | | - Antonella Panio
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Milan, Italy
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Flavio Orizio
- ZooPlantLab, Biotechnology and Biosciences Department, University of Milano-Bicocca, Milan, Italy
| | - Giulia Agostinetto
- ZooPlantLab, Biotechnology and Biosciences Department, University of Milano-Bicocca, Milan, Italy
| | - Imam Hasan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Torino, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Massimo Labra
- ZooPlantLab, Biotechnology and Biosciences Department, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
3
|
Ye YQ, Han JR, Zhao JX, Ye MQ, Du ZJ. Genomic Analysis and Characterization of Pseudotabrizicola formosa sp. nov., a Novel Aerobic Anoxygenic Phototrophic Bacterium, Isolated from Sayram Lake Water. Microorganisms 2022; 10:2154. [PMID: 36363747 PMCID: PMC9698765 DOI: 10.3390/microorganisms10112154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/26/2023] Open
Abstract
Aerobic anoxygenic photosynthetic bacteria (AAPB) are a kind of heterotrophic prokaryote that can use bacteriochlorophyll (BChl) for photosynthesis without oxygen production and they are widely distributed in aquatic environments, including oceans, lakes, and rivers. A novel aerobic anoxygenic photosynthetic bacterium strain XJSPT was isolated during a study of water microbial diversity in Sayram Lake, Xinjiang Province, China. Strain XJSPT was found to grow optimally at 33 °C, pH 7.5 with 1.0% (w/v) NaCl, and to produce bacteriochlorophyll a and carotenoids. Phylogenetic analysis based on 16S rRNA gene sequence and concatenated alignment sequences of 120 ubiquitous single-copy proteins both supported that strain XJSPT belonged to the genus Pseudotabrizicola. Both average nucleotide identity (ANI) and DNA-DNA hybridization (DDH) values were below the species delineation threshold. The primary polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unknown lipid, and one unidentified phospholipid. Based on the results of polyphasic analyses performed in this study, strain XJSPT represents a new member of the genus Pseudotabrizicola, for which the name Pseudotabrizicola formosa sp. nov. is proposed. The type strain is XJSPT (=KCTC 52636T = MCCC 1H00184T = SDUM 107003T). Comparative genomic analysis showed that four species of the genus Pseudotabrizicola shared 2570 core genes and possessed a complete anoxygenic photosystem II.
Collapse
Affiliation(s)
- Yu-Qi Ye
- Marine College, Shandong University, Weihai 264209, China
| | - Ji-Ru Han
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Jin-Xin Zhao
- Infection Program and Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Meng-Qi Ye
- Marine College, Shandong University, Weihai 264209, China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai 264209, China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai 264209, China
| |
Collapse
|
4
|
Xu J, Deng T, Huang Y, Dong M, Yang S, Xu M. Tabrizicola rongguiensis sp. nov., isolated from the sediment of a river in Ronggui, Foshan city, China. Int J Syst Evol Microbiol 2022; 72. [PMID: 36260499 DOI: 10.1099/ijsem.0.005539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
A novel Gram-negative, aerobic, non-spore-forming, non-motile and rod-shaped bacterium, designated J26T, was isolated from the sediment of a river in Ronggui, Foshan city, China. Strain J26T grew optimally at 0 % (w/v) NaCl, pH 6.5-7.5, and 30 °C, and it formed milky white irregular colonies on Reasoner's 2A agar medium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain J26T had the highest similarity to Tabrizicola aquatica RCRI19T (97.1 %) and formed a distinct clade in the genus Tabrizicola. Cellular components of J26T supported this strain as a member of the genus Tabrizicola. The predominant fatty acids were C18 : 1 ω7c, C18 : 1 ω7c-11 methyl and C16 : 0. Polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphorylethanolamine. Ubiquinone Q-10 was the major respiratory quinone, and the DNA G+C content was 64.2 mol%. However, low 16S rRNA gene sequence similarity and average nucleotide identity (73.56 % for ANIb between strain J26T with RCRI19T) demonstrated that strain J26T should be assigned to a novel species. Moreover, the differences between J26T and RCRI19T in terms of physiological and biochemical properties, such as carbon, nitrogen and sulphur metabolism, further supported that J26T represents a novel species, for which the name Tabrizicola rongguiensis sp. nov. is proposed. The type strain is J26T (=GDMCC 1.2843T=KCTC 92112T).
