1
|
Kaczmarek A, Boguś MI. The activation of caspases in immunocompetent cells is an important infection factor of the pathogenic fungus Conidiobolus coronatus (Entomophthorales: Ancylistaceae). J Invertebr Pathol 2025; 211:108328. [PMID: 40188939 DOI: 10.1016/j.jip.2025.108328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/30/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
Apoptosis is a mechanism commonly used by pathogenic fungi to inhibit the host's immune response. One opportunistic pathogen is Conidiobolus coronatus, which causes fungal infection in mammals and insects. In a study, larvae of Galleria mellonella were exposed to the pathogen for 24 h. After this exposure, some larvae were used for hemolymph collection (F24), while others were incubated for an additional 24 h (F48). The activity of caspase-9 and caspase-3-like proteins in hemocytes was measured using a colorimetric method. The changes in caspase concentration were calculated using ELISA tests. Immunocytochemical analyses were employed to show changes in the levels of the examined proteins in both their pro- and active forms. Fluorescence microscopy was used to detect changes in cultured hemocytes and flow cytometry analysis was conducted to detect both forms of caspases in freshly collected hemocytes. To evaluate the effect of fungal infection, caspase inhibitors (Z-DEVD-FMK and Z-LEHD-FMK) were injected into the larvae, and their impact on insect development and resistance to fungal infection was determined. The exposure of larvae to the entomopathogen increased the detection levels, concentrations, and activity of both caspase-like proteins in hemocytes during fungal infection. The research has indicated that inhibition of these proteins disrupts larval development and increases resistance to infection. These results suggest that apoptosis might be an important mechanism for a pathogen to inhibit the insect immune response. Given the similarities between insects' and mammals' innate immune responses, the presented results may indicate a potential mechanism of fungal pathogenicity in both groups.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55 00-818 Warsaw, Poland.
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55 00-818 Warsaw, Poland
| |
Collapse
|
2
|
Rahmani S, Bandani AR. Caspase gene silencing affects the growth and development of Tuta absoluta. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Identification and Functional Analysis of Apoptotic Protease Activating Factor-1 (Apaf-1) from Spodoptera litura. INSECTS 2021; 12:insects12010064. [PMID: 33450838 PMCID: PMC7828216 DOI: 10.3390/insects12010064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 11/17/2022]
Abstract
Apoptotic protease activating factor-1 (Apaf-1) is an adaptor molecule, essential for activating initiator caspase and downstream effector caspases, which directly cause apoptosis. In fruit flies, nematodes, and mammals, Apaf-1 has been extensively studied. However, the structure and function of Apaf-1 in Lepidoptera remain unclear. This study identified a novel Apaf-1 from Spodoptera litura, named Sl-Apaf-1. Sl-Apaf-1 contains three domains: a CARD domain, as well as NOD and WD motifs, and is very similar to mammalian Apaf-1. Interference of Sl-apaf-1 expression in SL-1 cells blocked apoptosis induced by actinomycin D. Overexpression of Sl-apaf-1 significantly enhances apoptosis induced by actinomycin D in Sf9/SL-1/U2OS cells, suggesting that the function of Sl-Apaf-1 is evolutionarily conserved. Furthermore, Sl-Apaf-1 could interact with Sl-caspase-5 (a homologue of mammalian caspase-9) and yielded a binding affinity of 1.37 × 106 M-1 according isothermal titration calorimetry assay. Initiator caspase (procaspase-5) of S. litura could be activated by Sl-Apaf-1 (without WD motif) in vitro, and the activated Sl-caspase-5 could cleave Sl-procaspase-1 (a homologue of caspase-3 in mammals), which directly caused apoptosis. This study demonstrates the key role of Sl-Apaf-1 in the apoptosis pathway, suggesting that the apoptosis pathway in Lepidopteran insects and mammals is conserved.
Collapse
|
4
|
Yu H, Li ZQ, Ou-Yang YY, Huang GH. Identification of four caspase genes from Spodoptera exigua (Lepidoptera: Noctuidae) and their regulations toward different apoptotic stimulations. INSECT SCIENCE 2020; 27:1158-1172. [PMID: 31793737 DOI: 10.1111/1744-7917.12741] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/09/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Apoptosis plays critical roles in multiple biological processes in multicellular organisms. Caspases are known as important participators and regulators of apoptosis. Here, four novel caspase genes of Spodoptera exigua were cloned and characterized, which were designated as SeCasp-1, SeCasp-6, SeCasp-7 and SeCasp-8. Analysis of the putative encoded protein sequences of these SeCasps indicated that SeCasp-1 and SeCasp-7 were possible homologs of executor caspases; SeCasp-8 was a possible homolog of initiator caspases; and SeCasp-6 was a unique caspase of S. exigua that shares low similarity with all the identified insect caspases. Based on baculovirus expression system analyses, SeCasp-1 exhibited similar caspase activity to human caspase-1, -3, -4, -6, -8 and -9; SeCasp-6 presented similar caspase activity to human caspase-2, -3, -4, -6, -8 and -9; SeCasp-7 exhibited similar caspase activity to human caspase-2, -3 and -6; and SeCasp-8 presented similar caspase activity only to human caspase-8. Induction with different chemicals revealed that SeCasp-1 showed extreme upregulation after 24 h in the treated fat body cell line (IOZCAS-Spex-II) of S. exigua. Developmental expression analysis revealed that SeCasp-1 was highly transcribed in the larval stages, while SeCasp-6, SeCasp-7, SeCasp-8 were down-regulated. The in vivo detection of the relative expression levels of SeCasps in S. eixgua larvae inoculated with different pathogens suggested that SeCasp-1 was sensitive to Bacillus thuringiensis infection and that SeCasp-6 was sensitive to baculovirus infection. SeCasp-7 and SeCasp-8 showed slight changes under either in vitro chemical apoptosis induction or in vivo pathogen infection.
