1
|
Gao L, Wu ZX, Assaraf YG, Chen ZS, Wang L. Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function. Drug Resist Updat 2021; 57:100770. [PMID: 34175687 DOI: 10.1016/j.drup.2021.100770] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
The cytotoxic anti-cancer drugs cisplatin, paclitaxel, doxorubicin, 5-fluorouracil (5-FU), as well as targeted drugs including imatinib, erlotinib, and nivolumab, play key roles in clinical cancer treatment. However, the frequent emergence of drug resistance severely comprosises their anti-cancer efficacy. A number of studies indicated that loss of function of tumor suppressor genes (TSGs) is involved in the development of cancer drug resistance, apart from decreased drug influx, increased drug efflux, induction of anti-apoptosis mechanisms, alterations in tumor microenvironment, drug compartmentalization, enhanced DNA repair and drug inactivation. TSGs are involved in the pathogenesis of tumor formation through regulation of DNA damage repair, cell apoptosis, autophagy, proliferation, cell cycle progression, and signal transduction. Our increased understanding of TSGs in the past decades demonstrates that gene mutation is not the only reason that leads to the inactivation of TSGs. Loss of function of TSGs may be based on the ubiquitin-proteasome pathway, epigenetic and transcriptional regualtion, post-translation modifications like phosphorylation as well as cellular translocation of TSGs. As the above processes can constitute"druggable targets", these mechanisms provide novel therapeutic approaches in targeting TSGs. Some small molecule compounds targeting these approaches re-activated TSGs and reversed cancer drug resistance. Along this vein, functional restoration of TSGs is a novel and promising approach to surmount cancer drug resistance. In the current review, we draw a scenario based on the role of loss of function of TSGs in drug resistance, on mechanisms leading to inactivation of TSGs and on pharmacological agents acting on these mechanisms to overcome cancer drug resistance. This review discusses novel therapeutic strategies targeting TSGs and offers possible modalities to conquer cancer drug resistance.
Collapse
Affiliation(s)
- Lingyue Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY, 11439, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, NY, 11439, USA.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, PR China.
| |
Collapse
|
2
|
Lee J, Lee CY, Park JH, Seo HH, Shin S, Song BW, Kim IK, Kim SW, Lee S, Park JC, Lim S, Hwang KC. Differentiation of adipose-derived stem cells into functional chondrocytes by a small molecule that induces Sox9. Exp Mol Med 2020; 52:672-681. [PMID: 32313200 PMCID: PMC7210883 DOI: 10.1038/s12276-020-0424-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/17/2020] [Accepted: 02/10/2020] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease that results from the disintegration of joint cartilage and the underlying bone. Because cartilage and chondrocytes lack the ability to self-regenerate, efforts have been made to utilize stem cells to treat OA. Although various methods have been used to differentiate stem cells into functional chondrocytes, the currently available methods cannot induce stem cells to undergo differentiation into chondrocyte-like cells without inducing characteristics of hypertrophic chondrocytes, which finally lead to cartilage disintegration and calcification. Therefore, an optimized method to differentiate stem cells into chondrocytes that do not display undesired phenotypes is needed. This study focused on differentiating adipose-derived stem cells (ASCs) into functional chondrocytes using a small molecule that regulated the expression of Sox9 as a key factor in cartilage development and then explored its ability to treat OA. We selected ellipticine (ELPC), which induces chondrocyte differentiation of ASCs, using a GFP-Sox9 promoter vector screening system. An in vivo study was performed to confirm the recovery rate of cartilage regeneration with ASC differentiation into chondrocytes by ELPC in a collagenase-induced animal model of OA. Taken together, these data indicate that ellipticine induces ASCs to differentiate into mature chondrocytes without hypertrophic chondrocytes in vitro and in vivo, thus overcoming a problem encountered in previous studies. These results indicate that ELPC is a novel chondrocyte differentiation-inducing drug that shows potential as a cell therapy for OA.
