1
|
Gleason N, Kowluru A. Hyperglycemic Stress Induces Expression, Degradation, and Nuclear Association of Rho GDP Dissociation Inhibitor 2 (RhoGDIβ) in Pancreatic β-Cells. Cells 2024; 13:272. [PMID: 38334664 PMCID: PMC10854874 DOI: 10.3390/cells13030272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Small G proteins (e.g., Rac1) play critical regulatory roles in islet β-cell function in health (physiological insulin secretion) and in metabolic stress (cell dysfunction and demise). Multiple regulatory factors for these G proteins, such as GDP dissociation inhibitors (GDIs), have been implicated in the functional regulation of these G proteins. The current set of investigations is aimed at understanding impact of chronic hyperglycemic stress on the expression and subcellular distribution of three known isoforms of RhoGDIs (RhoGDIα, RhoGDIβ, and RhoGDIγ) in insulin-secreting β-cells. The data accrued in these studies revealed that the expression of RhoGDIβ, but not RhoGDIα or RhoGDIγ, is increased in INS-1 832/13 cells, rat islets, and human islets. Hyperglycemic stress also promoted the cleavage of RhoGDIβ, leading to its translocation to the nuclear compartment. We also report that RhoGDIα, but not RhoGDIγ, is associated with the nuclear compartment. However, unlike RhoGDIβ, hyperglycemic conditions exerted no effects on RhoGDIα's association with nuclear fraction. Based on these observations, and our earlier findings of the translocation of Rac1 to the nuclear compartment under the duress of metabolic stress, we conclude that the RhoGDIβ-Rac1 signaling module promotes signals from the cytosolic to the nucleus, culminating in accelerated β-cell dysfunction under metabolic stress.
Collapse
Affiliation(s)
- Noah Gleason
- Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA;
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Anjaneyulu Kowluru
- Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA;
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Hui T, Yiling J, Guangqun C, Ran L, Hui L, Lan Y, Jie H, Su Q. Diallyl disulfide downregulating RhoGDI2 induces differentiation and inhibit invasion via the Rac1/Pak1/LIMK1 pathway in human leukemia HL-60 cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:1063-1077. [PMID: 36793247 DOI: 10.1002/tox.23748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Leukemia is a type of disease in which hematopoietic stem cells proliferate clonally at the genetic level. We discovered previously by high-resolution mass spectrometry that diallyl disulfide (DADS), which is one of the effective ingredients of garlic, reduces the performance of RhoGDI2 from APL HL-60 cells. Although RhoGDI2 is oversubscribed in several cancer categories, the effect of RhoGDI2 in HL-60 cells has remained unexplained. We aimed to investigate the influence of RhoGDI2 on DADS-induced differentiation of HL-60 cells to elucidate the association among the effect of inhibition or over-expression of RhoGDI2 with HL-60 cell polarization, migration and invasion, which is important for establishing a novel generation of inducers to elicit leukemia cell polarization. Co-transfection with RhoGDI2-targeted miRNAs apparently decreases the malignant biological behavior of cells and upregulates cytopenias in DADS-treated HL-60 cell lines, which increases CD11b and decreases CD33 and mRNA levels of Rac1, PAK1 and LIMK1. Meanwhile, we generated HL-60 cell lines with high-expressing RhoGDI2. The proliferation, migration and invasion capacity of such cells were significantly increased by the treated with DADS, while the reduction capacity of the cells was decreased. There was a reduction in CD11b and an increase in CD33 production, as well as an increase in the mRNA levels of Rac1, PAK1 and LIMK1. It also confirmed that inhibition of RhoGDI2 attenuates the EMT cascade via the Rac1/Pak1/LIMK1 pathway, thereby inhibiting the malignant biological behavior of HL-60 cells. Thus, we considered that inhibition of RhoGDI2 expression might be a new therapeutic direction for the treatment of human promyelocytic leukemia. The anti-cancer property of DADS against HL-60 leukemia cells might be regulated by RhoGDI2 through the Rac1-Pak1-LIMK1 pathway, which provides new evidence for DADS as a clinical anti-cancer medicine.