Collapse
Affiliation(s)
- Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Zi-Qi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
5
|
Liu G, Lv Z, Wu Q, Zhou Z, Zhang G, Wan F, Yan Y. The Bactrocera dorsalis caspase-1 gene is expressed throughout development and required for female fertility. PEST MANAGEMENT SCIENCE 2020; 76:4104-4111. [PMID: 32578366 DOI: 10.1002/ps.5966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The oriental fruit fly Bactrocera dorsalis is one of the most destructive pests of fruits and vegetables. The sterile insect technique (SIT) is an effective and environmentally friendly approach to the control of tephritid fruit flies. The pro-apoptotic gene head involution defective (hid) has been used as an effective lethal effector in SIT. It initiates an interaction cascade including activation of caspase-like proteases. However, the biological role of caspase activity in tephritid fruit flies has yet to be explored. RESULTS In this study, the B. dorsalis caspase-1 gene (Bdcp-1) was cloned and characterized. Sequence comparison showed that Bdcp-1 protein shared highly homology with Drosophila effector caspases Drice and Dcp-1. It is predicted to contain a short pro-domain because two proteolytic cleavage sites (Asp16 and Asp223 ) are present. Expression patterns indicated that Bdcp-1 is highly transcribed in embryos and expression was upregulated during metamorphosis and upon ultraviolet irradiation. RNA interference showed that Bdcp-1 is essential for ovarian development and female fertility. For example, knockdown of Bdcp-1 caused transcriptional downregulation of expression of the yolk protein-1 gene (Bdyp-1) and delayed ovarian development. The percentage of spawning females and female fecundity were significantly reduced. CONCLUSION This study illustrates the function of the Bdcp-1 gene and provides an attractive method to develop a biological way to control the oriental fruit fly through the control of caspases. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guiqing Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Sciences, Guangzhou, P. R. China
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhichuang Lv
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qiang Wu
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, P. R. China
| | - Zhongshi Zhou
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Guifen Zhang
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Fanghao Wan
- Department of Biological Invasions, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, P. R. China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, P. R. China
| | - Ying Yan
- Institute for Insect Biotechnology, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
6
|
Liu H, Zhou K, Yang Z. Identification and functional characterization of SlDronc in Spodoptera littoralis. PeerJ 2020; 8:e10329. [PMID: 33194452 PMCID: PMC7646310 DOI: 10.7717/peerj.10329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/19/2020] [Indexed: 11/20/2022] Open
Abstract
Background Apoptosis is responsible for eliminating damaged and virus-infected cells, regulating normal cell turnover, and maintaining the immune system’s development and function. Caspases play a vital role in both mammal and invertebrate apoptosis. Spodoptera littoralis is a generalist insect herbivore that is one of the most destructive pests in tropical and subtropical areas and attacks a wide range of commercially important crops. Although S. littoralis is a model organism in the study of baculovirus infection, its apoptotic pathway has not been explored. Methods We cloned a new caspase gene named sldronc in S. littoralis using Rapid Amplification of cDNA Ends (RACE). We then measured caspase activity on synthetic caspase substrates and S. littoralis’ effector caspase. SlDronc’s function in the apoptotic pathway and its interaction with caspase inhibitors were also tested in SL2 cells. Results We found that the initiator caspase SlDronc cleaved and activated effector caspase in S. littoralis. SlDronc overexpression induced apoptosis in SL2 cells, and Sldronc knockdown decreased apoptosis induced by UV irradiation in SL2 cells. Our results indicate that SlDronc acts as an apoptotic initiator caspase in S. littoralis. Additionally, we found that processed forms of SlDronc increased in the presence of N-terminally truncated S. littoralis inhibitors of apoptosis (SlIAP) and that SlDronc was inhibited by P49. This study contributes to the further understanding of S. littoralis’ apoptotic pathway and may facilitate future studies on baculovirus infection-induced apoptosis.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhouning Yang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Tettamanti G, Casartelli M. Cell death during complete metamorphosis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190065. [PMID: 31438818 DOI: 10.1098/rstb.2019.0065] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In insects that undergo complete metamorphosis, cell death is essential for reshaping or removing larval tissues and organs, thus contributing to formation of the adult's body structure. In the last few decades, the study of metamorphosis in Lepidoptera and Diptera has provided broad information on the tissue remodelling processes that occur during larva-pupa-adult transition and made it possible to unravel the underlying regulatory pathways. This review summarizes recent knowledge on cell death mechanisms in Lepidoptera and other holometabolous insects, highlighting similarities and differences with Drosophila melanogaster, and discusses the role of apoptosis and autophagy in this developmental setting. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Morena Casartelli
- Department of Biosciences, University of Milano, 20133 Milano, Italy
| |
Collapse
|
8
|
Gwokyalya R, Altuntaş H. Boric acid-induced immunotoxicity and genotoxicity in model insect Galleria mellonella L. (Lepidoptera: Pyralidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21588. [PMID: 31180585 DOI: 10.1002/arch.21588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Boric acid (BA) is widely used in various industrial process and can be accessed to nontarget organisms. This study aimed to investigate the insecticidal effects of BA and its toxic activities with respect to immunologic and genotoxic effects using Galleria mellonella larvae as a model. BA concentrations (78.125-10,000 ppm) were administrated to the larvae using the feeding method. Concentration-dependent mortality was observed in all larval groups. Probit analysis revealed LC30 , LC50 , and LC70 values to be 112.4, 320.1, and 911.4 ppm, respectively. These concentrations were used in all bioassays. Drastic reductions in total hemocyte counts along with changes in differential hemocyte counts were observed following BA treatment. Cell viability assays showed dose-dependent reductions in viable cells and an increase in the necrotic and apoptotic ratios after BA treatment. However, mitotic indices of larval hemocytes did not change at all BA concentrations. The cytotoxic effect of BA led to a significant reduction in cellular immune responses such as encapsulation, melanization, and nodulation activities of treated larvae. While BA increased micronucleus ratios at the highest concentration, comet parameters indicating DNA damage increased in G. mellonella larval hemocytes at all concentrations. These report that BA suppresses the immune system of G. mellonella and also poses risks of genotoxicity at high concentrations.