Collapse
Affiliation(s)
- Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Republic of Korea
| | - Jun-Hee Park
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Republic of Korea
| | - Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Sunhye Shin
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Republic of Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Jong-Chul Park
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.
| |
Collapse
|
3
|
Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting Transcription Factors for Cancer Treatment. Molecules 2018; 23:molecules23061479. [PMID: 29921764 PMCID: PMC6100431 DOI: 10.3390/molecules23061479] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Transcription factors are involved in a large number of human diseases such as cancers for which they account for about 20% of all oncogenes identified so far. For long time, with the exception of ligand-inducible nuclear receptors, transcription factors were considered as “undruggable” targets. Advances knowledge of these transcription factors, in terms of structure, function (expression, degradation, interaction with co-factors and other proteins) and the dynamics of their mode of binding to DNA has changed this postulate and paved the way for new therapies targeted against transcription factors. Here, we discuss various ways to target transcription factors in cancer models: by modulating their expression or degradation, by blocking protein/protein interactions, by targeting the transcription factor itself to prevent its DNA binding either through a binding pocket or at the DNA-interacting site, some of these inhibitors being currently used or evaluated for cancer treatment. Such different targeting of transcription factors by small molecules is facilitated by modern chemistry developing a wide variety of original molecules designed to specifically abort transcription factor and by an increased knowledge of their pathological implication through the use of new technologies in order to make it possible to improve therapeutic control of transcription factor oncogenic functions.
Collapse
Affiliation(s)
- Mélanie Lambert
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Samy Jambon
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Sabine Depauw
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Marie-Hélène David-Cordonnier
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| |
Collapse
|
4
|
de Stephanis L, Mangolini A, Servello M, Harris PC, Dell'Atti L, Pinton P, Aguiari G. MicroRNA501-5p induces p53 proteasome degradation through the activation of the mTOR/MDM2 pathway in ADPKD cells. J Cell Physiol 2018; 233:6911-6924. [PMID: 29323708 DOI: 10.1002/jcp.26473] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/05/2018] [Indexed: 01/01/2023]
Abstract
Cell proliferation and apoptosis are typical hallmarks of autosomal dominant polycystic kidney disease (ADPKD) and cause the development of kidney cysts that lead to end-stage renal disease (ESRD). Many factors, impaired by polycystin complex loss of function, may promote these biological processes, including cAMP, mTOR, and EGFR signaling pathways. In addition, microRNAs (miRs) may also regulate the ADPKD related signaling network and their dysregulation contributes to disease progression. However, the role of miRs in ADPKD pathogenesis has not been fully understood, but also the function of p53 is quite obscure, especially its regulatory contribution on cell proliferation and apoptosis. Here, we describe for the first time that miR501-5p, upregulated in ADPKD cells and tissues, induces the activation of mTOR kinase by PTEN and TSC1 gene repression. The increased activity of mTOR kinase enhances the expression of E3 ubiquitin ligase MDM2 that in turn promotes p53 ubiquitination, leading to its degradation by proteasome machinery in a network involving p70S6K. Moreover, the overexpression of miR501-5p stimulates cell proliferation in kidney cells by the inhibition of p53 function in a mechanism driven by mTOR signaling. In fact, the downregulation of this miR as well as the pharmacological treatment with proteasome and mTOR inhibitors in ADPKD cells reduces cell growth by the activation of apoptosis. Consequently, the stimulation of cell death in ADPKD cells may occur through the inhibition of mTOR/MDM2 signaling and the restoring of p53 function. The data presented here confirm that the impaired mTOR signaling plays an important role in ADPKD.
Collapse
Affiliation(s)
- Lucia de Stephanis
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, Ferrara, Italy
| | | | - Miriam Servello
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, Ferrara, Italy.,Unit of Urology, St. Anna Hospital, Ferrara, Italy
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Gianluca Aguiari
- Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Anilkumar U, Weisova P, Schmid J, Bernas T, Huber HJ, Düssmann H, Connolly NMC, Prehn JHM. Defining external factors that determine neuronal survival, apoptosis and necrosis during excitotoxic injury using a high content screening imaging platform. PLoS One 2017; 12:e0188343. [PMID: 29145487 PMCID: PMC5690623 DOI: 10.1371/journal.pone.0188343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022] Open
Abstract
Cell death induced by excessive glutamate receptor overactivation, excitotoxicity, has been implicated in several acute and chronic neurological disorders. While numerous studies have demonstrated the contribution of biochemically and genetically activated cell death pathways in excitotoxic injury, the factors mediating passive, excitotoxic necrosis are less thoroughly investigated. To address this question, we developed a high content screening (HCS) based assay to collect high volumes of quantitative cellular imaging data and elucidated the effects of intrinsic and external factors on excitotoxic necrosis and apoptosis. The analysis workflow consisted of robust nuclei segmentation, tracking and a classification algorithm, which enabled automated analysis of large amounts of data to identify and quantify viable, apoptotic and necrotic neuronal populations. We show that mouse cerebellar granule neurons plated at low or high density underwent significantly increased necrosis compared to neurons seeded at medium density. Increased extracellular Ca2+ sensitized neurons to glutamate-induced excitotoxicity, but surprisingly potentiated cell death mainly through apoptosis. We also demonstrate that inhibition of various cell death signaling pathways (including inhibition of calpain, PARP and AMPK activation) primarily reduced excitotoxic apoptosis. Excitotoxic necrosis instead increased with low extracellular glucose availability. Our study is the first of its kind to establish and implement a HCS based assay to investigate the contribution of external and intrinsic factors to excitotoxic apoptosis and necrosis.