Collapse
Affiliation(s)
- Tan Hui
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Jiang Yiling
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
- Department of Oncology, First Affiliated Hospital, University of South China, Hengyang, China
| | - Chen Guangqun
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
- Department of Oncology, Loudi Central Hospital, Loudi, China
| | - Liu Ran
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
- Department of Pathology, The First Hospital of Changsha, Changsha, China
| | - Ling Hui
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Yi Lan
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - He Jie
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Qi Su
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
- Department of Oncology, First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
3
|
The Dual Function of RhoGDI2 in Immunity and Cancer. Int J Mol Sci 2023; 24:ijms24044015. [PMID: 36835422 PMCID: PMC9960019 DOI: 10.3390/ijms24044015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
RhoGDI2 is a guanine nucleotide dissociation inhibitor (GDI) specific for the Rho family of small GTPases. It is highly expressed in hematopoietic cells but is also present in a large array of other cell types. RhoGDI2 has been implicated in multiple human cancers and immunity regulation, where it can display a dual role. Despite its involvement in various biological processes, we still do not have a clear understanding of its mechanistic functions. This review sheds a light on the dual opposite role of RhoGDI2 in cancer, highlights its underappreciated role in immunity and proposes ways to explain its intricate regulatory functions.
Collapse
|
4
|
Doi N, Kunimatsu Y, Fujiura K, Togari H, Minagi K, Nakaoji K, Hamada K, Temme A, Tatsuka M. RhoGDIβ affects HeLa cell spindle orientation following UVC irradiation. J Cell Physiol 2019; 234:15134-15146. [PMID: 30652309 DOI: 10.1002/jcp.28154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
The molecular signals that regulate mitotic spindle orientation to determine the proper division axis play a critical role in the development and maintenance of tissue homeostasis. However, deregulation of signaling events can result in spindle misorientation, which in turn can trigger developmental defects and cancer progression. Little is known about the cellular signaling pathway involved in the misorientation of proliferating cells that evade apoptosis after DNA damage. In this study, we found that perturbations to spindle orientation were induced in ultraviolet C (UVC)-irradiated surviving cells. N-terminal truncated Rho GDP-dissociation inhibitor β (RhoGDIβ), which is produced by UVC irradiation, distorted the spindle orientation of HeLa cells cultured on Matrigel. The short hairpin RNA-mediated knockdown of RhoGDIβ significantly attenuated UVC-induced misorientation. Subsequent expression of wild-type RhoGDIβ, but not a noncleavable mutant, RhoGDIβ (D19A), again led to a relative increase in spindle misorientation in response to UVC. Our findings revealed that RhoGDIβ impacts spindle orientation in response to DNA damage.
Collapse
Affiliation(s)
- Natsumi Doi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Yuuki Kunimatsu
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Kouhei Fujiura
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Hiro Togari
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Kenji Minagi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Koichi Nakaoji
- Research & Development Division, Pias Corporation, Kobe, Japan
| | - Kazuhiko Hamada
- Research & Development Division, Pias Corporation, Kobe, Japan
| | - Achim Temme
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Masaaki Tatsuka
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| |
Collapse
|
5
|
Ward LJ, Ljunggren SA, Karlsson H, Li W, Yuan XM. Exposure to atheroma-relevant 7-oxysterols causes proteomic alterations in cell death, cellular longevity, and lipid metabolism in THP-1 macrophages. PLoS One 2017; 12:e0174475. [PMID: 28350877 PMCID: PMC5370125 DOI: 10.1371/journal.pone.0174475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/09/2017] [Indexed: 12/30/2022] Open
Abstract
The 7-oxysterols are recognised as strong enhancers of inflammatory processes in foamy macrophages. Atheroma-relevant 7-oxysterol mixtures induce a mixed type of cell death in macrophages, and trigger cellular oxidative stress responses, which mimic oxidative exposures observed in atherosclerotic lesions. However, the macrophage proteome has not previously been determined in the 7-oxysterol treated cell model. The aim of the present study was to determine the specific effects of an atheroma-relevant 7-oxysterol mixture on human macrophage proteome. Human THP-1 macrophages were exposed to an atheroma-relevant mixture of 7β-hydroxycholesterol and 7-ketocholesterol. Two-dimensional gel electrophoresis and mass spectrometry techniques were used to analyse the alterations in macrophage proteome, which resulted in the identification of 19 proteins with significant differential expression upon oxysterol loading; 8 increased and 11 decreased. The expression patterns of 11 out of 19 identified significant proteins were further confirmed by tandem-mass spectrometry, including further validation of increased histone deacetylase 2 and macrophage scavenger receptor types I and II expressions by western blot analysis. Identified proteins with differential expression in the cell model have been associated with i) signalling imbalance in cell death and cellular longevity; ii) lipid uptake and metabolism in foam cells; and iii) inflammatory proteins. The presented findings highlight a new proteomic platform for further studies into the functional roles of macrophages in atherosclerosis, and present a cell model for future studies to modulate the macrophage proteome by potential anti-atherosclerotic agents.