Collapse
Affiliation(s)
- Jiarou Xu
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, PR China
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Tongchu Deng
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Youda Huang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Meijun Dong
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Shan Yang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| |
Collapse
|
5
|
Muramatsu S, Hirose S, Iino T, Ohkuma M, Hanada S, Haruta S. Neotabrizicola shimadae gen. nov., sp. nov., an aerobic anoxygenic phototrophic bacterium harbouring photosynthetic genes in the family Rhodobacteraceae, isolated from a terrestrial hot spring. Antonie van Leeuwenhoek 2022; 115:731-740. [PMID: 35380297 DOI: 10.1007/s10482-022-01728-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/06/2022] [Indexed: 11/27/2022]
Abstract
A bacteriochlorophyll-containing bacterium, designated as strain N10T, was isolated from a terrestrial hot spring in Nagano Prefecture, Japan. Gram-stain-negative, oxidase- and catalase-positive and ovoid to rod-shaped cells showed the features of aerobic anoxygenic phototrophic bacteria, i.e., strain N10T synthesised bacteriochlorophylls under aerobic conditions and could not grow anaerobically even under illumination. Genome analysis found genes for bacteriochlorophyll and carotenoid biosynthesis, light-harvesting complexes and type-2 photosynthetic reaction centre in the chromosome. Phylogenetic analyses based on the 16S rRNA gene sequence and 92 core proteins revealed that strain N10T was located in a distinct lineage near the type species of the genera Tabrizicola and Xinfangfangia and some species in the genus Rhodobacter (e.g., Rhodobacter blasticus). Strain N10T shared < 97.1% 16S rRNA gene sequence identity with those species in the family Rhodobacteraceae. The digital DNA-DNA hybridisation, average nucleotide identity and average amino acid identity values with the relatives, Tabrizicola aquatica RCRI19T (an aerobic anoxygenic phototrophic bacterium), Xinfangfangia soli ZQBWT and R. blasticus ATCC 33485T were 19.9-20.7%, 78.2-79.1% and 69.1-70.1%, respectively. Based on the phenotypic features, major fatty acid and polar lipid compositions, genome sequence and phylogenetic position, a novel genus and species are proposed for strain N10T, to be named Neotabrizicola shimadae (= JCM 34381T = DSM 112087T). Strain N10T which is phylogenetically located among aerobic anoxygenic phototrophic bacteria (Tabrizicola), bacteriochlorophyll-deficient bacteria (Xinfangfangia) and anaerobic anoxygenic phototrophic bacteria (Rhodobacter) has great potential to promote studies on the evolution of photosynthesis in Rhodobacteraceae.
Collapse
Affiliation(s)
- So Muramatsu
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Setsuko Hirose
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Takao Iino
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-0856, Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
6
|
Hallaj-Nezhadi S, Hamdipour R, Shahrvirani M, Zare Tin R, Chapeland-Leclerc F, Ruprich-Robert G, Esnaashari S, Elyasi Far B, Dilmaghani A. Antimicrobial activity of Bacillus sp. isolated strains of wild honey. BMC Complement Med Ther 2022; 22:78. [PMID: 35305633 PMCID: PMC8933914 DOI: 10.1186/s12906-022-03551-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Multi-drug resistant bacteria hazards to the health of humans could be an agent in the destruction of human generation. Natural products of Bacillus species are the main source to access progressive antibiotics that can be a good candidate for the discovery of novel antibiotics. Wild honey as a valuable food has been used in medicine with antimicrobial effects. OBJECTIVE Bacillus strains isolated from wild honey were evaluated for the potential antimicrobial activity against human and plant bacterial and fungal pathogens. METHODS Three bacterial isolates were identified as strain Khuz-1 (98.27% similarity with Bacillus safensis subsp. Safensis strain FO-36bT), strain Khuz-2 (99.18% similarity with Bacillus rugosus strain SPB7T), and strain Khuz-3 (99.78% similarity with Bacillus velezensis strain CR-502 T) by 16S rRNA gene sequences. The strains were characterized by their ability to inhibit the growth of human and phytopathogenic fungi. RESULTS The results indicated that B. rugosus strain Khuz-2 inhibited the growth of phytopathogenic and human fungal more effective than other ones. It seems that the strain Khuz-2 has a suitable antimicrobial and antifungal potential as a good candidate for further pharmaceutical research. CONCLUSION Based on the results of GC-MS, Pyrrolo [1,2-a] pyrazine-1,4-dion, hexahydro-3-(2-methylpropyle) (PPDHM) was the major compound for all strains which have a various pharmacological effect. Isolation and identification of beneficial bacteria from natural sources can play an important role in future pharmaceutical and industrial applications.
