1
|
Haufschild T, Hammer J, Rabold N, Plut V, Jogler C, Kallscheuer N. Novel tools for genomic modification and heterologous gene expression in the phylum Planctomycetota. Appl Microbiol Biotechnol 2025; 109:79. [PMID: 40164722 PMCID: PMC11958385 DOI: 10.1007/s00253-025-13462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Members of the phylum Planctomycetota possess a plethora of intriguing and hitherto underexplored features including an enlarged periplasmic space, asymmetric cell division ("budding"), and a mostly undiscovered small molecule portfolio. Due to the large phylogenetic distance to frequently used and easily genetically accessible model bacteria, most of the established genetic tools are not readily applicable for the here-investigated bacterial phylum. However, techniques for targeted gene inactivation and the introduction of heterologous genes are crucial to investigate the cell biology in the phylum in greater detail. In this study, the targeted genomic modification of model planctomycetes was achieved by enforcing two types of homologous recombination events: simultaneous double homologous recombination for the deletion of coding regions and insertion-duplication mutagenesis for the introduction of foreign DNA into the chromosome. Upon testing the expression of commonly used fluorescent protein-encoding genes, many of the tested native promoters could not be harnessed for variation of the expression strength. Since also four commonly used inducible gene expression systems did not work in the tested model strain Planctopirus limnophila, a native rhamnose-dependent transcriptional regulator/promoter pair was established as an inducible expression system. The expanded molecular toolbox will allow the future characterization of genome-encoded features in the understudied phylum. KEY POINTS: • Two recombination methods were used for the genetic modification of planctomycetes • Commonly used fluorescent proteins are functional in model planctomycetes • A rhamnose-dependent regulator was turned into an inducible expression system.
Collapse
Affiliation(s)
- Tom Haufschild
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Jonathan Hammer
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Nico Rabold
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Veronika Plut
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, 07743, Jena, Germany.
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
2
|
Godinho O, Devos DP, Quinteira S, Lage OM. The influence of the phylum Planctomycetota in the environmental resistome. Res Microbiol 2024; 175:104196. [PMID: 38467354 DOI: 10.1016/j.resmic.2024.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Antimicrobial resistance is one of the leading causes of death worldwide and research on this topic has been on the spotlight for a long time. More recently and in agreement with the One Health Approach, the focus has moved towards the environmental resistome. Members of the phylum Planctomycetota are ubiquitously present in the environment including in hotspots for antimicrobial resistance selection and dissemination. Furthermore, phenotypic broad-range resistance has been observed in diverse members of this phylum. Here we review the evidence available on antimicrobial resistance in the underexploited Planctomycetota and highlight key aspects for future studies.
Collapse
Affiliation(s)
- Ofélia Godinho
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal.
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, Seville, Spain
| | - Sandra Quinteira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Rede de Investigação em Biodiversidade e Biologia Evolutiva, Laboratório Associado, Universidade do Porto, 4485-6661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal
| | - Olga M Lage
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Quiñonero-Coronel MDM, Devos DP, Garcillán-Barcia MP. Specificities and commonalities of the Planctomycetes plasmidome. Environ Microbiol 2024; 26:e16638. [PMID: 38733104 DOI: 10.1111/1462-2920.16638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Plasmids, despite their critical role in antibiotic resistance and modern biotechnology, are understood in only a few bacterial groups in terms of their natural ecological dynamics. The bacterial phylum Planctomycetes, known for its unique molecular and cellular biology, has a largely unexplored plasmidome. This study offers a thorough exploration of the diversity of natural plasmids within Planctomycetes, which could serve as a foundation for developing various genetic research tools for this phylum. Planctomycetes plasmids encode a broad range of biological functions and appear to have coevolved significantly with their host chromosomes, sharing many homologues. Recent transfer events of insertion sequences between cohabiting chromosomes and plasmids were also observed. Interestingly, 64% of plasmid genes are distantly related to either chromosomally encoded genes or have homologues in plasmids from other bacterial groups. The planctomycetal plasmidome is composed of 36% exclusive proteins. Most planctomycetal plasmids encode a replication initiation protein from the Replication Protein A family near a putative iteron-containing replication origin, as well as active type I partition systems. The identification of one conjugative and three mobilizable plasmids suggests the occurrence of horizontal gene transfer via conjugation within this phylum. This comprehensive description enhances our understanding of the plasmidome of Planctomycetes and its potential implications in antibiotic resistance and biotechnology.
Collapse
Affiliation(s)
| | - Damien Paul Devos
- Centro Andaluz de Biología del Desarrollo (CABD, CSIC-Universidad Pablo de Olavide), Sevilla, Spain
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC, CSIC-Universidad de Cantabria), Cantabria, Spain
| |
Collapse
|
4
|
Godinho O, Klimek D, Jackiewicz A, Guedes B, Almeida E, Calisto R, Vitorino IR, Santos JDN, González I, Lobo-da-Cunha A, Calusinska M, Quinteira S, Lage OM. Stieleria tagensis sp. nov., a novel member of the phylum Planctomycetota isolated from Tagus River in Portugal. Antonie Van Leeuwenhoek 2023; 116:1209-1225. [PMID: 37737556 PMCID: PMC10541342 DOI: 10.1007/s10482-023-01877-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023]
Abstract
A bacterial strain was isolated from a brackish water sample of Tagus river, Alcochete, Portugal and was designated TO1_6T. It forms light pink colonies on M13 medium supplemented with N-acetylglucosamine. Cells are pear-shaped to spherical, form rosettes and divide by budding. Strain TO1_6T presents a mesophilic and neutrophilic profile, with optimum growth at 20 to 25 °C and pH 7.0 to 7.5, and vitamin supplementation is not required to promote its growth. The genome of the novel isolate is 7.77 Mbp in size and has a DNA G + C content of 56.3%. Based on its 16S rRNA gene sequence, this strain is affiliated with the phylum Planctomycetota. Further taxonomic characterization using additional phylogenetic markers, namely rpoB gene sequence (encoding the β-subunit of the DNA-dependent RNA polymerase), as well as Percentage of conserved proteins, average nucleotide identity and average amino acid identity, suggest the affiliation of strain TO1_6T to the genus Stieleria, a recently described taxon in the family Pirellulaceae, order Pirellulales and class Planctomycetia. Based on the genotypic, phylogenetic and physiological characterization, we here describe a new species represented by the type strain TO1_6T (= CECT 30432T, = LMG 32465T), for which the name Stieleria tagensis sp. nov. is proposed.