Collapse
Affiliation(s)
- Ujval Anilkumar
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Petronela Weisova
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jasmin Schmid
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tytus Bernas
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Heinrich J. Huber
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Heiko Düssmann
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Niamh M. C. Connolly
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics and RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- * E-mail:
| |
Collapse
|
6
|
Inhibition of MEF2A prevents hyperglycemia-induced extracellular matrix accumulation by blocking Akt and TGF-β1/Smad activation in cardiac fibroblasts. Int J Biochem Cell Biol 2015; 69:52-61. [DOI: 10.1016/j.biocel.2015.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/19/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
|
7
|
Wang JP, Yu YC, Chen SP, Liang HC, Lin CW, Fang K. The collective nuclear migration of p53 and phosphorylated S473 of Akt during ellipticine-mediated apoptosis in human lung epithelial cancer cells. Mol Cell Biochem 2015; 407:123-33. [PMID: 26014912 DOI: 10.1007/s11010-015-2460-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/19/2015] [Indexed: 12/30/2022]
Abstract
Topoisomerase II inhibitor ellipticine effectively suppressed the growth of human non-small-cell-lung-cancer (NSCLC) epithelial cells. Previously, we reported the drug activity was consummated through parallel nucleus migration of p53 and Akt in A549 cells. While inducing cell death, the drug activity was proved related to autophagy through phosphorylated Akt at S473. In addition, ellipticine induced cytotoxicity in p53-null H1299 cells with stable expression of ectopic p53. In this work, we further demonstrated that dominant-negative Akt (S473A) or p53 shRNA inhibited ellipticine-mediated translocalization of p53 and Akt and attenuated apoptotic cell death in A549 cells. The presence of p53 predates ellipticine-mediated apoptotic cell death, assists in nucleus translocation of phosphorylated Akt and activation of autophagy pathway. Growth inhibition through collaborating p53 and phosphorylated Akt(473) in lung epithelial cancer cells provided a new perspective of the topoisomerase inhibitor as an effective cancer therapy agent.
Collapse
Affiliation(s)
- Jing-Ping Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
8
|
Nguyen LXT, Raval A, Garcia JS, Mitchell BS. Regulation of Ribosomal Gene Expression in Cancer. J Cell Physiol 2015; 230:1181-8. [DOI: 10.1002/jcp.24854] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Le Xuan Truong Nguyen
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Aparna Raval
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Jacqueline S. Garcia
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Beverly S. Mitchell
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| |
Collapse
|
9
|
Stiborová M, Černá V, Moserová M, Mrízová I, Arlt VM, Frei E. The anticancer drug ellipticine activated with cytochrome P450 mediates DNA damage determining its pharmacological efficiencies: studies with rats, Hepatic Cytochrome P450 Reductase Null (HRN™) mice and pure enzymes. Int J Mol Sci 2014; 16:284-306. [PMID: 25547492 PMCID: PMC4307247 DOI: 10.3390/ijms16010284] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/17/2014] [Indexed: 12/30/2022] Open
Abstract
Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic.
| | - Věra Černá
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic.
| | - Michaela Moserová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic.
| | - Iveta Mrízová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, CZ-12843 Prague 2, Czech Republic.
