1
|
Falsetti I, Palmini G, Zonefrati R, Vasa K, Donati S, Aurilia C, Baroncelli A, Viglianisi C, Ranaldi F, Iantomasi T, Procacci P, Menichetti S, Brandi ML. Antiproliferative Role of Natural and Semi-Synthetic Tocopherols on Colorectal Cancer Cells Overexpressing the Estrogen Receptor β. Int J Mol Sci 2025; 26:2305. [PMID: 40076925 PMCID: PMC11900421 DOI: 10.3390/ijms26052305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Estrogen receptor β (ERβ) is the most highly expressed subtype in the colon epithelium and mediates the protective effect of estrogen against the development of colon cancer. Indeed, the expression of this receptor is inversely related to colorectal cancer progression. Structurally estrogen-like compounds, including vitamin E components, affect cell growth by binding to ERs. In the present study, cell proliferation was measured by cell counting in a Bürker hemocytometer, and ERβ expression was measured by Real-Time qPCR and immunoenzymatic methods. The results obtained show that natural δ-tocopherol (δ-Toc) and two of its semi-synthetic derivatives, bis-δ-tocopheryl sulfide (δ-Toc)2S and bis-δ-tocopheryl disulfide (δ-Toc)2S2, play an antiproliferative role and upregulate ERβ expression, similar to 17-β-estradiol (17β-E2), in human colon adenocarcinoma HCT8 cells engineered to overexpress ERβ protein (HCT8-β8). These events are not present in HCT8-pSV2neo and in HCT8-β8 pretreated with ICI 182,780, suggesting that they are mediated by the binding of compounds to ERβ, as also boosted by an in silico assay. The antiproliferative effect is independent of the intracellular redox state and (δ-Toc)2S and (δ-Toc)2S2 reduce cell proliferation at concentrations lower than that of δ-Toc and all tested compounds are also able to upregulate ERβ expression. Taken together, the data indicate that, through the involvement of ERβ activity and expression, δ-Toc, (δ-Toc)2S, and (δ-Toc)2S2 may provide potential therapeutic support against colorectal cancer.
Collapse
Affiliation(s)
- Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy; (I.F.); (S.D.); (C.A.); (F.R.)
| | - Gaia Palmini
- Italian Foundation for Research on Bone Disease (F.I.R.M.O.), Via San Gallo 123, 50129 Firenze, Italy; (G.P.); (M.L.B.)
| | - Roberto Zonefrati
- Italian Foundation for Research on Bone Disease (F.I.R.M.O.), Via San Gallo 123, 50129 Firenze, Italy; (G.P.); (M.L.B.)
| | - Kristian Vasa
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia, 3–13, 50019 Sesto Fiorentino, Italy; (K.V.); (A.B.); (C.V.); (P.P.); (S.M.)
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy; (I.F.); (S.D.); (C.A.); (F.R.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy; (I.F.); (S.D.); (C.A.); (F.R.)
| | - Allegra Baroncelli
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia, 3–13, 50019 Sesto Fiorentino, Italy; (K.V.); (A.B.); (C.V.); (P.P.); (S.M.)
| | - Caterina Viglianisi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia, 3–13, 50019 Sesto Fiorentino, Italy; (K.V.); (A.B.); (C.V.); (P.P.); (S.M.)
| | - Francesco Ranaldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy; (I.F.); (S.D.); (C.A.); (F.R.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy; (I.F.); (S.D.); (C.A.); (F.R.)
| | - Piero Procacci
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia, 3–13, 50019 Sesto Fiorentino, Italy; (K.V.); (A.B.); (C.V.); (P.P.); (S.M.)
| | - Stefano Menichetti
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia, 3–13, 50019 Sesto Fiorentino, Italy; (K.V.); (A.B.); (C.V.); (P.P.); (S.M.)
| | - Maria Luisa Brandi
- Italian Foundation for Research on Bone Disease (F.I.R.M.O.), Via San Gallo 123, 50129 Firenze, Italy; (G.P.); (M.L.B.)