Collapse
Affiliation(s)
- Rehemah Gwokyalya
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskisehir, Turkey
| | - Hülya Altuntaş
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskisehir, Turkey
| |
Collapse
|
9
|
The response of newly established cell lines of Spodoptera littoralis to group I and group II baculoviruses. Cytotechnology 2019; 71:723-731. [PMID: 31069609 DOI: 10.1007/s10616-019-00317-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/30/2019] [Indexed: 01/29/2023] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Spodoptera littoralis multiple nucleopolyhedrovirus (SpliMNPV) belong to group I and group II nucleopolyhedroviruses, respectively and can replicate in a wide range of insect species. In this study, the ability of newly established S. littoralis cell lines to support replication of AcMNPV and SpliMNPV was examined. The microscopic observations showed that the S. littoralis cells infected with AcMNPV exhibited morphological changes such as cells breaking into small bodies and forming apoptosis-like bodies post-infection. Nuclear DNA fragmentation was observed in all AcMNPV-infected cell lines through DNA gel electrophoresis analysis. Therefore, the virus replication was unsuccessful in most of cells, which were able to abort the virus replication. On the other hand, cells that were infected with SpliMNPV did not show similar morphological changes and no small bodies were formed. In addition, SpliMNPV succeeded to infect the cells, replicate, and form viral occlusion bodies inside the infected cells. In suspension culture, S. littoralis cells, which were infected with AcMNPV, accumulated as composed balls in shaker flasks after infection overnight, with cell density decreasing dramatically. In contrast, there was no cell clumping seen in the infected cells with SpliMNPV and the uninfected cells. In conclusion, the newly established embryonic S. littoralis cells were highly susceptible to SpliMNPV, whereas the cells were non-permissive to AcMNPV, yet they still underwent programmed cell death.
Collapse
|
10
|
Wang XR, Wang C, Wang XW, Qian LX, Chi Y, Liu SS, Liu YQ, Wang XW. The functions of caspase in whitefly Bemisia tabaci apoptosis in response to ultraviolet irradiation. INSECT MOLECULAR BIOLOGY 2018; 27:739-751. [PMID: 29892978 DOI: 10.1111/imb.12515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Whiteflies (Bemisia tabaci) are phloem feeders, and some invasive species are composed of cryptic species complexes that cause extensive crop damage, particularly via the direct transmission of plant viruses. Apoptosis is a type of programmed cell death essential for organismal development and tissue homeostasis. The caspases belong to a family of cysteine proteases that play a central role in the initiation of apoptosis in many organisms. Here, we employed a comprehensive genomics approach to identity caspases in B. tabaci Middle East Asia Minor 1 (MEAM1), an invasive whitefly that carries a cryptic species complex that is devastating to crops. Four caspase genes were identified, and their motif compositions were predicted. Structures were relatively conserved in both putative effector and initiator caspases. Expression patterns of caspase genes differed across insect developmental stages. Three caspase genes were induced immediately after ultraviolet (UV) treatment. Expression levels of Bt-caspase-1 and Bt-caspase-3b increased in the midgut and salivary glands during apoptosis induced by UV treatments, whereas silencing of both genes reduced UV-triggered apoptosis. Our study demonstrates that Bt-caspase-1 and Bt-caspase-3b, respectively, act as putative initiator and effector apoptotic caspases in the MEAM1 whitefly.
Collapse
Affiliation(s)
- X-R Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - C Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - X-W Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - L-X Qian
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Y Chi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - S-S Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Y-Q Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - X-W Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Wang Q, Ju X, Chen L, Chen K. Caspase-1 from the silkworm, Bombyx mori, is involved in Bombyx mori nucleopolyhedrovirus infection. ACTA ACUST UNITED AC 2017; 72:147-153. [PMID: 27701142 DOI: 10.1515/znc-2016-0133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/28/2016] [Indexed: 11/15/2022]
Abstract
Caspase-1 is one of the effector caspases in mammals that plays a central role in apoptosis. However, the lepidopteran caspase-1, especially the Bombyx mori caspase-1 (Bm-caspase-1), has not been investigated in detail. In this study, Bm-caspase-1 was identified from an expressed sequence tag database in B. mori by BLAST search. The open reading frame of Bm-caspase-1 contained 879 nucleotides and encoded 293 amino acids with a predicted molecular mass of 33 kDa. Bm-caspase-1 contained two consensus amino acid motifs of caspase cleavage sites, DEGDA and TETDG. Caspase activity assays revealed significant proteolytic activity of the Ac-DEVD-pNA substrate. Bm-caspase-1 can be detected in all tissues and developmental stages by a semi quantitative polymerase chain reaction assay. More importantly, the expression level of Bm-caspase-1 is increased upon baculovirus infection and up-regulated in BmNPV-resistant silkworms. Taken together, these results indicate that Bm-caspase-1 plays an important role during baculovirus infection.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, PR China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| |
Collapse
|
12
|
Yang C, Lin XW, Xu WH. Cathepsin L participates in the remodeling of the midgut through dissociation of midgut cells and activation of apoptosis via caspase-1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 82:21-30. [PMID: 28153644 DOI: 10.1016/j.ibmb.2017.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
The larval midgut in holometabolous insects must undergo a remodeling process during metamorphosis to form the pupal-adult midgut. However, the molecular mechanism of larval midgut cell dissociation remains unknown. Here, we show that the expression and activity of Helicoverpa armigera cathepsin L (Har-CatL) are high in the midgut at the mid-late stage of the 6th-instar larvae and are responsive to the upstream hormone ecdysone. Immunocytochemistry shows that signals for Har-CatL-like are localized in midgut cells, and an inhibitor experiment demonstrates that Har-CatL functions in the dissociation of midgut epithelial cells. Mechanistically, Har-CatL can cleave pro-caspase-1 into the mature peptide, thereby increasing the activity of caspase-1, which plays a key role in apoptosis, indicating that Har-CatL is also involved in the apoptosis of midgut cells by activating caspase-1. We believe that this is the first report that Har-CatL regulates the dissociation and apoptosis of the larval midgut epithelium for midgut remodeling.