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environmental & Health, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Eva Frei
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Calabrò S, Alzoubi K, Bissinger R, Faggio C, Lang F. Stimulation of Suicidal Erythrocyte Death by Ellipticine. Basic Clin Pharmacol Toxicol 2014; 116:485-92. [DOI: 10.1111/bcpt.12350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Salvatrice Calabrò
- Department of Physiology; University of Tübingen; Tübingen Germany
- Department of Biological and Environmental Sciences; University of Messina; S. Agata-Messina Italy
| | - Kousi Alzoubi
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Rosi Bissinger
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Caterina Faggio
- Department of Biological and Environmental Sciences; University of Messina; S. Agata-Messina Italy
| | - Florian Lang
- Department of Physiology; University of Tübingen; Tübingen Germany
| |
Collapse
|
11
|
Abstract
The intracellular location and regulation of proteins within each cell is critically important and is typically deregulated in disease especially cancer. The clinical hypothesis for inhibiting the nucleo-cytoplasmic transport is based on the dependence of certain key proteins within malignant cells. This includes a host of well-characterized tumor suppressor and oncoproteins that require specific localization for their function. This aberrant localization of tumour suppressors and oncoproteins results in their their respective inactivation or over-activation. This incorrect localization occurs actively via the nuclear pore complex that spans the nuclear envelope and is mediated by transport receptors. Accordingly, given the significant need for novel, specific disease treatments, the nuclear envelope and the nuclear transport machinery have emerged as a rational therapeutic target in oncology to restore physiological nucleus/cytoplasmic homeostasis. Recent evidence suggests that this approach might be of substantial therapeutic use. This review summarizes the mechanisms of nucleo-cytoplasmic transport, its role in cancer biology and the therapeutic potential of targeting this critical cellular process.
Collapse
Affiliation(s)
- Richard Hill
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Portugal
| | | | | | | |
Collapse
|
12
|
Montoia A, Rocha e Silva LF, Torres ZE, Costa DS, Henrique MC, Lima ES, Vasconcellos MC, Souza RC, Costa MR, Grafov A, Grafova I, Eberlin MN, Tadei WP, Amorim RC, Pohlit AM. Antiplasmodial activity of synthetic ellipticine derivatives and an isolated analog. Bioorg Med Chem Lett 2014; 24:2631-4. [DOI: 10.1016/j.bmcl.2014.04.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/14/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
|
13
|
|
14
|
Conway JRW, Carragher NO, Timpson P. Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat Rev Cancer 2014; 14:314-28. [PMID: 24739578 DOI: 10.1038/nrc3724] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrating biological imaging into early stages of the drug discovery process can provide invaluable readouts of drug activity within complex disease settings, such as cancer. Iterating this approach from initial lead compound identification in vitro to proof-of-principle in vivo analysis represents a key challenge in the drug discovery field. By embracing more complex and informative models in drug discovery, imaging can improve the fidelity and statistical robustness of preclinical cancer studies. In this Review, we highlight how combining advanced imaging with three-dimensional systems and intravital mouse models can provide more informative and disease-relevant platforms for cancer drug discovery.
Collapse
Affiliation(s)
- James R W Conway
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| | - Neil O Carragher
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Paul Timpson
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre Sydney, St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Sydney, Australia
| |
Collapse
|
15
|
Holub JM, Larochelle JR, Appelbaum JS, Schepartz A. Improved assays for determining the cytosolic access of peptides, proteins, and their mimetics. Biochemistry 2013; 52:9036-46. [PMID: 24256505 DOI: 10.1021/bi401069g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteins and other macromolecules that cross biological membranes have great potential as tools for research and next-generation therapeutics. Here, we describe two assays that effectively quantify the cytosolic localization of a number of previously reported peptides and protein domains. One assay, which we call GIGI (glucocorticoid-induced eGFP induction), is an amplified assay that informs on relative cytosolic access without the need for sophisticated imaging equipment or adherent cells. The second, GIGT (glucocorticoid-induced eGFP translocation), is a nonamplified assay that informs on relative cytosolic access and exploits sophisticated imaging equipment to facilitate high-content screens in live cells. Each assay was employed to quantify the cytosolic delivery of several canonical "cell permeable peptides," as well as more recently reported minimally cationic miniature proteins and zinc finger nuclease domains. Our results show definitively that both overall charge as well as charge distribution influence cytosolic access and that small protein domains containing a discrete, helical, penta-Arg motif can dramatically improve the cytosolic delivery of small folded proteins such as zinc finger domains. We anticipate that the assays described herein will prove useful to explore and discover the fundamental physicochemical and genetic properties that influence both the uptake and endosomal release of peptidic molecules and their mimetics.