| |
Collapse
|
2
|
Gu L, Wang X, Wu Z, Chen J. The Inhibition of Reactive Oxygen Species Modulator 1 Attenuates Sevoflurane-Induced Neural Injury via Reducing Apoptosis and Oxidative Stress. J Mol Neurosci 2024; 74:97. [PMID: 39414732 DOI: 10.1007/s12031-024-02277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Sevoflurane causes neural injury by promoting apoptosis and oxidative stress. Reactive oxygen species modulator 1 (ROMO1) regulates apoptosis and oxidative stress, while its role in sevoflurane-induced neural injury remains unclear. This study intended to investigate the effect of ROMO1 knockdown on viability, apoptosis, and oxidative stress in sevoflurane-treated HT22 cells and its downstream pathway. HT22 cells were untreated (blank control), or treated with 1%, 2%, and 4% sevoflurane, respectively. Moreover, HT22 cells were transfected with siROMO1 small interfering RNA (siROMO1) or negative control siRNA (siNC) and then stimulated with 4% sevoflurane for further assays. Sevoflurane dose-dependently decreased cell viability and increased apoptosis rate versus blank control in HT22 cells. Sevoflurane elevated reactive oxygen species (ROS) fluorescence intensity, malondialdehyde (MDA), and lactate dehydrogenase (LDH) release, while reducing superoxide dismutase (SOD) activity in a dose-dependent manner versus blank control in HT22 cells. It also dose-dependently increased the relative mRNA and protein expressions of ROMO1 versus blank treatment in HT22 cells. Moreover, siROMO1 plus 4% sevoflurane increased cell viability, while decreasing apoptosis rate, ROS fluorescence intensity, MDA, and LDH release versus siNC plus 4% sevoflurane in HT22 cells. siROMO1 plus 4% sevoflurane elevated the phosphorylation of protein kinase B (AKT) versus siNC plus 4% sevoflurane in HT22 cells. ROMO1 inhibition reverses sevoflurane-induced neural injury by reducing apoptosis and oxidative stress in HT22 cells. The results indicate that ROMO1 may be a potential target for the management of sevoflurane-induced neural injury.
Collapse
Affiliation(s)
- Lingyan Gu
- Department of Physical Examination, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Xuehu Wang
- Department of Anesthesiology, Jing'an District Centre Hospital of Shanghai, Fudan University, No. 259 Xikang Road, Shanghai, 200040, China
| | - Zhihao Wu
- Department of Anesthesiology, Jing'an District Centre Hospital of Shanghai, Fudan University, No. 259 Xikang Road, Shanghai, 200040, China.
| | - Jiawei Chen
- Department of Anesthesiology, Jing'an District Centre Hospital of Shanghai, Fudan University, No. 259 Xikang Road, Shanghai, 200040, China.
| |
Collapse
|
3
|
Chernyavskij DA, Lyamzaev KG, Pletjushkina OY, Chen F, Karpukhina A, Vassetzky YS, Chernyak BV, Popova EN. Mitochondrial fragmentation in early differentiation of human MB135 myoblasts: Role of mitochondrial ROS production in the absence of depolarization. Life Sci 2024; 354:122941. [PMID: 39098595 DOI: 10.1016/j.lfs.2024.122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
AIMS Study of the role of mitochondria-generated reactive oxygen species (mtROS) and mitochondrial polarization in mitochondrial fragmentation at the initial stages of myogenesis. MAIN METHODS Mitochondrial morphology, Drp1 protein phosphorylation, mitochondrial electron transport chain components content, mtROS and mitochondrial lipid peroxidation levels, and mitochondrial polarization were evaluated on days 1 and 2 of human MB135 myoblasts differentiation. A mitochondria-targeted antioxidant SkQ1 was used to elucidate the effect of mtROS on mitochondria. KEY FINDINGS In immortalized human MB135 myoblasts, mitochondrial fragmentation began on day 1 of differentiation before the myoblast fusion. This fragmentation was preceded by dephosphorylation of p-Drp1 (Ser-637). On day 2, an increase in the content of some mitochondrial proteins was observed, indicating mitochondrial biogenesis stimulation. Furthermore, we found that myogenic differentiation, even on day 1, was accompanied both by an increased production of mtROS, and lipid peroxidation of the inner mitochondrial membrane. SkQ1 blocked these effects and partially reduced the level of mitochondrial fragmentation, but did not affect the dephosphorylation of p-Drp1 (Ser-637). Importantly, mitochondrial fragmentation at early stages of MB135 differentiation was not accompanied by depolarization, as an important stimulus for mitochondrial fragmentation. SIGNIFICANCE Mitochondrial fragmentation during early myogenic differentiation depends on mtROS production rather than mitochondrial depolarization. SkQ1 only partially inhibited mitochondrial fragmentation, without significant effects on mitophagy or early myogenic differentiation.