Collapse
Affiliation(s)
- Cui Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xian-Wu Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Hamajima R, Iwamoto A, Tomizaki M, Suganuma I, Kitaguchi K, Kobayashi M, Yamada H, Ikeda M. Functional analysis of inhibitor of apoptosis 1 of the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:97-107. [PMID: 28327305 DOI: 10.1016/j.ibmb.2016.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Recent advances in genome-wide surveys have revealed a number of lepidopteran insect homologs of mammalian and Drosophila genes that are responsible for apoptosis regulation. However, the underlying molecular mechanisms for apoptosis regulation in lepidopteran insect cells remain poorly understood. In the present study, we demonstrated that the transfection of Bombyx mori BM-N cells with dsRNA against the B. mori cellular iap1 gene (cbm-iap1) induces severe apoptosis that is accompanied by an increase of caspase-3-like protease activity. In these apoptotic cells, the cleaved form of the endogenous initiator caspase Dronc (Bm-Dronc) was detected, indicating that cBm-IAP1 protein depletion by RNAi silencing resulted in the activation of Bm-Dronc. In transient expression assays in BM-N cells, cBm-IAP1 suppressed the apoptosis triggered by Bm-Dronc overexpression and depressed the elevation of caspase-3-like protease activity, but also increased the cleaved form of Bm-Dronc protein. cBm-IAP1 also suppressed the caspase-3-like protease activity stimulated by Bm-caspase-1 overexpression. Co-immunoprecipitation experiments demonstrated that cBm-IAP1 strongly interacts with Bm-Dronc, but only has weak affinity for Bm-caspase-1. Transient expression analyses showed that truncated cBm-IAP1 proteins defective in the BIR1, BIR2 or RING domain were unable to suppress Bm-Dronc-induced apoptosis. In addition, BM-N cells expressing truncated cBm-IAP1 proteins underwent apoptosis, suggesting that intact cBm-IAP1, which has anti-apoptotic activity, was replaced or displaced by the overexpressed truncated cBm-IAP1 proteins, which are incapable of interfering with the apoptotic caspase cascade. Taken together, the present results demonstrate that cBm-IAP1 is a vital negative regulator of apoptosis in BM-N cells and functions by preventing the activation and/or activity of Bm-Dronc and Bm-caspase-1.
Collapse
Affiliation(s)
- Rina Hamajima
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Asako Iwamoto
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Moe Tomizaki
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ikue Suganuma
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Koji Kitaguchi
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Michihiro Kobayashi
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Hayato Yamada
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Motoko Ikeda
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
14
|
Romanelli D, Casartelli M, Cappellozza S, de Eguileor M, Tettamanti G. Roles and regulation of autophagy and apoptosis in the remodelling of the lepidopteran midgut epithelium during metamorphosis. Sci Rep 2016; 6:32939. [PMID: 27609527 PMCID: PMC5016986 DOI: 10.1038/srep32939] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/17/2016] [Indexed: 12/17/2022] Open
Abstract
We previously showed that autophagy and apoptosis occur in the removal of the lepidopteran larval midgut during metamorphosis. However, their roles in this context and the molecular pathways underlying their activation and regulation were only hypothesized. The results of the present study better clarify the timing of the activation of these two processes: autophagic and apoptotic genes are transcribed at the beginning of metamorphosis, but apoptosis intervenes after autophagy. To investigate the mechanisms that promote the activation of autophagy and apoptosis, we designed a set of experiments based on injections of 20-hydroxyecdysone (20E). Our data demonstrate that autophagy is induced at the end of the last larval stage by the 20E commitment peak, while the onset of apoptosis occurs concomitantly with the 20E metamorphic peak. By impairing autophagic flux, the midgut epithelium degenerated faster, and higher caspase activity was observed compared to controls, whereas inhibiting caspase activation caused a severe delay in epithelial degeneration. Our data demonstrate that autophagy plays a pro-survival function in the silkworm midgut during metamorphosis, while apoptosis is the major process that drives the demise of the epithelium. The evidence collected in this study seems to exclude the occurrence of autophagic cell death in this setting.
Collapse
Affiliation(s)
- Davide Romanelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Morena Casartelli
- Department of Biosciences, University of Milano, 20133 Milano, Italy
| | - Silvia Cappellozza
- CREA - Honey Bee and Silkworm Research Unit, Padua seat, 35143 Padova, Italy
| | - Magda de Eguileor
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
15
|
Zhong G, Cui G, Yi X, Sun R, Zhang J. Insecticide cytotoxicology in China: Current status and challenges. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 132:3-12. [PMID: 27521907 DOI: 10.1016/j.pestbp.2016.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/06/2023]
Abstract
The insecticide cytotoxicology, as a new branch of toxicology, has rapidly developed in China. During the past twenty years, thousands of investigations have sprung up to evaluate the damages and clarify the mechanisms of insecticidal chemical substances to insect cells in vivo or in vitro. The mechanisms of necrosis, apoptosis or autophagy induced by synthetic or biogenic pesticides and virus infections have been systematically illuminated in many important models, including S2, BmN, SL-1, Sf21 and Sf9 cell lines. In addition, a variety of methods have also been applied to examine the effects of insecticides and elaborate the modes of action. As a result, many vital factors and pathways, such as cytochrome c, the Bcl-2 family and caspases, in mitochondrial signaling pathways, intracellular free calcium and lysosome signal pathways have been illuminated and drawn much attention. Benefiting from the application of insecticide cytotoxicology, natural products purifications, biological activities assessments of synthetic compounds and high throughput screening models have been accelerated in China. However, many questions remained, and there exist great challenges, especially in theory system, evaluation criterion, evaluation model, relationship between activity in vitro and effectiveness in vivo, and the toxicological mechanism. Fortunately, the generation of "omics" could bring opportunities for the development of insecticide cytotoxicology.