Collapse
Affiliation(s)
- Justin M Holub
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | | | | | | |
Collapse
|
16
|
Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R. The MDM2-p53 pathway revisited. J Biomed Res 2013; 27:254-71. [PMID: 23885265 PMCID: PMC3721034 DOI: 10.7555/jbr.27.20130030] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/12/2013] [Indexed: 12/15/2022] Open
Abstract
The p53 tumor suppressor is a key transcription factor regulating cellular pathways such as DNA repair, cell cycle, apoptosis, angiogenesis, and senescence. It acts as an important defense mechanism against cancer onset and progression, and is negatively regulated by interaction with the oncoprotein MDM2. In human cancers, the TP53 gene is frequently mutated or deleted, or the wild-type p53 function is inhibited by high levels of MDM2, leading to downregulation of tumor suppressive p53 pathways. Thus, the inhibition of MDM2-p53 interaction presents an appealing therapeutic strategy for the treatment of cancer. However, recent studies have revealed the MDM2-p53 interaction to be more complex involving multiple levels of regulation by numerous cellular proteins and epigenetic mechanisms, making it imperative to reexamine this intricate interplay from a holistic viewpoint. This review aims to highlight the multifaceted network of molecules regulating the MDM2-p53 axis to better understand the pathway and exploit it for anticancer therapy.
Collapse
Affiliation(s)
- Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | | | | | |
Collapse
|
17
|
Zanella F, Dos Santos NR, Link W. Moving to the core: spatiotemporal analysis of Forkhead box O (FOXO) and nuclear factor-κB (NF-κB) nuclear translocation. Traffic 2013; 14:247-58. [PMID: 23231504 DOI: 10.1111/tra.12034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 12/23/2022]
Abstract
Nuclear translocation of proteins is an essential aspect of normal cell function, and defects in this process have been detected in many disease-associated conditions. The detection and quantification of nuclear translocation was significantly boosted by the association of robotized microscopy with automated image analysis, a technology designated as high-content screening. Image-based high-content screening and analysis provides the means to systematically observe cellular translocation events in time and space in response to chemical or genetic perturbation at large scale. This approach yields powerful insights into the regulation of complex signaling networks independently of preconceived notions of mechanistic relationships. In this review, we briefly overview the different mechanisms involved in nucleocytoplasmic protein trafficking. In addition, we discuss high-content approaches used to interrogate the mechanistic and spatiotemporal dynamics of cellular signaling events using Forkhead box O (FOXO) proteins and the nuclear factor-κB (NF-κB) as important and clinically relevant examples.
Collapse
Affiliation(s)
- Fabian Zanella
- School of Medicine, Cardiology Division, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613, USA
| | | | | |
Collapse
|
18
|
O'Sullivan EC, Miller CM, Deane FM, McCarthy FO. Emerging Targets in the Bioactivity of Ellipticines and Derivatives. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2013. [DOI: 10.1016/b978-0-444-62615-8.00006-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
19
|
Abstract
Oncogenic signaling promotes tumor invasion and metastasis, in part, by increasing the expression of tri- and tetra- branched N-glycans. The branched N-glycans bind to galectins forming a multivalent lattice that enhances cell surface residency of growth factor receptors, and focal adhesion turnover. N-acetylglucosaminyltransferase I (MGAT1), the first branching enzyme in the pathway, is required for the addition of all subsequent branches. Here we have introduced MGAT1 shRNA into human HeLa cervical and PC-3-Yellow prostate tumor cells lines, generating cell lines with reduced transcript, enzyme activity and branched N-glycans at the cell surface. MGAT1 knockdown inhibited HeLa cell migration and invasion, but did not alter cell proliferation rates. Swainsonine, an inhibitor of α-mannosidase II immediately downstream of MGAT1, also inhibited cell invasion and was not additive with MGAT1 shRNA, consistent with a common mechanism of action. Focal adhesion and microfilament organization in MGAT1 knockdown cells also indicate a less motile phenotype. In vivo, MGAT1 knockdown in the PC-3-Yellow orthotopic prostate cancer xenograft model significantly decreased primary tumor growth and the incidence of lung metastases. Our results demonstrate that blocking MGAT1 is a potential target for anti-cancer therapy.