Collapse
Affiliation(s)
| | - Konstantin G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia; The "Russian Clinical Research Center for Gerontology" of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Fei Chen
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Anna Karpukhina
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia; CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Yegor S Vassetzky
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia; CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Boris V Chernyak
- Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia.
| | - Ekaterina N Popova
- Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia.
| |
Collapse
|
4
|
Luo H, Jin M, Hu H, Ying Q, Hu P, Sheng W, Huang Y, Xu K, Lu C, Zhang X. SIRT4 Protects Müller Glial Cells Against Apoptosis by Mediating Mitochondrial Dynamics and Oxidative Stress. Mol Neurobiol 2024:10.1007/s12035-024-04349-4. [PMID: 39023793 DOI: 10.1007/s12035-024-04349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
SIRT4 is a member of the sirtuin family, which is related to mitochondrial function and possesses antioxidant and regulatory redox effects. Currently, the roles of SIRT4 in retinal Müller glial cells, oxidative stress, and mitochondrial function are still unclear. We confirmed, by immunofluorescence staining, that SIRT4 is located mainly in the mitochondria of retinal Müller glial cells. Using flow cytometry and Western blotting, we analyzed cell apoptosis, intracellular reactive oxygen species (ROS) levels, apoptotic and proapoptotic proteins, mitochondrial dynamics-related proteins, and mitochondrial morphology and number after the overexpression and downregulation of SIRT4 in rMC-1 cells. Neither the upregulation nor the downregulation of SIRT4 alone affected apoptosis. SIRT4 overexpression reduced intracellular ROS, reduced the BAX/BCL2 protein ratio, and increased the L-OPA/S-OPA1 ratio and the levels of the mitochondrial fusion protein MFN2 and the mitochondrial cleavage protein FIS1, increasing mitochondrial fusion. SIRT4 downregulation had the opposite effect. Mitochondria tend to divide after serum starvation for 24 h, and SIRT4 downregulation increases mitochondrial fragmentation and oxidative stress, leading to aggravated cell damage. The mitochondrial division inhibitor Mdivi-1 reduced oxidative stress levels and thus reduced cell damage caused by serum starvation. The overexpression of SIRT4 in rMC-1 cells reduced mitochondrial fragmentation caused by serum starvation, leading to mitochondrial fusion and reduced expression of cleaved caspase-3, thus alleviating the cellular damage caused by oxidative stress. Thus, we speculate that SIRT4 may protect retinal Müller glial cells against apoptosis by mediating mitochondrial dynamics and oxidative stress.
Collapse
Affiliation(s)
- Hongdou Luo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Haijian Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Qian Ying
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Piaopiao Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Weiwei Sheng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Yi Huang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Ke Xu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Chuming Lu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, 463 Bayi Road, Nanchang, 330006, China.
| |
Collapse
|
5
|
Varner LR, Chaya T, Maeda Y, Tsutsumi R, Zhou S, Tsujii T, Okuzaki D, Furukawa T. The deubiquitinase Otud7b suppresses cone photoreceptor degeneration in mouse models of retinal degenerative diseases. iScience 2024; 27:109380. [PMID: 38510130 PMCID: PMC10951987 DOI: 10.1016/j.isci.2024.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Primary and secondary cone photoreceptor death in retinal degenerative diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP), leads to severe visual impairment and blindness. Although the cone photoreceptor protection in retinal degenerative diseases is crucial for maintaining vision, the underlying molecular mechanisms are unclear. Here, we found that the deubiquitinase Otud7b/Cezanne is predominantly expressed in photoreceptor cells in the retina. We analyzed Otud7b-/- mice, which were subjected to light-induced damage, a dry AMD model, or were mated with an RP mouse model, and observed increased cone photoreceptor degeneration. Using RNA-sequencing and bioinformatics analysis followed by a luciferase reporter assay, we found that Otud7b downregulates NF-κB activity. Furthermore, inhibition of NF-κB attenuated cone photoreceptor degeneration in the light-exposed Otud7b-/- retina and stress-induced neuronal cell death resulting from Otud7b deficiency. Together, our findings suggest that Otud7b protects cone photoreceptors in retinal degenerative diseases by modulating NF-κB activity.