Collapse
Affiliation(s)
- Somayeh Hallaj-Nezhadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Drug &Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasoul Hamdipour
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Shahrvirani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Zare Tin
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Florence Chapeland-Leclerc
- Institut Des Energies de Demain (IED), UMR 8236, Univ Paris Descartes, Sorbonne Paris Cité, F-75205, Paris, France
| | - Gwenael Ruprich-Robert
- Institut Des Energies de Demain (IED), UMR 8236, Univ Paris Descartes, Sorbonne Paris Cité, F-75205, Paris, France
| | - Solmaz Esnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Elyasi Far
- Department of Physiology and Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Azita Dilmaghani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Szabonella alba gen. nov., sp. nov., a motile alkaliphilic bacterium of the family Rhodobacteraceae isolated from a soda lake. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, oxidase- and catalase-positive, rod-shaped, creamy white coloured bacterial strain, DMG-N-6T, was isolated from a water sample of Lake Fertő/Neusiedler See (Hungary). Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain forms a distinct linage within the family
Rhodobacteraceae
. Its closest relatives are
Tabrizicola alkalilacus
DJCT (96.76% similarity) and
Tabrizicola piscis
K13M18T (96.76%), followed by
Tabrizicola sediminis
DRYC-M-16T (96.69 %),
Rhodobacter sediminicola
JA983T (96.62 %),
Tabrizicola aquatica
RCRI19T (96.47 %) and
Cereibacter johrii
JA192T (96.18 %). The novel bacterial strain favours an alkaline environment (pH 8.0-12.0) and grows optimally at 18–28°C in the presence of 2–4 % (w/v) NaCl. Cells of DMG-N-6T were motile by a single subpolar flagellum. Bacteriochlorophyll a was not detected. The predominant respiratory quinone was ubiquinone Q-10. The major cellular fatty acid was C18:1
ω7c. The polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, an unidentified phospholipid and five unidentified lipids. The assembled draft genome of strain DMG-N-6T had 52 contigs with a total length of 4 219 778 bp and a G+C content of 64.3 mol%. Overall genome-related indices (ANI <77.8 %, AAI <69.0 %, dDDH <19.6 %) with respect to close relatives were all significantly below the corresponding threshold to demarcate bacterial genus and species. Strain DMG-N-6T (=DSM 108208T=NCAIM B.02645T) is strongly different from its closest relatives and is suggested as the type strain of a novel species of a new genus in the family
Rhodobacteraceae
, for which the name Szabonella alba gen. nov., sp. nov. is proposed.
Collapse
|
8
|
Liu Q, Lai Z, Wang C, Ni J, Gao Y. Seasonal variation significantly affected bacterioplankton and eukaryoplankton community composition in Xijiang River, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:55. [PMID: 34988711 DOI: 10.1007/s10661-021-09712-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Both bacterioplankton and eukaryoplankton communities play important roles in the geochemical cycles and energy flows of river ecosystems. However, whether a seasonal change in bacterioplankton and eukaryoplankton communities is synchronous remains unclear. To test the synchronicity and analyze how physical and chemical environmental factors affect these communities, we compared bacterioplankton and eukaryoplankton communities in surface water samples between March (dry season) and June (rainfall season) considering water environmental factors. Our results showed that there was no significant difference in operational taxonomic unit number, Shannon index, and Chao1 index in bacterioplankton and eukaryoplankton communities between March and June. However, principal component analysis showed that the communities were significantly different between the sampling times and sampling sites. Water temperature (WT), oxidation-reduction potential (ORP), water transparency (SD), NO3-N, and NH3 significantly influenced bacterioplankton communities, and WT, SD, ORP, and NH4-N significantly influenced eukaryoplankton communities in the river. These results implied that compared with the sampling sites, sampling times more significantly affected the bacterioplankton and eukaryoplankton river communities by influencing WT, ORP, SD, and nitrogen forms.
Collapse
Affiliation(s)
- Qianfu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Chao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Jiajia Ni
- Research and Development Center, Guangdong Meilikang Bio-Science Ltd, Dongguan, 523808, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, 523808, China
| | - Yuan Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
- Guangzhou Scientific Observing and Experimental Station of National Fisheries Resources and Environment, Guangzhou, 510380, China.