Collapse
Affiliation(s)
- Ofélia Godinho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Dominika Klimek
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, 4422, Belvaux, Luxembourg
- The Faculty of Science, Technology and Medicine, FSTM, University of Luxembourg, 2 Avenue de l'Université, 4365, Esch-sur-Alzette, Luxembourg
| | - Adrianna Jackiewicz
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Bárbara Guedes
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Eduarda Almeida
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Rita Calisto
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - José Diogo Neves Santos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Ignacio González
- Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Fundación MEDINA, 18016, Granada, Spain
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Magdalena Calusinska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Rue du Brill 41, 4422, Belvaux, Luxembourg
| | - Sandra Quinteira
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- BIOPOLIS/CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Rua Padre Armando Quintas, nº 7, 4485-661, Vairão, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL., Avenida Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| |
Collapse
|
5
|
Han B, Yang F, Shen S, Mu M, Zhang K. Effects of soil habitat changes on antibiotic resistance genes and related microbiomes in paddy fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165109. [PMID: 37385504 DOI: 10.1016/j.scitotenv.2023.165109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
The changes of paddy soil habitat profoundly affect the structure and function of soil microorganisms, but how this process drives the growth and spread of manure- derived antibiotic resistance genes (ARGs) after entering the soil is unclear. Herein, this study explored the environmental fate and behavior of various ARGs in the paddy soil during rice growth period. Results showed that most ARG abundances in flooded soil was lower than that in non-flooded soil during rice growth (decreased by 33.4 %). And soil dry-wet alternation altered microbial community structure in paddy field (P < 0.05), showing that Actinobacteria and Firmicutes increased in proportion under non-flooded conditions, and Chloroflexi, Proteobacteria and Acidobacteria evolved into the dominant groups in flooded soil. Meanwhile, the correlation between ARGs and bacterial communities was stronger than that with mobile genetic elements (MGEs) in both flooded and non-flooded paddy soils. Furthermore, soil properties, especially oxidation reduction potential (ORP), were proved to be an essential factor in regulating the variability of ARGs in the whole rice growth stage by structural equation model, with a direct influence (λ = 0.38, P < 0.05), following by similar effects of bacterial communities and MGEs (λ = 0.36, P < 0.05; λ = 0.29, P < 0.05). This study demonstrated that soil dry-wet alternation effectively reduced the proliferation and dissemination of most ARGs in paddy fields, providing a novel agronomic measure for pollution control of antibiotic resistance in farmland ecosystem.
Collapse
Affiliation(s)
- Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China.
| | - Shizhou Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
| | - Meirui Mu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China.
| |
Collapse
|
6
|
Veloso S, Amouroux D, Lanceleur L, Cagnon C, Monperrus M, Deborde J, Laureau CC, Duran R. Keystone microbial taxa organize micropollutant-related modules shaping the microbial community structure in estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130858. [PMID: 36706488 DOI: 10.1016/j.jhazmat.2023.130858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The fluctuation of environmental conditions drives the structure of microbial communities in estuaries, highly dynamic ecosystems. Microorganisms inhabiting estuarine sediments play a key role in ecosystem functioning. They are well adapted to the changing conditions, also threatened by the presence of pollutants. In order to determine the environmental characteristics driving the organization of the microbial assemblages, we conducted a seasonal survey along the Adour Estuary (Bay of Biscay, France) using 16S rRNA gene Illumina sequencing. Microbial diversity data were combined with a set of chemical analyses targeting metals and pharmaceuticals. Microbial communities were largely dominated by Proteobacteria (41 %) and Bacteroidota (32 %), showing a strong organization according to season, with an important shift in winter. The composition of microbial communities showed spatial distribution according to three main areas (upstream, middle, and downstream estuary) revealing the influence of the Adour River. Further analyses indicated that the microbial community was influenced by biogeochemical parameters (Corg/Norg and δ13C) and micropollutants, including metals (As, Cu, Mn, Sn, Ti, and Zn) and pharmaceuticals (norfloxacin, oxolinic acid and trimethoprim). Network analysis revealed specific modules, organized around keystone taxa, linked to a pollutant type, providing information of paramount importance to understand the microbial ecology in estuarine ecosystems.
Collapse
Affiliation(s)
- Sandrine Veloso
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Laurent Lanceleur
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Anglet, France
| | - Christine Cagnon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Mathilde Monperrus
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Anglet, France
| | - Jonathan Deborde
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Anglet, France; Ifremer, LITTORAL, Laboratoire Environnement Ressources des Pertuis Charentais, F-17390 La Tremblade, France
| | - Cristiana Cravo Laureau
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France.
| |
Collapse
|
7
|
Effects of Nano-Aerators on Microbial Communities and Functions in the Water, Sediment, and Shrimp Intestine in Litopenaeus vannamei Aquaculture Ponds. Microorganisms 2022; 10:microorganisms10071302. [PMID: 35889021 PMCID: PMC9317398 DOI: 10.3390/microorganisms10071302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023] Open
Abstract
Nanobubble technology has promising development and application prospects in the fields of sewage treatment, soil and groundwater remediation, animal and plant growth, and biomedicine. However, few studies have investigated its effect on shrimp aquaculture. In this study, we investigated the effect of nano-aerators on microbial communities of the water, sediment, and shrimp gut in a Litopenaeus vannamei aquaculture pond using 16S rRNA high-throughput sequencing. The results indicated that the nano-aerator significantly increased the microbial community diversity and species abundance in the pond, and the microbial community diversity of the pond sediment increased under short-term aeration conditions. Compared to that with ordinary aerators, nano-aerators increased the proportion of beneficial bacteria, such as Exiguobacterium and Acinetobacter, in the water and sediment microbial communities. Moreover, the proportions of beneficial bacteria in the gut, including Rhodobacter, Oscillospira, and Faecalibacterium, were all increased by using the nano-aerator. Therefore, our findings suggest that nano-aerators could promote the activity of beneficial bacteria in aquaculture ecosystems, thereby regulating water quality, reducing disease incidence, and improving aquaculture efficiency and benefits. Our findings provide new insights into the effects of nano-aerators on microbes in crustacean culture ponds.