Collapse
Affiliation(s)
- Leah Rie Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Ryotaro Tsutsumi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Shanshan Zhou
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Toshinori Tsujii
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Cheslow L, Byrne M, Kopenhaver JS, Iacovitti L, Smeyne RJ, Snook AE, Waldman SA. GUCY2C signaling limits dopaminergic neuron vulnerability to toxic insults. NPJ Parkinsons Dis 2024; 10:83. [PMID: 38615030 PMCID: PMC11016112 DOI: 10.1038/s41531-024-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
Mitochondrial dysfunction and reactive oxygen species (ROS) accumulation within the substantia nigra pars compacta (SNpc) are central drivers of dopaminergic (DA) neuron death in Parkinson's disease (PD). Guanylyl cyclases and their second messenger cyclic (c)GMP support mitochondrial function, protecting against ROS and promoting cell survival in several tissues. However, the role of the guanylyl cyclase-cGMP axis in defining the vulnerability of DA neurons in the SNpc in PD remains unclear, in part due to the challenge of manipulating cGMP levels selectively in midbrain DA neurons. In that context, guanylyl cyclase C (GUCY2C), a receptor primarily expressed by intestinal epithelial cells, was discovered recently in midbrain DA neurons. Here, we demonstrate that GUCY2C promotes mitochondrial function, reducing oxidative stress and protecting DA neurons from degeneration in the 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP) mouse model. GUCY2C is overexpressed in the SNpc in PD patients and in mice treated with MPTP, possibly reflecting a protective response to oxidative stress. Moreover, cGMP signaling protects against oxidative stress, mitochondrial impairment, and cell death in cultured DA neurons. These observations reveal a previously unexpected role for the GUCY2C-cGMP signaling axis in controlling mitochondrial dysfunction and toxicity in SNpc DA neurons, highlighting the therapeutic potential of targeting DA neuron GUCY2C to prevent neurodegeneration in PD.
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew Byrne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessica S Kopenhaver
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lorraine Iacovitti
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard J Smeyne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Yao J, Liang X, Xu S, Liu Y, Shui L, Li S, Guo H, Xiao Z, Zhao Y, Zheng M. TRAF2 inhibits senescence in hepatocellular carcinoma cells via regulating the ROMO1/ NAD +/SIRT3/SOD2 axis. Free Radic Biol Med 2024; 211:47-62. [PMID: 38043870 DOI: 10.1016/j.freeradbiomed.2023.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The suppression of tumor proliferation via cellular senescence has emerged as a promising approach for anti-tumor therapy. Tumor necrosis factor receptor-associated factor 2 (TRAF2), an adaptor protein involved in the NF-κB signaling pathway and reactive oxygen species (ROS) production, has been implicated in hepatocellular carcinoma (HCC) proliferation. However, little is currently known about whether TRAF2 promotes HCC development by inhibiting cellular senescence. Replicative senescence model and IR-induced mouse model demonstrated that TRAF2 expression was decrease in senescence cells or liver tissues. Depletion of TRAF2 could inhibit proliferation and arrest the cell cycle via activating p53/p21WAF1 and p16INK4a/pRb signaling pathways in HCC cells and eventually lead to cellular senescence. Mechanistically, TRAF2 deficiency increased the expression of mitochondrial protein reactive oxygen species modulator 1 (ROMO1) and subsequently activated the NAD+/SIRT3/SOD2 pathway to promote the production of ROS and cause mitochondrial dysfunction, which eventually contributed to DNA damage response (DDR). Our findings demonstrate that TRAF2 deficiency inhibits the proliferation of HCC by promoting senescence. Therefore, targeting TRAF2 through various approaches holds therapeutic potential for treating HCC.