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou, 510380, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China.
| |
Collapse
|
9
|
Farjami A, Hatami MS, Siahi-Shadbad M, Lotfipour F. Peracetic acid Activity on Biofilm Formed by Escherichia coli Isolated from an Industrial Water System. Lett Appl Microbiol 2022; 74:613-621. [PMID: 34984695 DOI: 10.1111/lam.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022]
Abstract
One of the major problems in industrial water systems is the generation of biofilm, which is resistant to antimicrobial agents and causes failure of sanitization policy. This work aimed to study the anti-biofilm activity of peracetic acid (PAA) at contact times and temperatures combinations. To this end, a 96 well microtiter-based calorimetric method was applied in in vitro biofilm production using Ecsherichia coli, isolated from the water supply system of a pharmaceutical plant. The phenotypic and phylogenetic tests confirmed the isolated bacteria belong to strains of Ecsherichia coli. The anti-biofilm activity of peracetic acid on formed biofilm was investigated at concentrations of 0.15-0.5% for a contact time of 5-15 min at 20°C to 60°C. The maximum biofilm formation by MTP method using an Ecsherichia coli isolate was achieved in 96 h incubation in TSB containing wells at 37°C. Biofilm formation rate showed to be high by the environmental isolate compared with that of standard strain. PAA at concentrations above 0.25%, the temperature of 40°C, and a minimum of 10 minutes of contact time was effective in the eradication of biofilm in an MPT-based system.
Collapse
Affiliation(s)
- Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammadreza Siahi-Shadbad
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Lotfipour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Barreiro-Vescovo S, González-Fernández C, de Godos I. Characterization of communities in a microalgae-bacteria system treating domestic wastewater reveals dominance of phototrophic and pigmented bacteria. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Ruen-Pham K, Graham LE, Satjarak A. Spatial Variation of Cladophora Epiphytes in the Nan River, Thailand. PLANTS (BASEL, SWITZERLAND) 2021; 10:2266. [PMID: 34834629 PMCID: PMC8622721 DOI: 10.3390/plants10112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Cladophora is an algal genus known to be ecologically important. It provides habitats for microorganisms known to provide ecological services such as biosynthesis of cobalamin (vitamin B12) and nutrient cycling. Most knowledge of microbiomes was obtained from studies of lacustrine Cladophora species. However, whether lotic freshwater Cladophora microbiomes are as complex as the lentic ones or provide similar ecological services is not known. To illuminate these issues, we used amplicons of 16S rDNA, 18S rDNA, and ITS to investigate the taxonomy and diversity of the microorganisms associated with replicate Cladophora samples from three sites along the Nan River, Thailand. Results showed that the diversity of prokaryotic and eukaryotic members of Cladophora microbiomes collected from different sampling sites was statistically different. Fifty percent of the identifiable taxa were shared across sampling sites: these included organisms belonging to different trophic levels, decomposers, and heterotrophic bacteria. These heterogeneous assemblages of bacteria, by functional inference, have the potential to perform various ecological functions, i.e., cellulose degradation, cobalamin biosynthesis, fermentative hydrogen production, ammonium oxidation, amino acid fermentation, dissimilatory reduction of nitrate to ammonium, nitrite reduction, nitrate reduction, sulfur reduction, polyphosphate accumulation, denitrifying phosphorus-accumulation, and degradation of aromatic compounds. Results suggested that river populations of Cladophora provide ecologically important habitat for microorganisms that are key to nutrient cycling in lotic ecosystems.
Collapse
Affiliation(s)
- Karnjana Ruen-Pham
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Linda E. Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA;
| | - Anchittha Satjarak
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
12
|
Galachyants AD, Krasnopeev AY, Podlesnaya GV, Potapov SA, Sukhanova EV, Tikhonova IV, Zimens EA, Kabilov MR, Zhuchenko NA, Gorshkova AS, Suslova MY, Belykh OI. Diversity of Aerobic Anoxygenic Phototrophs and Rhodopsin-Containing Bacteria in the Surface Microlayer, Water Column and Epilithic Biofilms of Lake Baikal. Microorganisms 2021; 9:842. [PMID: 33920057 PMCID: PMC8071047 DOI: 10.3390/microorganisms9040842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
The diversity of aerobic anoxygenic phototrophs (AAPs) and rhodopsin-containing bacteria in the surface microlayer, water column, and epilithic biofilms of Lake Baikal was studied for the first time, employing pufM and rhodopsin genes, and compared to 16S rRNA diversity. We detected pufM-containing Alphaproteobacteria (orders Rhodobacterales, Rhizobiales, Rhodospirillales, and Sphingomonadales), Betaproteobacteria (order Burkholderiales), Gemmatimonadetes, and Planctomycetes. Rhodobacterales dominated all the studied biotopes. The diversity of rhodopsin-containing bacteria in neuston and plankton of Lake Baikal was comparable to other studied water bodies. Bacteroidetes along with Proteobacteria were the prevailing phyla, and Verrucomicrobia and Planctomycetes were also detected. The number of rhodopsin sequences unclassified to the phylum level was rather high: 29% in the water microbiomes and 22% in the epilithon. Diversity of rhodopsin-containing bacteria in epilithic biofilms was comparable with that in neuston and plankton at the phyla level. Unweighted pair group method with arithmetic mean (UPGMA) and non-metric multidimensional scaling (NMDS) analysis indicated a distinct discrepancy between epilithon and microbial communities of water (including neuston and plankton) in the 16S rRNA, pufM and rhodopsin genes.