Collapse
Affiliation(s)
- Guohua Zhong
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Gaofeng Cui
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Ranran Sun
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jingjing Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Rice ragged stunt virus-induced apoptosis affects virus transmission from its insect vector, the brown planthopper to the rice plant. Sci Rep 2015; 5:11413. [PMID: 26073458 PMCID: PMC4466780 DOI: 10.1038/srep11413] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/26/2015] [Indexed: 02/05/2023] Open
Abstract
Most plant viruses that seriously damage agricultural crops are transmitted by insects. However, the mechanisms enabling virus transmission by insect vectors are poorly understood. The brown planthopper (Nilaparvata lugens) is one of the most serious rice pests, causing extensive damage to rice plants by sucking the phloem sap and transmitting viruses, including Rice ragged stunt virus (RRSV). In this study, we investigated the mechanisms of RRSV transmission from its insect vector to the rice plant in vivo using the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and RNA interference technology. RRSV induced apoptosis in the salivary gland cells of its insect vector, N. lugens. The RRSV-induced apoptosis was regulated through a caspase-dependent manner, and inhibition of the expression of N. lugens caspase-1 genes significantly interfered with virus transmission. Our findings establish a link between virus-associated apoptosis and virus transmission from the insect vector to the host plant.
Collapse
|
17
|
Upregulation of the expression of prodeath serine/threonine protein kinase for programmed cell death by steroid hormone 20-hydroxyecdysone. Apoptosis 2013. [PMID: 23203537 DOI: 10.1007/s10495-012-0784-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Serine/threonine protein kinases phosphorylate protein substrates to initiate further cellular events. Different serine/threonine protein kinases have varied functions despite their highly conserved homology. We propose prodeath-S/TK, a prodeath serine/threonine protein kinase from the lepidopteran insect Helicoverpa armigera, promotes programmed cell death (PCD) during metamorphosis. Prodeath-S/TK is expressed in various tissues with a high expression level during molting and metamorphosis by 20-hydroxyecdysone (20E) induction. Prodeath-S/TK is localized in the larval midgut during metamorphosis. Prodeath-S/TK knockdown by injecting dsRNA into larval hemocoel suppresses the 20E-induced metamorphosis and PCD, as well as downregulates a set of genes involved in the PCD and 20E signaling pathway. 20E upregulates prodeath-S/TK expression through its nuclear receptor EcR-B1 and USP1. Prodeath-S/TK overexpression in the epidermal cell line leads to PCD with DNA fragmentation and the activation of caspases 3 and 7. Prodeath-S/TK plays role in the cytoplasm. The N-terminal and C-terminal sequences of prodeath-S/TK determine its subcellular location. These data indicate that prodeath-S/TK participates in PCD by regulating gene expression in the 20E signaling pathway.
Collapse
|
18
|
Mizerska-Dudka M, Andrejko M. Galleria mellonellahemocytes destruction after infection withPseudomonas aeruginosa. J Basic Microbiol 2013; 54:232-46. [DOI: 10.1002/jobm.201200273] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 09/10/2012] [Indexed: 12/23/2022]
Affiliation(s)
| | - Mariola Andrejko
- Department of Immunobiology; Maria Curie-Sklodowska University; Lublin Poland
| |
Collapse
|
19
|
Khoa DB, Trang LTD, Takeda M. Expression analyses of caspase-1 and related activities in the midgut of Galleria mellonella during metamorphosis. INSECT MOLECULAR BIOLOGY 2012; 21:247-256. [PMID: 22229544 DOI: 10.1111/j.1365-2583.2011.01131.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The cDNA encoding caspase-1, a main protease involved in apoptosis, was cloned and sequenced from the midgut of the greater wax moth, Galleria mellonella. The open reading frame contains 879 nucleotides, encodes 293 amino acids, and was registered as Gmcaspase-1. The sequence comparison showed a high homology to lepidopteran caspase-1, human caspase-3, and ced-3 of Caenorhabditis elegans. Gmcaspase-1 is predicted to contain a short prodomain, large subunit, and small subunit domain. It also exhibits all characteristics of caspase, including three conserved cleavage sites after Asp-25, Asp-192, and Asp-181, three active site residues including a highly conserved QACQG pentapeptide active-site motif, and four substrate binding sites. The expression profiles during development showed that the transcript of Gmcaspase-1 and its protein products appeared in two or more waves in the midgut during metamorphosis. Immunohistochemistry, in situ hybridization, and TUNEL analyses revealed that apoptosis occurred first at the basal, then middle and then apical regions in the midgut epithelium and the yellow body is formed in the lumen. At least three waves of mitosis and differentiation follow the apoptosis waves from the basal and middle to apical parts to form the adult epithelium.