Collapse
Affiliation(s)
- Jiping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China; Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Xue Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China; Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siduo Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Liyan Shui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Shuangshuang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Huiting Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Zhengyun Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China.
| |
Collapse
|
8
|
Wang X, Sun L, Qin X, You J, Zhang J, Xia Y. Enhanced Anti-inflammatory Capacity of the Conditioned Medium Derived from Periodontal Ligament Stem Cells Modified with an Iron-Based Nanodrug. Adv Biol (Weinh) 2023; 7:e2300044. [PMID: 37409394 DOI: 10.1002/adbi.202300044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/28/2023] [Indexed: 07/07/2023]
Abstract
Cell-free therapy using conditioned medium (CM) from mesenchymal stem cells takes full advantage of the bioactive factors secreted by the cells while avoiding disadvantages such as immune rejection and tumor formation due to cell transplantation. In this study, human periodontal ligament stem cells (PDLSCs) are modified with the superparamagnetic iron oxide nanoparticle (SPION)-based nanodrug ferumoxytol (PDLSC-SPION). Compared with PDLSCs, PDLSC-SPION showed good cell viability and better osteogenic differentiation ability. Cell-free CM is collected and the anti-inflammatory capacity of PDLSC CM and PDLSC-SPION CM is assessed by treatment of lipopolysaccharide-stimulated macrophages and IL-17-stimulated human gingival fibroblasts. Both CMs inhibited the expression of proinflammatory cytokines in cells, and the therapeutic effect is more distinct for PDLSC-SPION CM than PDLSC CM, which may be due to their different proteomic compositions. Therefore, modification of PDLSCs with ferumoxytol enhances the anti-inflammatory capacity of its CM, making it more potentially useful for the treatment of inflammatory diseases such as periodontitis.
Collapse
Affiliation(s)
- Xinyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Liuxu Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Xuan Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Jiayi You
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Jing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
9
|
Trujillo-Hernandez JA, Levine RL. Response to oxidative stress of AML12 hepatocyte cells with knockout of methionine sulfoxide reductases. Free Radic Biol Med 2023; 205:100-106. [PMID: 37290581 PMCID: PMC11626390 DOI: 10.1016/j.freeradbiomed.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Methionine sulfoxide reductases are enzymes that reduce methionine oxidation in the cell. In mammals there are three B-type reductases that act on the R-diastereomer of methionine sulfoxide, and one A-type reductase (MSRA) that acts on the S-diastereomer. Unexpectedly, knocking out the four genes in the mouse protected from oxidative stresses such as ischemia-reperfusion injury and paraquat. To elucidate the mechanism by which lack of the reductases protects against oxidative stresses, we aimed to create a cell culture model with AML12 cells, a differentiated hepatocyte cell line. We employed CRISPR/Cas9 to create lines lacking the four individual reductases. All were viable and their susceptibility to oxidative stresses was the same as the parental strain. The triple knockout lacking all three methionine sulfoxide reductases B was also viable, but the quadruple knockout was lethal. We thus modeled the quadruple knockout mouse by creating an AML12 line lacking the three MSRB and heterozygous for the MSRA (Msrb3KO-Msra+/-). We measured the effect of ischemia-reperfusion on the various AML12 cell lines, using a protocol that modeled the ischemic phase by glucose and oxygen deprivation for 36 h followed by return of glucose and oxygen for 3 h as the reperfusion phase. This stress killed ∼50% of the parental line, an effect we chose to facilitate detection of either protective or deleterious changes in the knockout lines. Unlike the protection afforded the mouse, the knockout lines produced by CRISPR/Cas9 did not differ from the parental line in their response to ischemia-reperfusion injury or paraquat poisoning. In the mouse, inter-organ communication may be essential for protection induced by lack of methionine sulfoxide reductases.