Collapse
Affiliation(s)
- Agnia Dmitrievna Galachyants
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Andrey Yurjevich Krasnopeev
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Galina Vladimirovna Podlesnaya
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Sergey Anatoljevich Potapov
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Elena Viktorovna Sukhanova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Irina Vasiljevna Tikhonova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Ekaterina Andreevna Zimens
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Marsel Rasimovich Kabilov
- Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia;
| | - Natalia Albertovna Zhuchenko
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Anna Sergeevna Gorshkova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Maria Yurjevna Suslova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| | - Olga Ivanovna Belykh
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia; (A.Y.K.); (G.V.P.); (S.A.P.); (E.V.S.); (I.V.T.); (E.A.Z.); (N.A.Z.); (A.S.G.); (M.Y.S.)
| |
Collapse
|
13
|
Jeong YS, Kang W, Lee JY, Sung H, Kim HS, Han JE, Tak EJ, Lee SY, Lee JY, Kim PS, Hyun DW, Jung MJ, Bae JW. Pseudorhodobacter turbinis sp. nov., isolated from the gut of the Korean turban shell, Turbo cornutus. Int J Syst Evol Microbiol 2021; 71. [PMID: 33616519 DOI: 10.1099/ijsem.0.004711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, coccus-shaped, aerobic and motile bacterial strain, designated S12M18T, was isolated from the gut of the Korean turban shell, Turbo cornutus. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S12M18T belonged to the genus Pseudorhodobacter and had the highest 16S rRNA gene sequence similarity twith Pseudorhodobacter aquimaris HDW-19T (98.63 %). The phylogenomic tree congruently verified that strain S12M18T occupies a taxonomic position within the genus Pseudorhodobacter. The OrthoANIu value between strain S12M18T and P. aquimaris HDW-19T was 87.22 %. The major cellular fatty acid of strain S12M18T was summed feature 8 (C18 : 1 ω7c or C18 : 1 ω6c). The major components of the polar lipids were phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine. The predominant isoprenoid quinone was Q-10. The DNA G+C content was 57.8 mol%. The polyphasic analyses indicated that strain S12M18T represents a novel species of the genus Pseudorhodobacter, for which the name Pseudorhodobacter turbinis sp. nov. is proposed. The type strain is S12M18T (=KCTC 62742T=JCM 33168T).
Collapse
Affiliation(s)
- Yun-Seok Jeong
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woorim Kang
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - June-Young Lee
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hojun Sung
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Sik Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeong-Eun Han
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Euon Jung Tak
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So-Yeon Lee
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Yun Lee
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Pil Soo Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Wook Hyun
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi-Ja Jung
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
14
|
Sheu C, Li ZH, Sheu SY, Yang CC, Chen WM. Tabrizicola oligotrophica sp. nov. and Rhodobacter tardus sp. nov., two new species of bacteria belonging to the family Rhodobacteraceae. Int J Syst Evol Microbiol 2021; 70:6266-6283. [PMID: 33112224 DOI: 10.1099/ijsem.0.004526] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-negative, aerobic, non-motile bacteria, designated KMS-5T and CYK-10T, were isolated from freshwater environments. 16S rRNA gene sequence similarity results indicated that these two novel strains belong to the family Rhodobacteraceae. Strain KMS-5T is closely related to species within the genus Tabrizicola (96.1-96.8 % sequence similarity) and Cypionkella (96.5-97.0 %). Strain CYK-10T is closest to Rhodobacter thermarum YIM 73036T with 96.6 % sequence similarity. Phylogenetic analyses based on 16S rRNA gene sequences and an up-to-date bacterial core gene set showed that strain KMS-5T is affiliated with species in the genus Tabrizicola and strain CYK-10T is placed in a distinct clade with Rhodobacter blasticus ATCC 33485T, Rhodobacter thermarum YIM 73036T and Rhodobacter flagellatus SYSU G03088T. These two strains shared common chemotaxonomic features comprising Q-10 as the major quinone, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine as the principal polar lipids, and C18 : 1 ω7c as the main fatty acid. The average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between these two novel isolates and their closest relatives were below the cut-off values of 95-96, 90 and 70 %, respectively, used for species demarcation. The obtained polyphasic taxonomic data suggested that strain KMS-5T represents a novel species within the genus Tabrizicola, for which the name Tabrizicola oligotrophica sp. nov. is proposed with KMS-5T (=BCRC 81196T=LMG 31337T) as the type strain, and strain CYK-10T should represent a novel species of the genus Rhodobacter, for which the name Rhodobacter tardus sp. nov. is proposed with CYK-10T (=BCRC 81191T=LMG 31336T) as the type strain.