Collapse
Affiliation(s)
- D B Khoa
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Japan
| | | | | |
Collapse
|
20
|
Suganuma I, Ushiyama T, Yamada H, Iwamoto A, Kobayashi M, Ikeda M. Cloning and characterization of a dronc homologue in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:909-921. [PMID: 21911060 DOI: 10.1016/j.ibmb.2011.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/25/2011] [Accepted: 08/29/2011] [Indexed: 05/31/2023]
Abstract
We cloned and characterized a novel Bombyx mori homologue (bm-dronc) of Drosophila melanogaster dronc (dm-dronc), which could encode a polypeptide of 438 amino acid residues. Bm-Dronc shares relatively low amino acid sequence identities of 25% and 26% with Dm-Dronc and Aedes aegypti Dronc (Aa-Dronc), respectively. Bm-Dronc has the sequence QACRG surrounding the catalytic site (C), which is consistent with the QAC(R/Q/G)(G/E) consensus sequence in most caspases but distinct from the sequences PFCRG and SICRG of Dm-Dronc and Aa-Dronc, respectively. Bm-Dronc possesses a long N-terminal prodomain containing a caspase recruitment domain (CARD), a p20 domain and a p10 domain, exhibiting cleavage activities on synthetic substrates Ac-VDVAD-AMC, Ac-IETD-AMC and Ac-LEHD-AMC, which are preferred by human initiator caspases-2, -8 and -9, respectively. Bm-Dronc transiently expressed in insect cells and Escherichia coli cells underwent spontaneous cleavage and caused apoptosis and stimulation of caspase-3-like protease activity in various lepidopteran cell lines, but not in the dipteran cell line D. melanogaster S2. The apoptosis and the stimulation of caspase-3-like protease activity induced by Bm-Dronc overexpression were abrogated upon transfection with either a double-stranded RNA against bm-dronc or a plasmid expressing functional anti-apoptotic protein Hycu-IAP3 encoded by the baculovirus Hyphantria cunea multiple nucleopolyhedrovirus (MNPV). Apoptosis induction in BM-N cells by infection with a p35-defective Autographa californica MNPV or exposure to actinomycin D and UV promoted the cleavage of Bm-Dronc. These results indicate that Bm-Dronc serves as the initiator caspase responsible for the induction of caspase-dependent apoptosis.
Collapse
Affiliation(s)
- Ikue Suganuma
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Courtiade J, Pauchet Y, Vogel H, Heckel DG. A comprehensive characterization of the caspase gene family in insects from the order Lepidoptera. BMC Genomics 2011; 12:357. [PMID: 21740565 PMCID: PMC3141678 DOI: 10.1186/1471-2164-12-357] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/08/2011] [Indexed: 11/22/2022] Open
Abstract
Background The cell suicide pathway of apoptosis is a necessary event in the life of multicellular organisms. It is involved in many biological processes ranging from development to the immune response. Evolutionarily conserved proteases, called caspases, play a central role in regulating apoptosis. Reception of death stimuli triggers the activation of initiator caspases, which in turn activate the effector caspases. In Lepidoptera, apoptosis is crucial in processes such as metamorphosis or defending against baculovirus infection. The discovery of p35, a baculovirus protein inhibiting caspase activity, has led to the characterization of the first lepidopteran caspase, Sf-Caspase-1. Studies on Sf-Caspase-1 mode of activation suggested that apoptosis in Lepidoptera requires a cascade of caspase activation, as demonstrated in many other species. Results In order to get insights into this gene family in Lepidoptera, we performed an extensive survey of lepidopteran-derived EST datasets. We identified 66 sequences distributed among 27 species encoding putative caspases. Phylogenetic analyses showed that Lepidoptera possess at least 5 caspases, for which we propose a unified nomenclature. According to homology to their Drosophila counterparts and their primary structure, we determined that Lep-Caspase-1, -2 and -3 are putative effector caspases, whereas Lep-Caspase-5 and -6 are putative initiators. The likely function of Lep-Caspase-4 remains unclear. Lep-Caspase-2 is absent from the silkworm genome and appears to be noctuid-specific, and to have arisen from a tandem duplication of the Caspase-1 gene. In the tobacco hawkmoth, 3 distinct transcripts encoding putative Caspase-4 were identified, suggesting at least 2 duplication events in this species. Conclusions The basic repertoire of five major types of caspases shared among Lepidoptera seems to be smaller than for most other groups studied to date, but gene duplication still plays a role in lineage-specific increases in diversity, just as in Diptera and mammals.
Collapse
Affiliation(s)
- Juliette Courtiade
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | | |
Collapse
|
22
|
Courtiade J, Muck A, Svatos A, Heckel DG, Pauchet Y. Comparative proteomic analysis of Helicoverpa armigera cells undergoing apoptosis. J Proteome Res 2011; 10:2633-42. [PMID: 21452889 DOI: 10.1021/pr2001868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Apoptosis is of crucial importance in the life of multicellular organisms. In holometabolous insects, particularly in Lepidoptera, apoptosis is essential in biological processes such as metamorphosis and defense against pathogens. Apoptosis is tightly regulated and involves many proteins, among them caspases, which play a central role. In mammals, almost 300 targets of caspases have been described, and the expression of more than a hundred proteins has been shown to be altered in apoptotic cells. To date, the molecular pathways controlling apoptosis are poorly understood in Lepidoptera. Here, we used a comparative approach aiming to identify candidate proteins potentially implicated in these pathways. We examined changes occurring, in the proteome of a Helicoverpa armigera-derived cell line, upon induction by actinomycin D. We identified 13 proteins for which the relative abundance was significantly altered. Among these, the abundance of procaspase-1 decreased in apoptotic cells, reflecting its processing into the active form. We characterized its properties by heterologous expression and correlated the observed substrate specificity with changes in caspase activity in HaAM1 cells after induction. We also identified three chaperones as well as several putative pro- and anti-apoptotic proteins. Altogether, these data suggest that apoptotic pathways in Lepidoptera share similarities with the ones described in mammals.