Collapse
|
8
|
Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Vicente F, Lage OM. Isolation, diversity and antimicrobial activity of planctomycetes from the Tejo river estuary (Portugal). FEMS Microbiol Ecol 2022; 98:6609431. [PMID: 35709427 DOI: 10.1093/femsec/fiac066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
The discovery of new bioactive compounds is an invaluable aid to the development of new drugs. Strategies for finding novel molecules can focus on the exploitation of less studied organisms and ecosystems such as planctomycetes and brackish habitats. The unique cell biology of the underexplored Planctomycetota mean it is of particular interest. In this study, we aimed to isolate planctomycetes from the estuary of the Tejo river (Portugal). To reach this goal, macroalgae, water and sediments were sampled and diverse media and isolation techniques applied. Sixty-nine planctomycetal strains were brought into pure culture. An analysis of the 16S rRNA genes found that the majority of the isolates were affiliated to the genus Rhodopirellula. Putative novel taxa belonging to genera Stieleria and Rhodopirellula were also isolated and characterized morphologically. Enterobacterial Repetitive Intergenic Consensus fingerprinting analyses showed higher diversity and different genotypes within close strains. Relevant biosynthetic gene clusters were found in most isolates and acetone extracts from representative strains exhibited mild antimicrobial activities against Escherichia coli and Staphylococcus aureus. Our work has not only enlarged the number and diversity of cultured planctomycetes but also shown the potential for the discovery of bioactive compounds from the novel taxa.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
9
|
Jiang B, Shen Y, Lu X, Du Y, Jin N, Li G, Zhang D, Xing Y. Toxicity assessment and microbial response to soil antibiotic exposure: differences between individual and mixed antibiotics. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:460-473. [PMID: 35166274 DOI: 10.1039/d1em00405k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Increasing amounts of antibiotics are introduced into soils, raising great concerns on their ecotoxicological impacts on the soil environment. This work investigated the individual and joint toxicity of three antibiotics, tetracycline (TC), sulfonamide (SD) and erythromycin (EM) via a whole-cell bioreporter assay. TC, SD and EM in aqueous solution demonstrated cytotoxicity, whilst soil exposure showed genotoxicity, indicating that soil particles possibly affected the bioavailability of antibiotics. Toxicity of soils exposed to TC, SD and EM changed over time, demonstrating cytotoxic effects within 14-d exposure and genotoxic effects after 30 days. Joint toxicity of TC, SD and EM in soils instead showed cytotoxicity, suggesting a synergetic effect. High-throughput sequencing suggested that the soil microbial response to individual antibiotics and their mixtures showed a different pattern. Soil microbial community composition was more sensitive to TC, in which the abundance of Pseudomonas, Pirellula, Subdivision3_genera_incertae_sedis and Gemmata varied significantly. Microbial community functions were significantly shifted by EM amendments, including signal transduction mechanisms, cytoskeleton, cell wall/membrane/envelope biogenesis, transcription, chromatin structure and dynamics, and carbohydrate transport and metabolism. This work contributes to a better understanding of the ecological effects and potential risks of individual and joint antibiotics on the soil environment.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Yaoxin Shen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Xin Lu
- Petrochina North China Gas Marketing Company, Beijing, 100029, PR China
| | - Yufan Du
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Naifu Jin
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| |
Collapse
|
10
|
Kallscheuer N, Jogler C, Peeters SH, Boedeker C, Jogler M, Heuer A, Jetten MSM, Rohde M, Wiegand S. Mucisphaera calidilacus gen. nov., sp. nov., a novel planctomycete of the class Phycisphaerae isolated in the shallow sea hydrothermal system of the Lipari Islands. Antonie van Leeuwenhoek 2022; 115:407-420. [PMID: 35050438 PMCID: PMC8882080 DOI: 10.1007/s10482-021-01707-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
For extending the current collection of axenic cultures of planctomycetes, we describe in this study the isolation and characterisation of strain Pan265T obtained from a red biofilm in the hydrothermal vent system close to the Lipari Islands in the Tyrrhenian Sea, north of Sicily, Italy. The strain forms light pink colonies on solid medium and grows as a viscous colloid in liquid culture, likely as the result of formation of a dense extracellular matrix observed during electron microscopy. Cells of the novel isolate are spherical, motile and divide by binary fission. Strain Pan265T is mesophilic (temperature optimum 30-33 °C), neutrophilic (pH optimum 7.0-8.0), aerobic and heterotrophic. The strain has a genome size of 3.49 Mb and a DNA G + C content of 63.9%. Phylogenetically, the strain belongs to the family Phycisphaeraceae, order Phycisphaerales, class Phycisphaerae. Our polyphasic analysis supports the delineation of strain Pan265T from the known genera in this family. Therefore, we conclude to assign strain Pan265T to a novel species within a novel genus, for which we propose the name Mucisphaera calidilacus gen. nov., sp. nov. The novel species is the type species of the novel genus and is represented by strain Pan265T (= DSM 100697T = CECT 30425T) as type strain.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| | - Stijn H Peeters
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | | | - Mareike Jogler
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Sulfuriroseicoccus oceanibius gen. nov., sp. nov., a representative of the phylum Verrucomicrobia with a special cytoplasmic membrane. Antonie van Leeuwenhoek 2022; 115:337-352. [PMID: 35044567 DOI: 10.1007/s10482-021-01689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
Here, we describe a novel bacterial strain, designated T37T, which was isolated from the marine sediment of Xiaoshi Island, PR China. Growth of strain T37T occurs at 15-40 °C (optimum 37 °C), pH 6.0-9.0 (optimum 7.5), and in the presence of 0.5-5.5% (w/v) NaCl (optimum 1.5%). Characteristic biochemical traits of the novel strain include MK-9 as the major menaquinone. The major fatty acids identified were iso-C14:0 and C16:1 ω9c (oleic acid). Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and phosphoglycolipids were the major cellular polar lipids. The G + C content of genomic DNA was 58.4 mol%. Unusual outer membrane features deduced from the analysis of cell morphology point towards the formation of an enlarged periplasmic space putatively used for the digestion of macromolecules. Phylogenetic analyses based on 16S rRNA genes and the genome indicated that strain T37T represents a novel species and genus affiliated with a distinct family level lineage of the verrucomicrobial subdivision 1. Our polyphasic taxonomy approach places the novel strain in a new genus within the current family Verrucomicrobiaceae, order Verrucomicrobiales, class Verrucomicrobiae. Strain T37T (= KCTC 72799 T = MCCC 1H00391T) is the type strain of a novel species, for which the name Sulfuriroseicoccus oceanibius gen. nov., sp. nov. is proposed.