Collapse
|
20
|
Ryvolova M, Adam V, Eckschlager T, Stiborova M, Kizek R. Study of DNA-ellipticine interaction by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 2012; 33:1545-9. [DOI: 10.1002/elps.201200056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology; 2; nd; Faculty of Medicine, Charles University and University Hospital Motol; Prague; Czech Republic
| | - Marie Stiborova
- Department of Biochemistry; Faculty of Science; Charles University; Prague; Czech Republic
| | | |
Collapse
|
21
|
Rininger A, Wayland A, Prifti V, Halterman MW. Assessment of CA1 injury after global ischemia using supervised 2D analyses of nuclear pyknosis. J Neurosci Methods 2012; 207:181-8. [PMID: 22542732 DOI: 10.1016/j.jneumeth.2012.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
Selective neuronal vulnerability is a common theme in both acute and chronic diseases affecting the nervous system. This phenomenon is particularly conspicuous after global cerebral ischemia wherein CA1 pyramidal neurons undergo delayed death while surrounding hippocampal regions are relatively spared. While injury in this model can be easily demonstrated using either histological or immunological stains, current methods used to assess the cellular injury present in these biological images lack the precision required to adequately compare treatment effects. To address this shortcoming, we devised a supervised work-flow that can be used to quantify ischemia-induced nuclear condensation using microscopic images. And while we demonstrate the utility of this technique using models of ischemic brain injury, the approach can be readily applied to other paradigms in which programmed cell death is a major component.
Collapse
Affiliation(s)
- A Rininger
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
22
|
Rimon N, Schuldiner M. Getting the whole picture: combining throughput with content in microscopy. J Cell Sci 2012; 124:3743-51. [PMID: 22124141 DOI: 10.1242/jcs.087486] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The increasing availability and performance of automated scientific equipment in the past decades have brought about a revolution in the biological sciences. The ease with which data can now be generated has led to a new culture of high-throughput science, in which new types of biological questions can be asked and tackled in a systematic and unbiased manner. High-throughput microscopy, also often referred to as high-content screening (HCS), allows acquisition of systematic data at the single-cell level. Moreover, it allows the visualization of an enormous array of cellular features and provides tools to quantify a large number of parameters for each cell. These features make HCS a powerful method to create data that is rich and biologically meaningful without compromising systematic capabilities. In this Commentary, we will discuss recent work, which has used HCS, to demonstrate the diversity of applications and technological solutions that are evolving in this field. Such advances are placing HCS methodologies at the frontier of high-throughput science and enable scientists to combine throughput with content to address a variety of cell biological questions.
Collapse
Affiliation(s)
- Nitzan Rimon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 76100
| | | |
Collapse
|
23
|
Abstract
High-throughput screening (HTS) is a key process used in drug discovery to identify hits from compound libraries that may become leads for medicinal chemistry optimization. This updated overview discusses the utilization of compound libraries, compounds derived from combinatorial and parallel synthesis campaigns and natural product sources; creation of mother and daughter plates; and compound storage, handling, and bar coding in HTS. The unit also presents an overview of established and emerging assay technologies (i.e., time-resolved fluorescence, fluorescence polarization, fluorescence-correlation spectroscopy, functional whole cell assays, and high-content assays) and their integration in automation hardware and IT systems. This revised unit provides updated descriptions of state-of-the-art instrumentation and technologies in this rapidly changing environment. The section on assay methodologies now also covers enzyme complementation assays and methods for high-throughput screening of ion channel activities. Finally, a section on criteria for assay robustness is included discussing the Z'-factor, which is now a widely accepted criterion for evaluation and validation of high throughput screening assays.
Collapse
Affiliation(s)
- Michael Entzeroth
- Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), Singapore
| | | | | |
Collapse
|
24
|
Abstract
The eukaryotic cell is organized into membrane-covered compartments that are characterized by specific sets of proteins and biochemically distinct cellular processes. The appropriate subcellular localization of proteins is crucial because it provides the physiological context for their function. In this Commentary, we give a brief overview of the different mechanisms that are involved in protein trafficking and describe how aberrant localization of proteins contributes to the pathogenesis of many human diseases, such as metabolic, cardiovascular and neurodegenerative diseases, as well as cancer. Accordingly, modifying the disease-related subcellular mislocalization of proteins might be an attractive means of therapeutic intervention. In particular, cellular processes that link protein folding and cell signaling, as well as nuclear import and export, to the subcellular localization of proteins have been proposed as targets for therapeutic intervention. We discuss the concepts involved in the therapeutic restoration of disrupted physiological protein localization and therapeutic mislocalization as a strategy to inactivate disease-causing proteins.