Collapse
Affiliation(s)
- Ceshing Sheu
- Department of Applied Chemistry, Chaoyang University of Technology, No.168, Jifong E. Rd., Wufeng, Taichung, Taiwan, ROC
| | - Zhi-Hao Li
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Shih-Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Che-Chia Yang
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City 811, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| |
Collapse
|
15
|
Park CY, Chun SJ, Jin C, Le VV, Cui Y, Kim SY, Ahn CY, Oh HM. Tabrizicola algicola sp. nov. isolated from culture of microalga Ettlia sp. Int J Syst Evol Microbiol 2020; 70:6133-6141. [PMID: 33052083 DOI: 10.1099/ijsem.0.004508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, aerobic, non-spore-forming, non-motile, and rod-shaped bacterium, strain ETT8T was isolated from a chemostat culture of microalga Ettlia sp. YC001. Optimal growth was with 0-2% NaCl and at 25-37 °C on R2A medium. Phylogenetic analysis based on the 16S rRNA gene and genome sequence showed that strain ETT8T belongs to the genus Tabrizicola, with the close neighbours being T. sediminis DRYC-M-16T (98.1 %), T. alkalilacus DJCT (97.6 %), T. fusiformis SY72T (96.9 %), T. piscis K13M18T (96.8 %), and T. aquatica RCRI19T (96.5 %). The genomic comparison of strain ETT8T with type species in the genus Tabrizicola was analysed using the genome-to-genome distance calculator (GGDC), average nucleotide identity (ANI), and average amino acid identity (AAI) (values indicated ≤17.7, ≤75.4 and ≤71.9 %, respectively). The genomic DNA G+C content of strain ETT8T was 64.4 %, plus C18 : 1 ω6c and C18 : 0-iso were the major fatty acids and Q-10 the major respiratory quinone. Strain ETT8T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine aminolipid, and four unidentified lipids as the major polar lipids. Based on the chemotaxonomic, genotypic, and phenotype results, strain ETT8T was recognized as a novel species of the genus Tabrizicola for which the name Tabrizicola algicola sp. nov. is proposed. The type strain is ETT8T (=KCTC 72206T=JCM 31893T=MCC 4339T).
Collapse
Affiliation(s)
- Chan-Yeong Park
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.,Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seong-Jun Chun
- National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun 33657, Republic of Korea
| | - Chunzhi Jin
- Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ve Van Le
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.,Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yingshun Cui
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Song-Yeon Kim
- Department of Microbiology and Resources, College of Science and Technology, Mokwon University, 88 Doanbuk-ro, Seo-Gu, Daejeon 35349, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee-Mock Oh
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.,Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Ebrahimi V, Eyvazi S, Montazersaheb S, Yazdani P, Hejazi MA, Tarhriz V, Hejazi MS. Polycyclic Aromatic Hydrocarbons Degradation by Aquatic Bacteria Isolated from Khazar Sea, the World’s Largest Lake. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Aquatic microorganisms have an important role in the bioremediation of environmental pollutants. Polycyclic Aromatic Hydrocarbons (PAHs) are described as dangerous pollutants that can bind covalently to the nucleic acids, causing mutations. Therefore, they have carcinogenic and toxic properties. Also, are involved in diseases such as asthma, lung dysfunction, and chronic bronchitis. This study aimed to isolate and characterize aquatic bio-degrading bacteria from the world’s largest lake, Khazar, with the ability to use PAHs as only carbon source. Methods: Samples were taken from the estuary of Siah Rud River (Mazandaran province, Iran) and Fereydunkenar beach leading to isolation of twenty-three bacteria on marine agar and sea water media. The isolates were cultured on separate ONR7a medium, each supplemented with only one PAH; as the sole carbon source; including naphthalene, phenanthrene, and anthracene. Results: Eleven bacterial isolates were able to grow on supplemented media: TBZ-E1, TBZ-E2, TBZ-E3, TBZ-S12, TBZ-S16, TBZ-E20, TBZ-SF2, TBZ-F1, TBZ-F2, TBZ-F3 and TBZ2. These isolates belong to Alteromonas, Marivivens, Pseudoalteromonas, Vibrio, Shewanella, Photobacterium, Mycobacterium and Pseudomonas genera. The qualitative analysis showed that the consortium of isolates TBZ-F1, TBZ-F2, TBZ-F3, TBZ-SF2, and TBZ2 displayed the highest degradation rate for phenanthrene and naphthalene. Naphthalene, phenanthrene, and anthracene were potently degraded by TBZ2 and TBZ-SF2 and accordingly were subjected to measure degradation potential of mentioned PAHs. Conclusion: The bacterial isolates of Caspian lake have a critical duty in biodegradation of PAHs. These isolates are representative samples of the bacterial population of this lake, participating in the purification process of this habitat.