Collapse
Affiliation(s)
- Juliette Courtiade
- Entomology Department, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | | | | | | | | |
Collapse
|
23
|
Shahidi-Noghabi S, Van Damme EJM, Iga M, Smagghe G. Exposure of insect midgut cells to Sambucus nigra L. agglutinins I and II causes cell death via caspase-dependent apoptosis. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1101-1107. [PMID: 20230823 DOI: 10.1016/j.jinsphys.2010.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 05/28/2023]
Abstract
Sambucus nigra agglutinins I and II, further referred to as SNA-I and SNA-II, are two ricin-related lectins from elderberry. SNA-I is a chimeric lectin composed of an A-chain with enzymatic activity and a B-chain with carbohydrate-binding activity, and therefore belongs to the group of type 2 ribosome-inactivating proteins. In contrast, SNA-II consists only of carbohydrate-binding B-chains. The physiological effect of SNA-I was tested on different insect cell lines (midgut, ovary, fat body, embryo). In sensitive midgut CF-203 cells, SNA-I induced cell death with typical characteristics such as cell shrinkage, plasma membrane blebbing, nuclear condensation and DNA fragmentation. The effect was dose-dependent with 50% death of 4-day-exposed cells at 3nM. SNA-I exposure induced caspase-3 like activities, suggesting that SNA-I can induce the apoptotic pathway. Interestingly, the hololectin SNA-II also induced apoptosis in CF-203 cells at similar doses with the same physiological events. SNA-I and SNA-II both induced caspase-dependent apoptosis at low concentrations (nM order), leading to typical symptoms of cell death in sensitive cells. This effect seems independent from the catalytic activity of the A-chain, but depends on the carbohydrate-binding B-chain.
Collapse
Affiliation(s)
- Shahnaz Shahidi-Noghabi
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | | | | | | |
Collapse
|
24
|
Fath-Goodin A, Kroemer JA, Webb BA. The Campoletis sonorensis ichnovirus vankyrin protein P-vank-1 inhibits apoptosis in insect Sf9 cells. INSECT MOLECULAR BIOLOGY 2009; 18:497-506. [PMID: 19453763 DOI: 10.1111/j.1365-2583.2009.00892.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Campoletis sonorensis ichnovirus (CsIV) vankyrin genes encode proteins containing truncated ankyrin repeat domains with sequence homology to the inhibitory domains of NF-kappaB transcription factor inhibitors, IkappaBs. The CsIV vankyrin proteins are thought to be involved in the suppression of NF-kappaB activity during immune response and/or developmental events in the parasitized host. Here we report that when P-vank-1 was expressed stably from Sf9 cells, prolonged survival of these cells was observed after baculovirus infection, UV irradiation, and treatment with the apoptosis-inducing chemical camptothecin compared to untransformed Sf9 cells. Furthermore, P-vank-1 inhibited nuclear and internucleosomal degradation and caspase activity after induction of apoptosis in Sf9 cells stably expressing P-vank-1. This is the first report of a polydnavirus protein with anti-apoptotic function.
Collapse
Affiliation(s)
- A Fath-Goodin
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546-0091, USA.
| | | | | |
Collapse
|
25
|
|
26
|
Hebert CG, Valdes JJ, Bentley WE. Investigating apoptosis: characterization and analysis of Trichoplusia ni-caspase-1 through overexpression and RNAi mediated silencing. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:113-124. [PMID: 19027856 DOI: 10.1016/j.ibmb.2008.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/15/2008] [Accepted: 10/21/2008] [Indexed: 05/27/2023]
Abstract
In both mammals and invertebrates, caspases play a critical role in apoptosis. Although Lepidopteron caspases have been widely studied in Spodoptera frugiperda cells, this is not the case for Trichoplusia ni cells, despite their widespread use for the production of recombinant protein and differences in baculovirus infectivity between the two species. We have cloned, expressed, purified and characterized Tn-caspase-1 in several situations: in its overexpression, in silencing via RNA interference (RNAi), during baculovirus infection, and in interactions with baculovirus protein p35. Overexpression can transiently increase caspase activity in T. ni (High Five) cells, while silencing results in a greater than 6-fold decrease. The reduction in caspase activity resulted in a reduction in the level of apoptosis, demonstrating the ability to affect apoptosis by modulating Tn-caspase-1. During baculovirus infection, caspase activity remains low until approximately 5 days post infection, at which point it increases dramatically, though not in those cells treated with dsRNA. Our results demonstrate that Tn-caspase-1 is presumably the principal effector caspase present in High Five cells, and that it is inhibited by baculovirus protein p35. Finally, our results indicate differences between RNAi and p35 as effector molecules for modulating caspase activity and apoptosis during cell growth and baculovirus infection.