Collapse
Affiliation(s)
- Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
25
|
Miller CM, McCarthy FO. Isolation, biological activity and synthesis of the natural product ellipticine and related pyridocarbazoles. RSC Adv 2012. [DOI: 10.1039/c2ra20584j] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Targeting p53 for Novel Anticancer Therapy. Transl Oncol 2011; 3:1-12. [PMID: 20165689 DOI: 10.1593/tlo.09250] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 08/26/2009] [Accepted: 09/21/2009] [Indexed: 12/23/2022] Open
Abstract
Carcinogenesis is a multistage process, involving oncogene activation and tumor suppressor gene inactivation as well as complex interactions between tumor and host tissues, leading ultimately to an aggressive metastatic phenotype. Among many genetic lesions, mutational inactivation of p53 tumor suppressor, the "guardian of the genome," is the most frequent event found in 50% of human cancers. p53 plays a critical role in tumor suppression mainly by inducing growth arrest, apoptosis, and senescence, as well as by blocking angiogenesis. In addition, p53 generally confers the cancer cell sensitivity to chemoradiation. Thus, p53 becomes the most appealing target for mechanism-driven anticancer drug discovery. This review will focus on the approaches currently undertaken to target p53 and its regulators with an overall goal either to activate p53 in cancer cells for killing or to inactivate p53 temporarily in normal cells for chemoradiation protection. The compounds that activate wild type (wt) p53 would have an application for the treatment of wt p53-containing human cancer. Likewise, the compounds that change p53 conformation from mutant to wt p53 (p53 reactivation) or that kill the cancer cells with mutant p53 using a synthetic lethal mechanism can be used to selectively treat human cancer harboring a mutant p53. The inhibitors of wt p53 can be used on a temporary basis to reduce the normal cell toxicity derived from p53 activation. Thus, successful development of these three classes of p53 modulators, to be used alone or in combination with chemoradiation, will revolutionize current anticancer therapies and benefit cancer patients.
Collapse
|
27
|
Stiborová M, Rupertová M, Frei E. Cytochrome P450- and peroxidase-mediated oxidation of anticancer alkaloid ellipticine dictates its anti-tumor efficiency. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:175-85. [DOI: 10.1016/j.bbapap.2010.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/22/2010] [Accepted: 05/24/2010] [Indexed: 12/30/2022]
|
28
|
Dudgeon DD, Shinde SN, Shun TY, Lazo JS, Strock CJ, Giuliano KA, Taylor DL, Johnston PA, Johnston PA. Characterization and optimization of a novel protein-protein interaction biosensor high-content screening assay to identify disruptors of the interactions between p53 and hDM2. Assay Drug Dev Technol 2010; 8:437-58. [PMID: 20662736 DOI: 10.1089/adt.2010.0281] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We present here the characterization and optimization of a novel imaging-based positional biosensor high-content screening (HCS) assay to identify disruptors of p53-hDM2 protein-protein interactions (PPIs). The chimeric proteins of the biosensor incorporated the N-terminal PPI domains of p53 and hDM2, protein targeting sequences (nuclear localization and nuclear export sequence), and fluorescent reporters, which when expressed in cells could be used to monitor p53-hDM2 PPIs through changes in the subcellular localization of the hDM2 component of the biosensor. Coinfection with the recombinant adenovirus biosensors was used to express the NH-terminal domains of p53 and hDM2, fused to green fluorescent protein and red fluorescent protein, respectively, in U-2 OS cells. We validated the p53-hDM2 PPI biosensor (PPIB) HCS assay with Nutlin-3, a compound that occupies the hydrophobic pocket on the surface of the N-terminus of hDM2 and blocks the binding interactions with the N-terminus of p53. Nutlin-3 disrupted the p53-hDM2 PPIB in a concentration-dependent manner and provided a robust, reproducible, and stable assay signal window that was compatible with HCS. The p53-hDM2 PPIB assay was readily implemented in HCS and we identified four (4) compounds in the 1,280-compound Library of Pharmacologically Active Compounds that activated the p53 signaling pathway and elicited biosensor signals that were clearly distinct from the responses of inactive compounds. Anthracycline (topoisomerase II inhibitors such as mitoxantrone and ellipticine) and camptothecin (topoisomerase I inhibitor) derivatives including topotecan induce DNA double strand breaks, which activate the p53 pathway through the ataxia telangiectasia mutated-checkpoint kinase 2 (ATM-CHK2) DNA damage response pathway. Although mitoxantrone, ellipticine, camptothecin, and topotecan all exhibited concentration-dependent disruption of the p53-hDM2 PPIB, they were much less potent than Nutlin-3. Further, their corresponding cellular images and quantitative HCS data did not completely match the Nutlin-3 phenotypic profile.