Collapse
Affiliation(s)
- Vida Ebrahimi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parivar Yazdani
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Hejazi
- Branch for the Northwest and West Region, Agriculture Biotechnology Research Institute of Iran (ABRII), Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Han JE, Kang W, Lee JY, Sung H, Hyun DW, Kim HS, Kim PS, Tak EJ, Jeong YS, Lee JY, Lee SY, Yun JH, Jung MJ, Shin NR, Whon TW, Kang MS, Lee KE, Lee BH, Bae JW. Tabrizicola piscis sp. nov., isolated from the intestinal tract of a Korean indigenous freshwater fish, Acheilognathus koreensis. Int J Syst Evol Microbiol 2020; 70:2305-2311. [DOI: 10.1099/ijsem.0.004034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-negative, obligately aerobic, rod-shaped and non-motile bacterium, designated strain K13M18T, was isolated from the intestinal tract of a Korean indigenous fish, oily bitterling (Acheilognathus koreensis). Strain K13M18T formed creamy-pink colonies on a marine agar plate. Results of phylogenetic analysis based on the 16S rRNA gene sequence similarity indicated that strain K13M18T was most closely related to
Tabrizicola sediminis
DRYC-M-16T, sharing 97.62 % similarity with that strain. Strain K13M18T belonged to the genus
Tabrizicola
, which formed a cluster with
Tabrizicola aquatica
RCRI19T,
Tabrizicola fusiformis
SY72T,
Tabrizicola sediminis
DRYC-M-16T and
Tabrizicola alkalilacus
DJCT in a phylogenetic tree based on the 16S rRNA gene sequences. Strain K13M18T grown optimally in 0 % (w/v) NaCl, at pH 7 and 30 °C, in a marine broth medium. The predominant cellular fatty acids were C18 : 1
ω7c and C18 : 1
ω6c. The major respiratory isoprenoid quinone was ubiquinone Q-10. Polar lipids of strain K13M18T contained phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, diphosphatidylglycerol, six unidentified aminophospholipids, one unidentified aminolipid and an unidentified lipid. Based on genome sequencing, the DNA G+C content of strain K13M18T was 64.08 mol %, with an average nucleotide identity value, calculated by a comparative genomic analysis of strains K13M18T and
T. sediminis
DRYC-M-16T, of 74.82 %. Based on the phylogenetic, genotypic, and phenotypic information, strain K13M18T is proposed to be a novel species of the genus
Tabrizicola
. The type strain is K13M18T (=KCTC 62659T=JCM 33230T).