Collapse
Affiliation(s)
- Liam J. Ward
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Division of Obstetrics and Gynaecology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail: (LJW); (X-MY)
| | - Stefan A. Ljunggren
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Wei Li
- Division of Obstetrics and Gynaecology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xi-Ming Yuan
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail: (LJW); (X-MY)
| |
Collapse
|
6
|
Ota T, Jiang YS, Fujiwara M, Tatsuka M. Apoptosis‑independent cleavage of RhoGDIβ at Asp19 during PMA‑stimulated differentiation of THP‑1 cells to macrophages. Mol Med Rep 2017; 15:1722-1726. [PMID: 28260067 PMCID: PMC5365007 DOI: 10.3892/mmr.2017.6199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/05/2017] [Indexed: 01/19/2023] Open
Abstract
Rho GDP-dissociation inhibitor β (RhoGDIβ), a regulator of the Rho family of proteins, is expressed abundantly in the hematopoietic cell lineage. During apoptosis of hematopoietic cells, RhoGDIβ is cleaved by caspase-3 at Asp19 and this cleaved form (Δ19-RhoGDIβ) has been implicated in the apoptotic pathway. To clarify the role of RhoGDIβ in hematopoietic cells, the present study performed immunoblotting and immunofluorescence staining to examine the expression of RhoGDIβ and ∆19-RhoGDIβ during phorbol 12-myristate 13-acetate (PMA)-stimulated differentiation of human THP-1 monocytic cells to macrophages. During differentiation of the THP-1 cells to macrophages, the expression of RhoGDIβ remained stable; however, the expression of Δ19-RhoGDIβ increased, particularly in well-spreading, non-apoptotic cells, which differentiated into macrophages. These results suggested that Δ19-RhoGDIβ has an apoptosis-independent role in the PMA-induced differentiation of THP-1 cells to macrophages.