Collapse
|
12
|
Vitorino IR, Lage OM. The Planctomycetia: an overview of the currently largest class within the phylum Planctomycetes. Antonie van Leeuwenhoek 2022; 115:169-201. [PMID: 35037113 DOI: 10.1007/s10482-021-01699-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023]
Abstract
The phylum Planctomycetes comprises bacteria with uncommon features among prokaryotes, such as cell division by budding, absence of the bacterial tubulin-homolog cell division protein FtsZ and complex cell plans with invaginations of the cytoplasmic membrane. Although planctomycetes are ubiquitous, the number of described species and isolated strains available as axenic cultures is still low compared to the diversity observed in metagenomes or environmental studies. An increasing interest in planctomycetes is reflected by the recent description of a large number of new species and their increasing accessibility in terms of pure cultures. In this review, data from all taxonomically described species belonging to Planctomycetia, the class with the currently highest number of characterized members within the phylum Planctomycetes, is summarized. Phylogeny, morphology, physiology, ecology and genomic traits of its members are discussed. This comprehensive overview will help to acknowledge several aspects of the biology of these fascinating bacteria.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
13
|
Vitorino I, Santos JDN, Godinho O, Vicente F, Vasconcelos V, Lage OM. Novel and Conventional Isolation Techniques to Obtain Planctomycetes from Marine Environments. Microorganisms 2021; 9:2078. [PMID: 34683399 PMCID: PMC8541047 DOI: 10.3390/microorganisms9102078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteria from the distinctive Planctomycetes phylum are well spread around the globe; they are capable of colonizing many habitats, including marine, freshwater, terrestrial, and even extreme habitats such as hydrothermal vents and hot springs. They can also be found living in association with other organisms, such as macroalgae, plants, and invertebrates. While ubiquitous, only a small fraction of the known diversity includes axenic cultures. In this study, we aimed to apply conventional techniques to isolate, in diverse culture media, planctomycetes from two beaches of the Portuguese north-coast by using sediments, red, green, and brown macroalgae, the shell of the mussel Mytilus edulis, an anemone belonging to the species Actinia equina, and seawater as sources. With this approach, thirty-seven isolates closely related to seven species from the families Planctomycetaceae and Pirellulaceae (class Planctomycetia) were brought into pure culture. Moreover, we applied an iChip inspired in-situ culturing technique to successfully retrieve planctomycetes from marine sediments, which resulted in the isolation of three additional strains, two affiliated to the species Novipirellula caenicola and one to a putative novel Rubinisphaera. This work enlarges the number of isolated planctomycetal strains and shows the adequacy of a novel methodology for planctomycetes isolation.
Collapse
Affiliation(s)
- Inês Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - José Diogo Neves Santos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Ofélia Godinho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain;
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
14
|
Kallscheuer N, Jogler C. The bacterial phylum Planctomycetes as novel source for bioactive small molecules. Biotechnol Adv 2021; 53:107818. [PMID: 34537319 DOI: 10.1016/j.biotechadv.2021.107818] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Extensive knowledge and methodological expertise on the bacterial cell biology have been accumulated over the last decades and bacterial cells have now become an integral part of several (bio-)technological processes. While it appears reasonable to focus on a relatively small number of fast-growing and genetically easily manipulable model bacteria as biotechnological workhorses, the for the most part untapped diversity of bacteria needs to be explored when it comes to bioprospecting for natural product discovery. Members of the underexplored and evolutionarily deep-branching phylum Planctomycetes have only recently gained increased attention with respect to the production of small molecules with biomedical activities, e.g. as a natural source of novel antibiotics. Next-generation sequencing and metagenomics can provide access to the genomes of uncultivated bacteria from sparsely studied phyla, this, however, should be regarded as an addition rather than a substitute for classical strain isolation approaches. Ten years ago, a large sampling campaign was initiated to isolate planctomycetes from their varied natural habitats and protocols were developed to address complications during cultivation of representative species in the laboratory. The characterisation of approximately 90 novel strains by several research groups in the recent years opened a detailed in silico look into the coding potential of individual members of this phylum. Here, we review the current state of planctomycetal research, focusing on diversity, small molecule production and potential future applications. Although the field developed promising, the time frame of 10 years illustrates that the study of additional promising bacterial phyla as sources for novel small molecules needs to start rather today than tomorrow.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany; Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
15
|
Wiegand S, Rast P, Kallscheuer N, Jogler M, Heuer A, Boedeker C, Jeske O, Kohn T, Vollmers J, Kaster AK, Quast C, Glöckner FO, Rohde M, Jogler C. Analysis of Bacterial Communities on North Sea Macroalgae and Characterization of the Isolated Planctomycetes Adhaeretor mobilis gen. nov., sp. nov., Roseimaritima multifibrata sp. nov., Rosistilla ulvae sp. nov. and Rubripirellula lacrimiformis sp. nov. Microorganisms 2021; 9:microorganisms9071494. [PMID: 34361930 PMCID: PMC8303584 DOI: 10.3390/microorganisms9071494] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Planctomycetes are bacteria that were long thought to be unculturable, of low abundance, and therefore neglectable in the environment. This view changed in recent years, after it was shown that members of the phylum Planctomycetes can be abundant in many aquatic environments, e.g., in the epiphytic communities on macroalgae surfaces. Here, we analyzed three different macroalgae from the North Sea and show that Planctomycetes is the most abundant bacterial phylum on the alga Fucus sp., while it represents a minor fraction of the surface-associated bacterial community of Ulva sp. and Laminaria sp. Especially dominant within the phylum Planctomycetes were Blastopirellula sp., followed by Rhodopirellula sp., Rubripirellula sp., as well as other Pirellulaceae and Lacipirellulaceae, but also members of the OM190 lineage. Motivated by the observed abundance, we isolated four novel planctomycetal strains to expand the collection of species available as axenic cultures since access to different strains is a prerequisite to investigate the success of planctomycetes in marine environments. The isolated strains constitute four novel species belonging to one novel and three previously described genera in the order Pirellulales, class Planctomycetia, phylum Planctomycetes.
Collapse
Affiliation(s)
- Sandra Wiegand
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Patrick Rast
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Nicolai Kallscheuer
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Institute of Bio- and Geosciences, Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich-Schiller University, 07743 Jena, Germany;
| | - Anja Heuer
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Christian Boedeker
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Olga Jeske
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Timo Kohn
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
| | - John Vollmers
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Christian Quast
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany;
| | - Frank Oliver Glöckner
- Alfred Wegener Institute Bremerhaven, MARUM, University of Bremen, 28359 Bremen, Germany;
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Christian Jogler
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Department of Microbial Interactions, Institute of Microbiology, Friedrich-Schiller University, 07743 Jena, Germany;
- Correspondence: ; Tel.: +49-364-194-9301
| |
Collapse
|
16
|
Godinho O, Botelho R, Albuquerque L, Wiegand S, Kallscheuer N, da Costa MS, Lobo-da-Cunha A, Jogler C, Lage OM. Bremerella alba sp. nov., a novel planctomycete isolated from the surface of the macroalga Fucus spiralis. Syst Appl Microbiol 2021; 44:126189. [PMID: 33852992 DOI: 10.1016/j.syapm.2021.126189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
A bacterial strain, designated FF15T, was isolated from the thallus surface of the macroalga Fucus spiralis sampled on a rocky beach in Porto, Portugal. Based on the 16S rRNA gene sequence, strain FF15T was affiliated to the phylum Planctomycetes. This strain forms white colonies on modified M13 medium and the cells are pear-shaped, can form rosettes, divide by polar budding and are motile. The novel isolate is mesophilic and neutrophilic with an optimum growth temperature of about 30 °C and an optimum pH for growth between 6.5 and 7.5. It showed growth over a broad range of salinities (0-9% NaCl - optimum at 1.5%). No additional vitamins are required for growth. It is cytochrome c oxidase and catalase positive. The major respiratory quinone was menaquinone 6 (MK-6). Genome sequencing revealed a genome size of 6.37 Mbp and a DNA G + C content of 54.2%. Analysis of phylogenetic markers, including similarities of the 16S rRNA gene sequence, rpoB gene sequence, as well as Percentage of Conserved Proteins (POCP), Average Nucleotide Identity (ANI) and Average Amino Acid Identity (AAI), suggest the affiliation of strain FF15T to "Bremerella", a recently described genus in the family Pirellulaceae. Based on the genotypic, phylogenetic, chemotaxonomic, physiological and biochemical characterization, we described a new species represented by strain FF15T (=CECT 8078T = LMG 31936T), for which we propose the name Bremerella alba snov.