Collapse
Affiliation(s)
- Drew D Dudgeon
- Drug Discovery Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The beautiful cell: high-content screening in drug discovery. Anal Bioanal Chem 2010; 398:219-26. [DOI: 10.1007/s00216-010-3788-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/21/2010] [Accepted: 04/24/2010] [Indexed: 01/22/2023]
|
30
|
Zanella F, Lorens JB, Link W. High content screening: seeing is believing. Trends Biotechnol 2010; 28:237-45. [PMID: 20346526 DOI: 10.1016/j.tibtech.2010.02.005] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 02/19/2010] [Accepted: 02/26/2010] [Indexed: 12/14/2022]
Abstract
High content screening (HCS) combines the efficiency of high-throughput techniques with the ability of cellular imaging to collect quantitative data from complex biological systems. HCS technology is integrated into all aspects of contemporary drug discovery, including primary compound screening, post-primary screening capable of supporting structure-activity relationships, and early evaluation of ADME (absorption, distribution, metabolism and excretion)/toxicity properties and complex multivariate drug profiling. Recently, high content approaches have been used extensively to interrogate stem cell biology. Despite these dramatic advances, a number of significant challenges remain related to the use of more biology- and disease-relevant cell systems, the development of informative reagents to measure and manipulate cellular events, and the integration of data management and informatics.
Collapse
Affiliation(s)
- Fabian Zanella
- Experimental Therapeutics Program, Centro Nacional de Investigaciones Oncologicas, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | | | | |
Collapse
|
31
|
Ketteler R. The Feynman trajectories: determining the path of a protein using fixed-endpoint assays. ACTA ACUST UNITED AC 2010; 15:321-6. [PMID: 20130209 DOI: 10.1177/1087057109357116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Richard Feynman postulated in 1948 that the path of an electron can be best described by the sum or functional integral of all possible trajectories rather than by the notion of a single, unique trajectory. As a consequence, the position of an electron does not harbor any information about the paths that contributed to this position. This observation constitutes a classical endpoint observation. The endpoint assay is the desired type of experiment for high-throughput screening applications, mainly because of limitations in data acquisition and handling. Quite contrary to electrons, it is possible to extract information about the path of a protein using endpoint assays, and these types of applications are reviewed in this article.
Collapse
Affiliation(s)
- Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.
| |
Collapse
|
32
|
Lu C, Wang W, El-Deiry WS. Non-genotoxic anti-neoplastic effects of ellipticine derivative NSC176327 in p53-deficient human colon carcinoma cells involve stimulation of p73. Cancer Biol Ther 2009; 7:2039-46. [PMID: 19106635 DOI: 10.4161/cbt.7.12.7461] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We previously performed a high-throughput screen using real-time noninvasive bioluminescence imaging of p53 transcriptional activity and identified a group of small molecules that trigger p53-like transcriptional responses in p53-deficient tumor cells. Here we further examined the anti-tumor effects of selected compounds in vitro and showed that NSC176327, a derivative of the cytotoxic plant alkaloid ellipticine, exhibited strong anti-neoplastic effect sin wild-type p53, p53-mutant or p53-deficient human colon cancer cells. NSC176327 was more potent at inhibiting tumor cell growth as compared to chemotherapeutic drugs and other ellipticine derivatives and induced cell cycle arrest and apoptosis. Surprisingly, unlike what is observed with the parent compound ellipticine, a DNA damage signaling response was not observed with NSC176327 as evidenced by lack of phosphorylated histone H2AX foci in NSC176327-treated tumor cells. NSC176327 treatment caused a significant increase in p53-activated reporter signal in HCT116, SW620 and HCT116 p53-/- cells and upregulated DR5 and p21 protein expression. NSC176327 treatment also resulted in increased p73 protein expression and knockdown of transactivating isoforms of p73 in HCT116 p53-/- cells showed significant resistance to drug treatment. These results demonstrate an important role of p73 in the anti-tumor effects of NSC176327,and suggest that a close analogue of ellipticine may act by a non-genotoxic mechanism targeting the p53/p73 pathway as compared to the original parent compound that targets the same pathway.
Collapse
Affiliation(s)
- Chao Lu
- Laboratory of Molecular Oncology and Cell Cycle Regulation, The Institute for Translational Medicine and Therapeutics, The Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
33
|
|