Collapse
Affiliation(s)
- Takahide Ota
- Division of Tumor Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920‑02, Japan
| | - Yong-Sheng Jiang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mamoru Fujiwara
- Department of Life Sciences, Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima 727‑0023, Japan
| | - Masaaki Tatsuka
- Department of Life Sciences, Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima 727‑0023, Japan
| |
Collapse
|
7
|
Retinoylation (covalent modification by retinoic acid) of Rho-GDIβ in the human myeloid leukemia cell line HL60 and its functional significance. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2011-2019. [DOI: 10.1016/j.bbalip.2016.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 11/20/2022]
|
8
|
Fujiwara M, Okamoto M, Hori M, Suga H, Jikihara H, Sugihara Y, Shimamoto F, Mori T, Nakaoji K, Hamada K, Ota T, Wiedemuth R, Temme A, Tatsuka M. Radiation-Induced RhoGDIβ Cleavage Leads to Perturbation of Cell Polarity: A Possible Link to Cancer Spreading. J Cell Physiol 2016; 231:2493-505. [DOI: 10.1002/jcp.25362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/23/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Mamoru Fujiwara
- Faculty of Life and Environmental Sciences; Department of Life Sciences; Prefectural University of Hiroshima; Shoubara Hiroshima Japan
| | - Mayumi Okamoto
- Faculty of Life and Environmental Sciences; Department of Life Sciences; Prefectural University of Hiroshima; Shoubara Hiroshima Japan
| | - Masato Hori
- Faculty of Life and Environmental Sciences; Department of Life Sciences; Prefectural University of Hiroshima; Shoubara Hiroshima Japan
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences; Department of Life Sciences; Prefectural University of Hiroshima; Shoubara Hiroshima Japan
| | - Hiroshi Jikihara
- Department of Health Sciences; Faculty of Human Culture and Science; Prefectural University of Hiroshima; Minami-ku Hiroshima Japan
| | - Yuka Sugihara
- Department of Health Sciences; Faculty of Human Culture and Science; Prefectural University of Hiroshima; Minami-ku Hiroshima Japan
| | - Fumio Shimamoto
- Department of Health Sciences; Faculty of Human Culture and Science; Prefectural University of Hiroshima; Minami-ku Hiroshima Japan
| | - Toshio Mori
- Radioisotope Research Center; Nara Medical University School of Medicine; Kashihara Nara Japan
| | - Koichi Nakaoji
- Research & Development Division; Pias Corporation; Kobe Japan
| | - Kazuhiko Hamada
- Research & Development Division; Pias Corporation; Kobe Japan
| | - Takahide Ota
- Department of Life Science; Medical Research Institute; Kanazawa Medical University; Uchinada Ishikawa Japan
| | - Ralf Wiedemuth
- Department of Neurosurgery; University Hospital Carl Gustav Carus; Technical University Dresden; Dresden Germany
| | - Achim Temme
- Department of Neurosurgery; University Hospital Carl Gustav Carus; Technical University Dresden; Dresden Germany
| | - Masaaki Tatsuka
- Faculty of Life and Environmental Sciences; Department of Life Sciences; Prefectural University of Hiroshima; Shoubara Hiroshima Japan
| |
Collapse
|
9
|
Muñiz Lino MA, Palacios-Rodríguez Y, Rodríguez-Cuevas S, Bautista-Piña V, Marchat LA, Ruíz-García E, Astudillo-de la Vega H, González-Santiago AE, Flores-Pérez A, Díaz-Chávez J, Carlos-Reyes Á, Álvarez-Sánchez E, López-Camarillo C. Comparative proteomic profiling of triple-negative breast cancer reveals that up-regulation of RhoGDI-2 is associated to the inhibition of caspase 3 and caspase 9. J Proteomics 2014; 111:198-211. [PMID: 24768906 DOI: 10.1016/j.jprot.2014.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/20/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED There are no targeted therapeutic modalities for triple-negative breast cancer (TNBC), thus it is associated with poor prognosis and worst clinical outcome. Here, our aim was to identify deregulated proteins in TNBC with potential therapeutic applications. Proteomics profiling of TNBC and normal breast tissues through two-dimensional electrophoresis and ESI-MS/MS mass spectrometry revealed the existence of 16 proteins (RhoGDI-2, HSP27, SOD1, DJ1, UBE2N, PSME1, FTL, SH3BGRL, and eIF5A-1) with increased abundance in carcinomas. We also evidenced for the first time the deregulation of COX5, MTPN and DB1 proteins in TNBC that may