Collapse
Affiliation(s)
- Ofélia Godinho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Raquel Botelho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Luciana Albuquerque
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-504 Coimbra, Portugal
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands; Institute for Biological Surfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nicolai Kallscheuer
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Milton S da Costa
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-504 Coimbra, Portugal; Departamento de Ciências da Vida, Universidade de Coimbra, 3000-456 Coimbra, Portugal
| | - Alexandre Lobo-da-Cunha
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Christian Jogler
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands; Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| |
Collapse
|
17
|
Xu M, Wang F, Sheng H, Stedtfeld RD, Li Z, Hashsham SA, Jiang X, Tiedje JM. Does anaerobic condition play a more positive role in dissipation of antibiotic resistance genes in soil? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143737. [PMID: 33243511 DOI: 10.1016/j.scitotenv.2020.143737] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The persistence of antibiotic resistance genes (ARGs) under the aerobic vs. anaerobic conditions is unknown, especially under different fertilization. Towards this goal, a microcosm experiment was carried out with chemical fertilized and manured soil under aerobic and anaerobic conditions. High throughput qPCR was used to analyze ARGs with 144 primer sets and sequencing for microorganisms. Completely different dynamics of ARGs were observed in soil under aerobic and anaerobic conditions, regardless of the fertilization type. ARGs had different half-lives, even though they confer resistance to the same type of antibiotics. Aminoglycoside, chloramphenicol, macrolide - lincosamide - streptogramin B (MLSB) and tetracycline resistance genes were significantly accumulated in the aerobic soils. Anaerobic soil possessed a higher harboring capacity for exogenous microorganisms and ARGs than aerobic soil. The interaction between ARGs and mobile genetic elements (MGEs) in manured soil under aerobic condition was more pronounced than the anaerobic condition. These findings unveil that anaerobic soil could play a more positive role in reducing potential risk of ARGs in the farmland environment.
Collapse
Affiliation(s)
- Min Xu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Center for Microbial Ecology, Michigan State University, MI 48824, USA.
| | - Hongjie Sheng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA
| | - Zhongpei Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Center for Microbial Ecology, Michigan State University, MI 48824, USA
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Center for Microbial Ecology, Michigan State University, MI 48824, USA
| |
Collapse
|
18
|
Kallscheuer N, Wiegand S, Kohn T, Boedeker C, Jeske O, Rast P, Müller RW, Brümmer F, Heuer A, Jetten MSM, Rohde M, Jogler M, Jogler C. Cultivation-Independent Analysis of the Bacterial Community Associated With the Calcareous Sponge Clathrina clathrus and Isolation of Poriferisphaera corsica Gen. Nov., Sp. Nov., Belonging to the Barely Studied Class Phycisphaerae in the Phylum Planctomycetes. Front Microbiol 2020; 11:602250. [PMID: 33414774 PMCID: PMC7783415 DOI: 10.3389/fmicb.2020.602250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022] Open
Abstract
Marine ecosystems serve as global carbon sinks and nutrient source or breeding ground for aquatic animals. Sponges are ancient parts of these important ecosystems and can be found in caves, the deep-sea, clear waters, or more turbid environments. Here, we studied the bacterial community composition of the calcareous sponge Clathrina clathrus sampled close to the island Corsica in the Mediterranean Sea with an emphasis on planctomycetes. We show that the phylum Planctomycetes accounts for 9% of the C. clathrus-associated bacterial community, a 5-fold enrichment compared to the surrounding seawater. Indeed, the use of C. clathrus as a yet untapped source of novel planctomycetal strains led to the isolation of strain KS4T. The strain represents a novel genus and species within the class Phycisphaerae in the phylum Planctomycetes and displays interesting cell biological features, such as formation of outer membrane vesicles and an unexpected mode of cell division.
Collapse
Affiliation(s)
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, Netherlands.,Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Timo Kohn
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Olga Jeske
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Ralph-Walter Müller
- Faculty for Energy-, Process- and Bioengineering, University of Stuttgart, Stuttgart, Germany
| | - Franz Brümmer
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, Netherlands.,Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
19
|
Ozumchelouei EJ, Hamidian AH, Zhang Y, Yang M. A critical review on the effects of antibiotics on anammox process in wastewater. REV CHEM ENG 2020. [DOI: 10.1515/revce-2020-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Anaerobic ammonium oxidation (anammox) has recently become of significant interest due to its capability for cost-effective nitrogen elimination from wastewater. However, anaerobic ammonia-oxidizing bacteria (AnAOB) are sensitive to environmental changes and toxic substances. In particular, the presence of antibiotics in wastewater, which is considered unfavorable to the anammox process, has become a growing concern. Therefore, it is necessary to evaluate the effects of these inhibitors to acquire information on the applicability of the anammox process. Hence, this review summarizes our knowledge of the effects of commonly detected antibiotics in water matrices, including fluoroquinolone, macrolide, β-lactam, chloramphenicol, tetracycline, sulfonamide, glycopeptide, and aminoglycoside, on the anammox process. According to the literature, the presence of antibiotics in wastewater could partially or completely inhibit anammox reactions, in which antibiotics targeting protein synthesis or DNA replication (excluding aminoglycoside) were the most effective against the AnAOB strains.