Collapse
Affiliation(s)
- Jeong Eun Han
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Woorim Kang
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - June-Young Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hojun Sung
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Dong-Wook Hyun
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hyun Sik Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Pil Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Euon Jung Tak
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yun-Seok Jeong
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jae-Yun Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - So-Yeon Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ji-Hyun Yun
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Mi-Ja Jung
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Na-Ri Shin
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Tae Woong Whon
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Myung-Suk Kang
- Biological Resources Utilization Department, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Ki-Eun Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Byoung-Hee Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | | |
Collapse
|
18
|
Tarhriz V, Eyvazi S, Shakeri E, Hejazi MS, Dilmaghani A. Antibacterial and Antifungal Activity of Novel Freshwater Bacterium Tabrizicola aquatica as a Prominent Natural Antibiotic Available in Qurugol Lake. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2019.56] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background
: Recently, resistant pathogenic microorganisms have become increasingly wide spread. The search for new natural antibiotics is a viable solution to this problem. For this aim we investigated the antimicrobial ability of Tabrizicola aquatica, the novel bacterium isolated from Qurugol Lake located nearby Tabriz city, Iran. Methods: The antimicrobial properties of Tabrizacola aquatica was investigated using well diffusion test. Tabtizicola aquatica was incubated at 40℃ in shaking incubator at 150 rpm for 14 days. The culture was centrifuged to obtain cell free supernatant, which was sterilized using 0.2 μm filter paper and lyophilized. Microorganisms were lawn and then wells were prepared over the agar plates. About 100 ml of the diluted lyophilized supernatant was added to the wells. The plates then were incubated at 37℃. After 48 hours, antimicrobial activity was defined by measuring the inhibition zone diameter. Results: The bacterial filtrates had considerable antagonistic effect against Escherichia coli, Rhizobium radiobacter, Pseudomonas syringae, Erwinia amylovora, Botrytis cinerea, Neurospora crassa and Fusarium oxysporum. However, the filtrates did not show any inhibitory action on the Aspergillus flavus and Klebsiella pneumonia. The supernatant decreased the growth zone on Streptococcus aureus, Pseudomonas aeruginosa, Shigella flexneri, Xanthomonas camoestris and Bassilus cereos. The result of MIC against pathogens was found for Neurospora crassa in the 50 µg/mL. Conclusion: The results, suggested that Tabrizicola aquatica and similar bacteria can be helpful to control freshwater natural water sources from pathogenic microorganism. Moreover, microbial natural products are still the most promising source of new antibiotics. Our results point out a scope for characterization of the metabolites and could be a candidate in the identification of novel antibiotics.
Collapse
Affiliation(s)
- Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elia Shakeri
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azita Dilmaghani
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Oren A, Garrity GM. Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol 2020; 70:9-10. [PMID: 32019665 DOI: 10.1099/ijsem.0.003866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
20
|
Phurbu D, Wang H, Tang Q, Lu H, Zhu H, Jiang S, Xing P, Wu QL. Tabrizicola alkalilacus sp. nov., isolated from alkaline Lake Dajiaco on the Tibetan Plateau. Int J Syst Evol Microbiol 2019; 69:3420-3425. [PMID: 31385782 DOI: 10.1099/ijsem.0.003635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, aerobic, non-motile and rod-shaped bacterium was isolated from Lake Dajiaco on the Tibetan Plateau. Strain DJCT grew without NaCl and tolerated up to 3 % (w/v) NaCl. Growth occurred at pH 6.0-10.0 (optimum, pH 7.0-8.0) and 15-37 °C (optimum, 25-30 °C). Vitamins were not required for growth. The main polar lipids of strain DJCT were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was Q-10. The major fatty acid was C18 : 1ω7c. Genome sequencing revealed a genome size of 4.61 Mbp and a G+C content of 62.9 mol%. Analysis of 16S rRNA sequences showed that strain DJCT belonged to the genus Tabrizicola, with the closest neighbour Tabrizicola aquatica RCRI19T (97.5 %). DNA-DNA relatedness between strain DJCT and the closest phylogenetically related strain T. aquatica RCRI19T was 40.8 %. Stain DJCT was clearly distinguished from the type strain mentioned above through phylogenetic analysis, DNA-DNA hybridization, fatty acid composition data and a range of physiological and biochemical characteristic comparisons. Based on its phenotypic and chemotaxonomic characteristics, strain DJCT could be classified as a representative of a novel species of the genus for which the name Tabrizicola alkalilacus sp. nov. is proposed. The type strain is DJCT (=CICC 24242T=KCTC 62173T).
Collapse
Affiliation(s)
- Dorji Phurbu
- Tibet Plateau Institute of Biology, Lhasa 850000, PR China
| | - Hui Wang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qian Tang
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Huibin Lu
- University of Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Han Zhu
- College of Life Sciences, Anhui Normal University, Wuhu 241002, PR China
| | - Siping Jiang
- Tibet Plateau Institute of Biology, Lhasa 850000, PR China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qinglong L Wu
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, PR China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| |
Collapse
|
21
|
Liu ZX, Dorji P, Liu HC, Li AH, Zhou YG. Tabrizicola sediminis sp. nov., one aerobic anoxygenic photoheterotrophic bacteria from sediment of saline lake. Int J Syst Evol Microbiol 2019; 69:2565-2570. [DOI: 10.1099/ijsem.0.003542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Zi-Xuan Liu
- 1China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Phurbu Dorji
- 2Tibet Plateau Institute of Biology, Lhasa, Tibet 850001, PR China
| | - Hong-Can Liu
- 1China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ai-Hua Li
- 1China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yu-Guang Zhou
- 1China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- 3State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|