represent novel tumor markers. Particularly, we confirmed the overexpression of the Rho-GDP dissociation inhibitor 2 (RhoGDI-2) in distinct breast cancer subtypes, as well as in metastatic cell lines derived from lung, prostate, and breast cancer. Remarkably, targeted disruption of RhoGDI-2 by RNA interference induced mitochondrial dysfunction, and facilitated caspase-3 and -9 activation in two breast cancer cell lines. Moreover, suppression of RhoGDI-2 resulted in a robust sensitization of breast cancer cells to cisplatin therapy. In conclusion, we identified novel proteins deregulated in TNBC, and confirmed the overexpression of RhoGDI-2. We propose that RhoGDI-2 inhibition may be exploited as a potential therapeutic strategy along cisplatin-based chemotherapy in breast cancer. BIOLOGICAL SIGNIFICANCE There are no useful biomarkers neither targeted therapeutic modalities for triple-negative breast cancer, which highly contributes to the poor prognosis of this breast cancer subtype. In this work, we used two-dimensional electrophoresis and ESI-MS/MS spectrometry to identify novel deregulated proteins in breast cancer tissues. Particularly, our results showed that RhoGDI-2, a protein that has been associated to metastasis and poor survival in human cancers, is overexpressed in different subtypes of breast tumors, as well as in metastatic cell lines derived from lung, prostate, and breast cancer. Our data also provided novel insights about the role of RhoGDI-2 in apoptosis through intrinsic pathway inhibition. Importantly, they suggested that targeted modulation of RhoGDI-2 levels might be a useful strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Marcos A Muñiz Lino
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico
| | | | | | | | - Laurence A Marchat
- Molecular Biomedicine Program and Biotechnology Network, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Erika Ruíz-García
- Translational Medicine Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Horacio Astudillo-de la Vega
- Laboratory of Translational Cancer Research and Cellular Therapy, Oncology Hospital, Medical Center Siglo XXI, Mexico City, Mexico
| | | | - Ali Flores-Pérez
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico
| | - José Díaz-Chávez
- Carcinogenesis Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Ángeles Carlos-Reyes
- Lung Cancer Laboratory, National Institute of Respiratory Diseases, Mexico City, Mexico
| | | | - César López-Camarillo
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico.
| |
Collapse
|
10
|
Yu X, Woolery AR, Luong P, Hao YH, Grammel M, Westcott N, Park J, Wang J, Bian X, Demirkan G, Hang HC, Orth K, LaBaer J. Copper-catalyzed azide-alkyne cycloaddition (click chemistry)-based detection of global pathogen-host AMPylation on self-assembled human protein microarrays. Mol Cell Proteomics 2014; 13:3164-76. [PMID: 25073739 PMCID: PMC4223499 DOI: 10.1074/mcp.m114.041103] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
AMPylation (adenylylation) is a recently discovered mechanism employed by infectious bacteria to regulate host cell signaling. However, despite significant effort, only a few host targets have been identified, limiting our understanding of how these pathogens exploit this mechanism to control host cells. Accordingly, we developed a novel nonradioactive AMPylation screening platform using high-density cell-free protein microarrays displaying human proteins produced by human translational machinery. We screened 10,000 unique human proteins with Vibrio parahaemolyticus VopS and Histophilus somni IbpAFic2, and identified many new AMPylation substrates. Two of these, Rac2, and Rac3, were confirmed in vivo as bona fide substrates during infection with Vibrio parahaemolyticus. We also mapped the site of AMPylation of a non-GTPase substrate, LyGDI, to threonine 51, in a region regulated by Src kinase, and demonstrated that AMPylation prevented its phosphorylation by Src. Our results greatly expanded the repertoire of potential host substrates for bacterial AMPylators, determined their recognition motif, and revealed the first pathogen-host interaction AMPylation network. This approach can be extended to identify novel substrates of AMPylators with different domains or in different species and readily adapted for other post-translational modifications.