Collapse
Affiliation(s)
- Elnaz Jafari Ozumchelouei
- School of Chemical Engineering , University College of Engineering, University of Tehran , Tehran , Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources , University of Tehran , Karaj , Iran
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| | - Min Yang
- Department of Environmental Science and Engineering, Faculty of Natural Resources , University of Tehran , Karaj , Iran
- State Key Laboratory of Environmental Aquatic Chemistry , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| |
Collapse
|
20
|
Rivas-Marin E, Wiegand S, Kallscheuer N, Jogler M, Peeters SH, Heuer A, Jetten MSM, Boedeker C, Rohde M, Devos DP, Jogler C. Thalassoglobus polymorphus sp. nov., a novel Planctomycete isolated close to a public beach of Mallorca Island. Antonie Van Leeuwenhoek 2020; 113:1915-1926. [PMID: 32583191 PMCID: PMC7716918 DOI: 10.1007/s10482-020-01437-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Access to axenic cultures is crucial to extend the knowledge of the biology, lifestyle or metabolic capabilities of bacteria from different phyla. The phylum Planctomycetes is an excellent example since its members display an unusual cell biology and complex lifestyles. As a contribution to the current collection of axenic planctomycete cultures, here we describe strain Mal48T isolated from phytoplankton material sampled at the coast of S'Arenal close to Palma de Mallorca (Spain). The isolated strain shows optimal growth at pH 7.0-7.5 and 30 °C and exhibits typical features of Planctomycetes. Cells of the strain are spherical to pear-shaped, divide by polar budding with daughter cells showing the same shape as the mother cell, tend to aggregate, display a stalk and produce matrix or fimbriae. Strain Mal48T showed 95.8% 16S rRNA gene sequence similarity with the recently described Thalassoglobus neptunius KOR42T. The genome sequence of the novel isolate has a size of 6,357,355 bp with a G+C content of 50.3%. A total of 4874 protein-coding genes, 41 tRNA genes and 2 copies of the 16S rRNA gene are encoded in the genome. Based on phylogenetic, morphological and physiological analyses, we conclude that strain Mal48T (= DSM 100737T = LMG 29019T) should be classified as the type strain of a new species in the genus Thalassoglobus, for which the name Thalassoglobus polymorphus sp. nov. is proposed.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Mareike Jogler
- Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
21
|
Jogler C, Wiegand S, Boedeker C, Heuer A, Peeters SH, Jogler M, Jetten MSM, Rohde M, Kallscheuer N. Tautonia plasticadhaerens sp. nov., a novel species in the family Isosphaeraceae isolated from an alga in a hydrothermal area of the Eolian Archipelago. Antonie Van Leeuwenhoek 2020; 113:1889-1900. [PMID: 32399714 PMCID: PMC7716859 DOI: 10.1007/s10482-020-01424-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
A novel planctomycetal strain, designated ElPT, was isolated from an alga in the shallow hydrothermal vent system close to Panarea Island in the Tyrrhenian Sea. Cells of strain ElPT are spherical, form pink colonies and display typical planctomycetal characteristics including division by budding and presence of crateriform structures. Strain ElPT has a mesophilic (optimum at 30 °C) and neutrophilic (optimum at pH 7.5) growth profile, is aerobic and heterotrophic. It reaches a generation time of 29 h (µmax = 0.024 h-1). The strain has a genome size of 9.40 Mb with a G + C content of 71.1% and harbours five plasmids, the highest number observed in the phylum Planctomycetes thus far. Phylogenetically, the strain represents a novel species of the recently described genus Tautonia in the family Isosphaeraceae. A characteristic feature of the strain is its tendency to attach strongly to a range of plastic surfaces. We thus propose the name Tautonia plasticadhaerens sp. nov. for the novel species, represented by the type strain ElPT (DSM 101012T = LMG 29141T).
Collapse
Affiliation(s)
- Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | | |
Collapse
|
22
|
Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories. Front Cell Infect Microbiol 2020; 10:519301. [PMID: 33330115 PMCID: PMC7734314 DOI: 10.3389/fcimb.2020.519301] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
Traditionally recognized as environmental bacteria, Planctomycetes have just been linked recently to human pathology as opportunistic pathogens, arousing a great interest for clinical microbiologists. However, the lack of appropriate culture media limits our future investigations as no Planctomycetes have ever been isolated from patients' specimens despite several attempts. Several Planctomycetes have no cultivable members and are only recognized by 16S rRNA gene sequence detection and analysis. The cultured representatives are slow-growing fastidious bacteria and mostly difficult to culture on synthetic media. Accordingly, the provision of environmental and nutritional conditions like those existing in the natural habitat where yet uncultured/refractory bacteria can be detected might be an option for their potential isolation. Hence, we systematically reviewed the various natural habitats of Planctomycetes, to review their nutritional requirements, the physicochemical characteristics of their natural ecological niches, current methods of cultivation of the Planctomycetes and gaps, from a perspective of collecting data in order to optimize conditions and the protocols of cultivation of these fastidious bacteria. Planctomycetes are widespread in freshwater, seawater, and terrestrial environments, essentially associated to particles or organisms like macroalgae, marine sponges, and lichens, depending on the species and metabolizable polysaccharides by their sulfatases. Most Planctomycetes grow in nutrient-poor oligotrophic environments with pH ranging from 3.4 to 11, but a few strains can also grow in quite nutrient rich media like M600/M14. Also, a seasonality variation of abundance is observed, and bloom occurs in summer-early autumn, correlating with the strong growth of algae in the marine environments. Most Planctomycetes are mesophilic, but with a few Planctomycetes being thermophilic (50°C to 60°C). Commonly added nutrients are N-acetyl-glucosamine, yeast-extracts, peptone, and some oligo and macro-elements. A biphasic host-associated extract (macroalgae, sponge extract) conjugated with a diluted basal medium should provide favorable results for the success of isolation in pure culture.
Collapse
Affiliation(s)
- Odilon D. Kaboré
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Université de Montpellier UMR 1058 UMR MIVEGEC, UMR IRD 224-CNRS Inserm, Montpellier, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
23
|
Stieleria varia sp. nov., isolated from wood particles in the Baltic Sea, constitutes a novel species in the family Pirellulaceae within the phylum Planctomycetes. Antonie van Leeuwenhoek 2020; 113:1953-1963. [PMID: 32797359 PMCID: PMC7717043 DOI: 10.1007/s10482-020-01456-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Species belonging to the bacterial phylum Planctomycetes are ubiquitous members of the microbial communities in aquatic environments and are frequently isolated from various biotic and abiotic surfaces in marine and limnic water bodies. Planctomycetes have large genomes of up to 12.4 Mb, follow complex lifestyles and display an uncommon cell biology; features which motivate the investigation of members of this phylum in greater detail. As a contribution to the current collection of axenic cultures of Planctomycetes, we here describe strain Pla52T isolated from wood particles in the Baltic Sea. Phylogenetic analysis places the strain in the family Pirellulaceae and suggests two species of the recently described genus Stieleria as current closest neighbours. Strain Pla52nT shows typical features of members of the class Planctomycetia, including division by polar budding and the presence of crateriform structures. Colonies of strain Pla52nT have a light orange colour, which is an unusual pigmentation compared to the majority of members in the phylum, which show either a pink to red pigmentation or entirely lack pigmentation. Optimal growth of strain Pla52nT at 33 °C and pH 7.5 indicates a mesophilic (i.e. with optimal growth between 20 and 45 °C) and neutrophilic growth profile. The strain is an aerobic heterotroph with motile daughter cells. Its genome has a size of 9.6 Mb and a G + C content of 56.0%. Polyphasic analyses justify delineation of the strain from described species within the genus Stieleria. Therefore, we conclude that strain Pla52nT = LMG 29463T = VKM B-3447T should be classified as the type strain of a novel species, for which we propose the name Stieleria varia sp. nov.