Collapse
Affiliation(s)
- Colin G Hebert
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Science Building, College Park, MD 20742, USA
| | | | | |
Collapse
|
27
|
Tseng YK, Wu MS, Hou RF. Induction of apoptosis in SF21 cell line by conditioned medium of the entomopathogenic fungus, Nomuraea rileyi, through Sf-caspase-1 signaling pathway. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 68:206-214. [PMID: 18395831 DOI: 10.1002/arch.20242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The apoptosis in SF-21 cell line can be induced by the conditioned medium (CM) of the entomopathogenic fungus, Nomuraea rileyi, based on changes in morphology and formation of apoptotic bodies in cultured cells, and with the onset of DNA fragmentation as shown by TUNEL staining and agarose electrophoresis. Moreover, the induction of apoptosis in SF-21 cells was inhibited by adding the inhibitor of effector caspase, viz. z-DEVD-fmk, to the CM, indicating that Sf-caspase-1 is involved in this apoptosis. Similarly, the inhibitor of initiator caspase, viz., z-VAD-fmk, inhibited apoptosis. Therefore, both initiator and effector caspases are possibly involved in the apoptosis of SF-21 cells. In addition, we detected Sf-caspase-1 activity in the process of apoptosis in SF-21 cells, suggesting that the effector caspase in SF-21 is similar to that found in mammalian cells. Our results also indicated that the apoptosis found in this line is accomplished through a Sf-caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Yu-Kai Tseng
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan 402, Republic of China
| | | | | |
Collapse
|
28
|
Parthasarathy R, Palli SR. Developmental and hormonal regulation of midgut remodeling in a lepidopteran insect, Heliothis virescens. Mech Dev 2007; 124:23-34. [PMID: 17107775 DOI: 10.1016/j.mod.2006.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/12/2006] [Accepted: 09/16/2006] [Indexed: 11/22/2022]
Abstract
Midgut tissue undergoes remodeling during metamorphosis in insects belonging to orders Lepidoptera and Diptera. We investigated the developmental and hormonal regulation of these remodeling events in lepidopteran insect, Heliothis virescens. In H. virescens, programmed cell death (PCD) of larval midgut cells as well as proliferation and differentiation of imaginal cells began at 108 h after ecdysis to the final larval instar (AEFL) and proceeded through the pupal stages. Expression patterns of pro- cell death factors (caspase-1 and ICE) and anti-cell death factor, Inhibitor of Apoptosis (IAP) were studied in midguts during last larval and pupal stages. IAP, Caspase-1 and ICE mRNAs showed peaks at 48 h AEFL, 96 h AEFL and in newly formed pupae, respectively. Immunohistochemical analysis substantiated high caspase-3 activity in midgut at 108 h AEFL. Application of methoprene, a juvenile hormone analog (JHA) blocked PCD by maintaining high levels of IAP, downregulating the expression of caspase-1, ICE and inhibiting an increase in caspase-3 protein levels in midgut tissue. Also, the differentiation of imaginal cells was impaired by methoprene treatment. These studies demonstrate that presence of JHA during final instar larvae affects both midgut remodeling and larval-pupal metamorphosis leading to larval/pupal deformities in lepidopteran insects, a mechanism that is different from that in mosquito, Ae. aegypti where JHA uncouples midgut remodeling from metamorphosis.
Collapse
Affiliation(s)
- R Parthasarathy
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | |
Collapse
|
29
|
Wu Y, Parthasarathy R, Bai H, Palli SR. Mechanisms of midgut remodeling: juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action. Mech Dev 2006; 123:530-47. [PMID: 16829058 DOI: 10.1016/j.mod.2006.05.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 05/17/2006] [Accepted: 05/20/2006] [Indexed: 11/21/2022]
Abstract
In holometabolous insects such as mosquito, Aedes aegypti, midgut undergoes remodeling during metamorphosis. Insect metamorphosis is regulated by several hormones including juvenile hormone (JH) and 20-hydroxyecdysone (20E). The cellular and molecular events that occur during midgut remodeling were investigated by studying nuclear stained whole mounts and cross-sections of midguts and by monitoring the mRNA levels of genes involved in 20E action in methoprene-treated and untreated Ae. aegypti. We used JH analog, methoprene, to mimic JH action. In Ae. aegypti larvae, the programmed cell death (PCD) of larval midgut cells and the proliferation and differentiation of imaginal cells were initiated at about 36h after ecdysis to the 4th instar larval stage (AEFL) and were completed by 12h after ecdysis to the pupal stage (AEPS). In methoprene-treated larvae, the proliferation and differentiation of imaginal cells was initiated at 36h AEFL, but the PCD was initiated only after ecdysis to the pupal stage. However, the terminal events that occur for completion of PCD during pupal stage were blocked. As a result, the pupae developed from methoprene-treated larvae contained two midgut epithelial layers until they died during the pupal stage. Quantitative PCR analyses showed that methoprene affected midgut remodeling by modulating the expression of ecdysone receptor B, ultraspiracle A, broad complex, E93, ftz-f1, dronc and drice, the genes that are shown to play key roles in 20E action and PCD. Thus, JH analog, methoprene acts on Ae. aegypti by interfering with the expression of genes involved in 20E action resulting in a block in midgut remodeling and death during pupal stage.
Collapse
Affiliation(s)
- Yu Wu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
30
|
Liu Q, Chejanovsky N. Activation pathways and signal-mediated upregulation of the insect Spodoptera frugiperda caspase-1. Apoptosis 2006; 11:487-96. [PMID: 16532278 DOI: 10.1007/s10495-006-5059-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sf-caspase-1 is the most studied effector caspase of Lepidoptera. Its activation is believed to follow a two-step mechanism: The first step requires cleavage by an initiator caspase at D195 (between the large and small subunits) releasing the C-terminal small subunit. This is blocked by the baculovirus caspase inhibitor P49. The second step removes the N-terminal prodomain by cleavage at D28 to generate the large subunit that is blocked by the baculovirus caspase inhibitor P35. In this study, we identified an alternative mechanism of Sf-caspase-1 activation. This additional two-step mechanism involves first cleavage of pro-Sf-caspase-1 at D28 to remove the N-terminal prodomain and subsequently cleavage at D195 to generate the large and small subunits. Both mechanisms are triggered by apoptotic stimuli following a distinct pattern. We also showed that expression of Sf-caspase-1 was upregulated upon reception of apoptotic stimuli. Different from all published data, this upregulation occurred as a post-transcriptional event. Moreover, we proved that the stronger the stimuli, the higher the upregulation. And we demonstrated that P49 and P35 inhibited the cleavage at D28 and D195 respectively, independently of wether the first cleavage was at D195 or at D28.
Collapse
Affiliation(s)
- Q Liu
- Entomology Department, Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, POB 6, Bet Dagan, 50250, Israel.
| | | |
Collapse
|