Collapse
Affiliation(s)
- Xiaobo Yu
- From the ‡The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Andrew R Woolery
- §Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | - Phi Luong
- §Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | - Yi Heng Hao
- §Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | - Markus Grammel
- ¶The Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York 10065, USA
| | - Nathan Westcott
- ¶The Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York 10065, USA
| | - Jin Park
- From the ‡The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Jie Wang
- From the ‡The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Xiaofang Bian
- From the ‡The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Gokhan Demirkan
- From the ‡The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Howard C Hang
- ¶The Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York 10065, USA
| | - Kim Orth
- §Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | - Joshua LaBaer
- From the ‡The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA;
| |
Collapse
|
11
|
Duan W, Xu Y, Dong Y, Cao L, Tong J, Zhou X. Ectopic expression of miR-34a enhances radiosensitivity of non-small cell lung cancer cells, partly by suppressing the LyGDI signaling pathway. JOURNAL OF RADIATION RESEARCH 2013; 54:611-619. [PMID: 23349340 PMCID: PMC3709664 DOI: 10.1093/jrr/rrs136] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/10/2012] [Accepted: 12/21/2012] [Indexed: 06/01/2023]
Abstract
miR-34a is transcriptionally induced by the tumor suppressor gene p53, which is often downregulated in non-small cell lung cancer (NSCLC). To address whether the downstream signal of miR-34a is sufficient to induce apoptosis and to alter cellular radiosensitivity, a chemical synthetic miR-34a mimic was delivered into A549 and H1299 cells, with or without co-treatment of γ-irradiation. Results showed that ectopic expression of miR-34a induced dose-dependent cell growth inhibition and apoptosis in a p53-independent manner in both NSCLC cell lines. Interestingly, LyGDI was discovered as a new target gene of miR-34a, and downregulation of LyGDI promoted Rac1 activation and membrane translocation, resulting in cell apoptosis. Furthermore, restoration of miR-34a indirectly reduced cyclooxygenase-2 (COX-2) expression. Taken together, these results demonstrate that restoration of miR-34a expression enhances radiation-induced apoptosis, partly by suppressing the LyGDI signaling pathway, and miR-34a could possibly be used as a radiosensitizer for non-small cell lung cancer therapy.
Collapse
Affiliation(s)
- Weiming Duan
- School of Radiation Medicine and Public Health, Soochow University, Suzhou, Jiangsu 215123, China
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yaxiang Xu
- School of Radiation Medicine and Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - YuJin Dong
- School of Radiation Medicine and Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lili Cao
- School of Radiation Medicine and Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jian Tong
- School of Radiation Medicine and Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinwen Zhou
- School of Radiation Medicine and Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
12
|
Abstract
RhoGDI2 is a guanine nucleotide dissociation inhibitor (GDI) specific for the Rho family of small GTPases that plays dual opposite roles in tumor progression, being both a promoter in tissues such as breast and a metastasis suppressor in tissues such as the bladder. Despite a clear role for this protein in modulating the invasive and metastatic process, the mechanisms through which RhoGDI2 executes these functions remain unclear. This review will highlight the current state of our knowledge regarding how RhoGDI2 functions in metastasis with a focus on bladder cancer and will also seek to highlight other potential underappreciated avenues through which this protein may affect cancer cell behavior.
Collapse
Affiliation(s)
- Erin M Griner
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
13
|
Zheng Z, He XY, Li JF, Yu BQ, Chen XH, Ji J, Zhang JN, Gu QL, Zhu ZG, Liu BY. RhoGDI2 confers resistance to 5-fluorouracil in human gastric cancer cells. Oncol Lett 2012; 5:255-260. [PMID: 23255931 DOI: 10.3892/ol.2012.949] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/08/2012] [Indexed: 11/06/2022] Open
Abstract