Collapse
|
24
|
Planctomycetes as a Vital Constituent of the Microbial Communities Inhabiting Different Layers of the Meromictic Lake Sælenvannet (Norway). Microorganisms 2020; 8:microorganisms8081150. [PMID: 32751313 PMCID: PMC7464441 DOI: 10.3390/microorganisms8081150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/20/2022] Open
Abstract
Meromictic lakes are permanently stratified lakes that display steep gradients in salinity, oxygen and sulphur compounds tightly linked to bacterial community structure and diversity. Lake Sælenvannet is a meromictic lake located south of Bergen, Norway. The 26 m deep lake is connected to the open sea and permanently stratified into two layers separated by a chemocline. The upper water layer is brackish with major input from water runoff from the surroundings. The bottom layer consists of old saline water with low or no oxygen concentrations. Bacteria from phylum Planctomycetes are reported to be ubiquitous in lake environments. They are involved in the degradation of complex carbon sources in aquatic environments and are also linked to anaerobic processes such as fermentation and sulphur reduction. To study Planctomycete distribution along a chemical gradient, we sampled the water column throughout Lake Sælenvannet in 2012 and profiled the microbial community using 16S rRNA amplicon sequencing (metabarcoding) with 454 pyrosequencing. Planctomycetes related 16S rRNA gene sequences were found to be present both in the oxic and anoxic parts of the lake and showed an uneven distribution throughout the water column, with the highest relative abundance of 10% found in the saline anoxic layer at 15 m depth. In a follow-up study in 2014, samples from eight different depths were collected for enrichment and isolation of novel Planctomycetes. This study resulted in successful isolation in pure culture of 10 isolates affiliated to four different genera from the family Planctomycetaceae. One strain closely related to Blastopirellula cremea was isolated from 9 m depth, and two novel strains affiliated to the genera Stieleria and Gimesia were isolated at 7 and 9 m depths, respectively. Furthermore, seven isolates with identical 16S rRNA gene sequences were retrieved from seven different depths which varied greatly in salinity and chemical composition. These isolates likely represent a new species affiliated to Rubinisphaera. The adaptation of this novel Planctomycete to water depths spanning the entire chemical gradient could indicate a high phenotypic plasticity and/or a very efficient survival strategy. Overall, our results show the presence of a diverse group of Planctomycetes in Lake Sælenvannet, with a strong potential for novel adaptations to chemical stress factors.
Collapse
|
25
|
Sandargo B, Jeske O, Boedeker C, Wiegand S, Wennrich JP, Kallscheuer N, Jogler M, Rohde M, Jogler C, Surup F. Stieleriacines, N-Acyl Dehydrotyrosines From the Marine Planctomycete Stieleria neptunia sp. nov. Front Microbiol 2020; 11:1408. [PMID: 32765432 PMCID: PMC7378531 DOI: 10.3389/fmicb.2020.01408] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/29/2020] [Indexed: 12/02/2022] Open
Abstract
Bacteria of the phylum Planctomycetes occur ubiquitously in marine environments and play important roles in the marine nitrogen- and carbon cycle, for example as scavengers after phototrophic blooms. Here, we describe the isolation and characterization of the planctomycetal strain Enr13T isolated from a Posidonia sp. biofilm obtained from seawater sediment close to Panarea Island, Italy. Phylogenetic tree reconstruction based on 16S rRNA gene sequences and multi-locus sequence analysis supports the delineation of strain Enr13T from characterized species part of the phylum of Planctomycetes. HPLC-MS analysis of culture broth obtained from strain Enr13T revealed the presence of lipophilic metabolites, of which the major compound was isolated by preparative reversed-phase HPLC. The structure of this compound, named stieleriacine D (1), was elucidated utilizing HRESIMS, 1D- and 2D-NMR data as a new N-acylated dehydrotyrosine derivative. Its biosynthesis was proposed based on an in silico gene cluster analysis. Through analysis of the MS/MS spectrum of 1 and its minor derivative, stieleriacine E (2), it was possible to assign the structure of 2 without isolation. 1 showed antibacterial activity, however, the wide distribution of structurally related compounds indicates a potential role as a signaling molecule.
Collapse
Affiliation(s)
- Birthe Sandargo
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Olga Jeske
- Leibniz Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Christian Boedeker
- Leibniz Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Jan-Peer Wennrich
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, Netherlands.,Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Frank Surup
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
26
|
Caulifigura coniformis gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from a red biofilm sampled in a hydrothermal area. Antonie van Leeuwenhoek 2020; 113:1927-1937. [PMID: 32583190 PMCID: PMC7717036 DOI: 10.1007/s10482-020-01439-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
Pan44T, a novel strain belonging to the phylum Planctomycetes, was isolated from a red biofilm in a hydrothermal area close to the island Panarea in the Tyrrhenian Sea north of Sicily, Italy. The strain forms white colonies on solid medium and displays the following characteristics: cell division by budding, formation of rosettes, presence of matrix or fimbriae and long stalks. The cell surface has an interesting and characteristic texture made up of triangles and rectangles, which leads to a pine cone-like morphology of the strain. Strain Pan44T is mesophilic (temperature optimum 26 °C), slightly alkaliphilic (pH optimum 8.0), aerobic and heterotrophic. The strain has a genome size of 6.76 Mb with a G + C content of 63.2%. Phylogenetically, the strain is a member of the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. Our analysis supports delineation of strain Pan44T from all known genera in this family, hence, we propose to assign it to a novel species within a novel genus, for which we propose the name Caulifigura coniformis gen. nov., sp. nov., represented by Pan44T (DSM 29405T = LMG 29788T) as the type strain.
Collapse
|
27
|
Aureliella helgolandensis gen. nov., sp. nov., a novel Planctomycete isolated from a jellyfish at the shore of the island Helgoland. Antonie Van Leeuwenhoek 2020; 113:1839-1849. [PMID: 32219667 PMCID: PMC7716919 DOI: 10.1007/s10482-020-01403-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/06/2020] [Indexed: 11/02/2022]
Abstract
A novel planctomycetal strain, designated Q31aT, was isolated from a jellyfish at the shore of the island Helgoland in the North Sea. The strain forms lucid white colonies on solid medium and displays typical characteristics of planctomycetal strains, such as division by budding, formation of rosettes, presence of crateriform structures, extracellular matrix or fibre and a holdfast structure. Q31aT is mesophilic (temperature optimum 27 °C), neutrophilic (pH optimum 7.5), aerobic and heterotrophic. A maximal growth rate of 0.017 h- 1 (generation time of 41 h) was observed. Q31aT has a genome size of 8.44 Mb and a G + C content of 55.3%. Phylogenetically, the strain represents a novel genus and species in the recently introduced family Pirellulaceae, order Pirellulales, class Planctomycetia. We propose the name Aureliella helgolandensis gen. nov., sp. nov. for the novel species, represented by Q31aT (= DSM 103537T = LMG 29700T) as the type strain.
Collapse
|
28
|
Description of the novel planctomycetal genus Bremerella, containing Bremerella volcania sp. nov., isolated from an active volcanic site, and reclassification of Blastopirellula cremea as Bremerella cremea comb. nov. Antonie van Leeuwenhoek 2020; 113:1823-1837. [DOI: 10.1007/s10482-019-01378-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
|
29
|
Kallscheuer N, Wiegand S, Heuer A, Rensink S, Boersma AS, Jogler M, Boedeker C, Peeters SH, Rast P, Jetten MSM, Rohde M, Jogler C. Blastopirellula retiformator sp. nov. isolated from the shallow-sea hydrothermal vent system close to Panarea Island. Antonie van Leeuwenhoek 2020; 113:1811-1822. [PMID: 31894497 DOI: 10.1007/s10482-019-01377-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Aquatic bacteria belonging to the deep-branching phylum Planctomycetes play a major role in global carbon and nitrogen cycles. However, their uncommon morphology and physiology, and their roles and survival on biotic surfaces in marine environments, are only partially understood. Access to axenic cultures of different planctomycetal genera is key to study their complex lifestyles, uncommon cell biology and primary and secondary metabolism in more detail. Here, we describe the characterisation of strain Enr8T isolated from a marine biotic surface in the seawater close to the shallow-sea hydrothermal vent system off Panarea Island, an area with high temperature and pH gradients, and high availability of different sulphur and nitrogen sources resulting in a great microbial diversity. Strain Enr8T showed typical planctomycetal traits such as division by polar budding, aggregate formation and presence of fimbriae and crateriform structures. Growth was observed at ranges of 15-33 °C (optimum 30 °C), pH 6.0-8.0 (optimum 7.0) and at NaCl concentrations from 100 to 1200 mM (optimum 350-700 mM). Strain Enr8T forms white colonies on solid medium and white flakes in liquid culture. Its genome has a size of 6.20 Mb and a G + C content of 59.2%. Phylogenetically, the strain belongs to the genus Blastopirellula. We propose the name Blastopirellula retiformator sp. nov. for the novel species, represented by the type strain Enr8T (DSM 100415T = LMG 29081T).
Collapse
Affiliation(s)
| | - Sandra Wiegand
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Stephanie Rensink
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Alje S Boersma
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Mareike Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.,Leibniz Institute DSMZ, Brunswick, Germany
| | | | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Patrick Rast
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.,Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Centre for Infection Research (HZI), Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands. .,Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
30
|
Description of three bacterial strains belonging to the new genus Novipirellula gen. nov., reclassificiation of Rhodopirellula rosea and Rhodopirellula caenicola and readjustment of the genus threshold of the phylogenetic marker rpoB for Planctomycetaceae. Antonie van Leeuwenhoek 2019; 113:1779-1795. [DOI: 10.1007/s10482-019-01374-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023]
|
31
|
Three novel Rubripirellula species isolated from plastic particles submerged in the Baltic Sea and the estuary of the river Warnow in northern Germany. Antonie van Leeuwenhoek 2019; 113:1767-1778. [DOI: 10.1007/s10482-019-01368-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
|
32
|
Kaboré OD, Aghnatios R, Godreuil S, Drancourt M. Escherichia coli Culture Filtrate Enhances the Growth of Gemmata spp. Front Microbiol 2019; 10:2552. [PMID: 31781064 PMCID: PMC6851166 DOI: 10.3389/fmicb.2019.02552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/22/2019] [Indexed: 12/05/2022] Open
Abstract
Background Planctomycetes bacteria are known to be difficult to isolate, we hypothesized this may be due to missing iron compounds known to be important for other bacteria. We tested the growth-enhancement effect of complementing two standard media with Escherichia coli culture filtrate on two cultured strains of Gemmata spp. Also, the acquisition of iron by Gemmata spp. was evaluated by measuring various molecules involved in iron metabolism. Materials and Methods Gemmata obscuriglobus and Gemmata massiliana were cultured in Caulobacter and Staley’s medium supplemented or not with E. coli culture filtrate, likely containing siderophores and extracellular ferrireductases. We performed iron metabolism studies with FeSO4, FeCl3 and deferoxamine in the cultures with the E. coli filtrate and the controls. Results and Discussion The numbers of G. obscuriglobus and G. massiliana colonies on Caulobacter medium or Staley’s medium supplemented with E. coli culture filtrate were significantly higher than those on the standard medium (p < 0.0001). Agar plate assays revealed that the Gemmata colonies near E. coli colonies were larger than the more distant colonies, suggesting the diffusion of unknown growth promoting molecules. The inclusion of 10–4 to 10–3 M FeSO4 resulted in rapid Gemmata spp. growth (4–5 days compared with 8–9 days for the controls), suggesting that both species can utilize FeSO4 to boost their growth. In contrast, deferoxamine slowed down and prevented Gemmata spp. growth. Further studies revealed that the complementation of Caulobacter medium with E. coli culture filtrate and 10–4 M FeSO4 exerted a significant growth-enhancement effect compared with that obtained with Caulobacter medium supplemented with E. coli culture filtrate alone (p < 0.0122). Moreover, the intracellular iron concentrations in G. obscuriglobus and G. massiliana cultures in iron-depleted broth supplemented with the E. coli filtrate were 0.63 ± 0.16 and 0.78 ± 0.12 μmol/L, respectively, whereas concentrations of 1.72 ± 0.13 and 1.56± 0.11 μmol/L were found in the G. obscuriglobus and G. massiliana cultures grown in broth supplemented with the E. coli filtrate and FeSO4. The data reported here indicated that both E. coli culture filtrate and FeSO4 act as growth factors for Gemmata spp. via a potentiation mechanism.
Collapse
Affiliation(s)
- Odilon D Kaboré
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Rita Aghnatios
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Département de Bactériologie-Virologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Michel Drancourt
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|