Resistance to 5-fluorouracil (5-FU) in patients with gastric cancer is a serious therapeutic problem and major efforts are underway to understand the underlying mechanisms. We have previously identified RhoGDI2 as a contributor to 5-FU resistance in colon cancer cells using 2D electrophoresis and mass spectrometry and the current study aimed to further investigate this role. The expression of RhoGDI2 in seven gastric cancer cell lines was positively correlated with resistance to 5-FU. Lower 5-FU sensitivity of isolated tumor cells from patients with gastric cancer was also associated with higher RhoGDI2 expression. Ectopic expression of RhoGDI2 in gastric cancer cells increased the resistance to 5-FU and reverted low dose 5-FU-induced G2/M phase arrest without affecting the population of sub-G1 cells. Overall, these findings suggest that RhoGDI2 is associated with 5-FU resistance and is a potential therapeutic target for enhancing chemotherapy efficacy in gastric cancer.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li N, Yi Z, Wang Y, Zhang Q, Zhong T, Qiu Y, Wu Z, Tang X. Differential proteomic analysis of HL60 cells treated with secalonic acid F reveals caspase 3-induced cleavage of Rho GDP dissociation inhibitor 2. Oncol Rep 2012; 28:2016-22. [PMID: 23023390 DOI: 10.3892/or.2012.2062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/08/2012] [Indexed: 11/06/2022] Open
Abstract
Secalonic acid F (SAF) has been previously identified, however, little is known about its cytotoxic activity and related cytotoxic mechanism. The aim of this study was to evaluate the cytotoxic activity of SAF isolated from a deep sea originated fungus Penicillium sp. F11 in HL60 cells and to analyze the differences in protein expression of HL60 cells treated with SAF. The CCK-8 assay and Annexin V-FLUOS/PI assay indicated that SAF displayed dose- and time-dependent inhibition of HL60 cell proliferation and induced apoptosis. Two-dimensional gel electrophoresis (2-DE) analysis of HL60 cells treated with SAF (4 µg/ml) revealed 10 differentially expressed protein spots (P<0.05), 5 upregulated and 5 downregulated. Three spots (1 downregulated and 2 upregulated) were identified as Rho GDP dissociation inhibitor 2 (RhoGDI 2) proteins by MALDI-TOF MS. Western blotting further demonstrated the decreased abundance of full-length RhoGDI 2 together with the increased abundance of caspase 3-cleaved product of RhoGDI 2. The caspase 3 inhibitor Ac-DEVD-CHO could suppress the cytotoxic effect of SAF and significantly block the cleavage of RhoGDI 2. RhoGDI 2 is a cytosolic regulator of Rho GTPase and the caspase 3-cleaved product of RhoGDI 2 can advance progression of the apoptotic process. Our data showed that SAF may modulate RhoGDI 2 levels in HL60 cells, thereby potentially disrupting cell signaling pathways important for HL60 cell function.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Tahir SK, Wass J, Joseph MK, Devanarayan V, Hessler P, Zhang H, Elmore SW, Kroeger PE, Tse C, Rosenberg SH, Anderson MG. Identification of expression signatures predictive of sensitivity to the Bcl-2 family member inhibitor ABT-263 in small cell lung carcinoma and leukemia/lymphoma cell lines. Mol Cancer Ther 2010; 9:545-57. [PMID: 20179162 DOI: 10.1158/1535-7163.mct-09-0651] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ABT-263 inhibits the antiapoptotic proteins Bcl-2, Bcl-x(L), and Bcl-w and has single-agent efficacy in numerous small cell lung carcinoma (SCLC) and leukemia/lymphoma cell lines in vitro and in vivo. It is currently in clinical trials for treating patients with SCLC and various leukemia/lymphomas. Identification of predictive markers for response will benefit the clinical development of ABT-263. We identified the expression of Bcl-2 family genes that correlated best with sensitivity to ABT-263 in a panel of 36 SCLC and 31 leukemia/lymphoma cell lines. In cells sensitive to ABT-263, expression of Bcl-2 and Noxa is elevated, whereas expression of Mcl-1 is higher in resistant cells. We also examined global expression differences to identify gene signature sets that correlated with sensitivity to ABT-263 to generate optimal signature sets predictive of sensitivity to ABT-263. Independent cell lines were used to verify the predictive power of the gene sets and to refine the optimal gene signatures. When comparing normal lung tissue and SCLC primary tumors, the expression pattern of these genes in the tumor tissue is most similar to sensitive SCLC lines, whereas normal tissue is most similar to resistant SCLC lines. Most of the genes identified using global expression patterns are related to the apoptotic pathway; however, all but Bcl-rambo are distinct from the Bcl-2 family. This study leverages global expression data to identify key gene expression patterns for sensitivity to ABT-263 in SCLC and leukemia/lymphoma and may provide guidance in the selection of patients in future clinical trials.
Collapse
Affiliation(s)
- Stephen K Tahir
- Global Pharmaceutical Product Research Division, Abbott Laboratories, Abbott Park, Illinois 60064-6099, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Endogenous HIV-1 Vpr-mediated apoptosis and proteome alteration of human T-cell leukemia virus-1 transformed C8166 cells. Apoptosis 2010; 14:1212-26. [PMID: 19655254 DOI: 10.1007/s10495-009-0380-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
HIV-1 viral protein R (Vpr) can induce cell cycle arrest and cell death, and may be beneficial in cancer therapy to suppress malignantly proliferative cell types, such as adult T-cell leukemia (ATL) cells. In this study, we examined the feasibility of employing the HIV-vpr gene, via targeted gene transfer, as a potential new therapy to kill ATL cells. We infected C8166 cells with a recombinant adenovirus carrying both vpr and GFP genes (rAd-vpr), as well as the vector control virus (rAd-vector). G(2)/M phase cell cycle arrest was observed in the rAd-vpr infected cells. Typical characteristics of apoptosis were detected in rAd-vpr infected cells, including sub-diploid peak exhibition in DNA content assay, the Hoechst 33342 accumulation, apoptotic body formation, mitochondrial membrane potential and plasma membrane integrity loss. The proteomic assay revealed apoptosis related protein changes, exhibiting the regulation of caspase-3 activity indicator proteins (vimentin and Rho GDP-dissociation inhibitor 2), mitochondrial protein (prohibitin) and other regulatory proteins. In addition, the up-regulation of anti-inflammatory redox protein, thioredoxin, was identified in the rAd-vpr infected group. Further supporting these findings, the increase of caspase 3&7 activity in the rAd-vpr infected group was observed. In conclusion, endogenous Vpr is able to kill HTLV-1 transformed C8166 cells, and may avoid the risks of inducing severe inflammatory responses through apoptosis-inducing and anti-inflammatory activities.
Collapse
|
17
|
Hurd PJ, Bannister AJ, Halls K, Dawson MA, Vermeulen M, Olsen JV, Ismail H, Somers J, Mann M, Owen-Hughes T, Gout I, Kouzarides T. Phosphorylation of histone H3 Thr-45 is linked to apoptosis. J Biol Chem 2009; 284:16575-16583. [PMID: 19363025 DOI: 10.1074/jbc.m109.005421] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous post-translational modifications have been identified in histones. Most of these occur within the histone tails, but a few have been identified within the histone core sequences. Histone core post-translational modifications have the potential to directly modulate nucleosome structure and consequently DNA accessibility. Here, we identify threonine 45 of histone H3 (H3T45) as a site of phosphorylation in vivo. We find that phosphorylation of H3T45 (H3T45ph) increases dramatically in apoptotic cells, around the time of DNA nicking. To further explore this connection, we analyzed human neutrophil cells because they are short-lived cells that undergo apoptosis in vivo. Freshly isolated neutrophils contain very little H3T45ph, whereas cells cultured for 20 h possess significant amounts; the kinetics of H3T45ph induction closely parallel those of caspase-3 activation. Cytokine inhibition of neutrophil apoptosis leads to reduced levels of H3T45ph. We identify protein kinase C-delta as the kinase responsible for H3T45ph in vitro and in vivo. Given the nucleosomal position of H3T45, we postulate that H3T45ph induces structural change within the nucleosome to facilitate DNA nicking and/or fragmentation.
Collapse
Affiliation(s)
- Paul J Hurd
- From the Wellcome Trust and Cancer Research UK Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Andrew J Bannister
- From the Wellcome Trust and Cancer Research UK Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Karen Halls
- From the Wellcome Trust and Cancer Research UK Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Mark A Dawson
- From the Wellcome Trust and Cancer Research UK Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom; Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 OXY, United Kingdom
| | - Michiel Vermeulen
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Jesper V Olsen
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Heba Ismail
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Joanna Somers
- Division of Gene Regulation and Expression, The Wellcome Trust Biocentre, Department of Biochemistry, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Tom Owen-Hughes
- Division of Gene Regulation and Expression, The Wellcome Trust Biocentre, Department of Biochemistry, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Tony Kouzarides
- From the Wellcome Trust and Cancer Research UK Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom.
| |
Collapse
|