Collapse
Affiliation(s)
| | - Rodney L Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, 50 South Dr Bethesda, Maryland, 20814, USA.
| |
Collapse
|
10
|
Simanurak O, Pekthong D, Somran J, Wangteeraprasert A, Srikummool M, Kaewpaeng N, Parhira S, Srisawang P. Enhanced apoptosis of HCT116 colon cancer cells treated with extracts from Calotropis gigantea stem bark by starvation. Heliyon 2023; 9:e18013. [PMID: 37483695 PMCID: PMC10362240 DOI: 10.1016/j.heliyon.2023.e18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Calotropis gigantea stem bark extract, particularly the dichloromethane fraction (CGDCM), demonstrated the most potent antiproliferative effects on hepatocellular carcinoma HepG2 and colorectal HCT116 cells. The current study focused on enhancing the effectiveness of cancer treatment with CGDCM at concentrations close to the IC50 in HCT116 cells by reducing their nutrient supply. CGDCM (2, 4, and 8 μg/mL) treatment for 24 h under glucose conditions of 4.5 g/L without fetal bovine serum (FBS) supplementation or serum starvation (G+/F-), glucose 0 g/L with 10% FBS or glucose starvation (G-/F+), and glucose 0 g/L with 0% FBS or complete starvation (G-/F-) induced a greater antiproliferative effect in HCT116 cells than therapy in complete medium with glucose 4.5 g/L and 10% FBS (G+/F+). Nonetheless, the anticancer effect of CGDCM at 4 μg/mL under (G-/F-) showed the highest activity compared to other starvation conditions. The three starvation conditions showed a significant reduction in cell viability compared to the control (G+/F+) medium group, while the inhibitory effect on cell viability did not differ significantly among the three starvation conditions. CGDCM at 4 μg/mL in (G-/F-) medium triggered apoptosis by dissipating the mitochondrial membrane potential and arresting cells in the G2/M phase. This investigation demonstrated that a decrease in intracellular ATP and fatty acid levels was associated with enhanced apoptosis by treatment with CGDCM at 4 μg/mL under (G-/F-) conditions. In addition, under (G-/F-), CGDCM at 4 μg/mL increased levels of reactive oxygen species (ROS) and was suggested to primarily trigger apoptosis in HCT116 cells. Thus, C. gigantea extracts may be useful for the future development of alternative, effective cancer treatment regimens.
Collapse
Affiliation(s)
- Orakot Simanurak
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | | | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Naphat Kaewpaeng
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Supawadee Parhira
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
11
|
Giannasi C, Niada S, Della Morte E, Casati SR, De Palma C, Brini AT. Serum starvation affects mitochondrial metabolism of adipose-derived stem/stromal cells. Cytotherapy 2023:S1465-3249(23)00067-1. [PMID: 37061899 DOI: 10.1016/j.jcyt.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND AIMS A large part of mesenchymal stromal cell (MSC) regenerative and immunomodulatory action is mediated by paracrine signaling. Hence, an increasing body of evidence acknowledges the potential of MSC secretome in a variety of preclinical and clinical scenarios. Mid-term serum deprivation is a common approach in the pipeline of MSC secretome production. Nevertheless, up to now, little is known about the impact of this procedure on the metabolic status of donor cells. METHODS Here, through untargeted differential metabolomics, we revealed an impairment of mitochondrial metabolism in adipose-derived MSCs exposed for 72 h to serum deprivation. RESULTS This evidence was further confirmed by the significant accumulation of reactive oxygen species and the reduction of succinate dehydrogenase activity. Probably as a repair mechanism, an upregulation of mitochondrial superoxide dismutase was also induced. CONCLUSIONS Of note, the analysis of mitochondrial functionality indicated that, despite a significant reduction of basal respiration and ATP production, serum-starved MSCs still responded to changes in energy demand. This metabolic phenotype correlates with the obtained evidence of mitochondrial elongation and branching upon starvation.
Collapse
Affiliation(s)
- Chiara Giannasi
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | | | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Anna Teresa Brini
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
12
|
Jing J, Zhu C, Gong R, Qi X, Zhang Y, Zhang Z. Research progress on the active ingredients of traditional Chinese medicine in the intervention of atherosclerosis: A promising natural immunotherapeutic adjuvant. Biomed Pharmacother 2023; 159:114201. [PMID: 36610225 DOI: 10.1016/j.biopha.2022.114201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease caused by disorders of lipid metabolism. Abnormal deposition of low-density lipoproteins in the arterial wall stimulates the activation of immune cells, including the adhesion and infiltration of monocytes, the proliferation and differentiation of macrophages and lymphocytes, and the activation of their functions. The complex interplay between immune cells coordinates the balance between pro- and anti-inflammation and plays a key role in the progression of AS. Therefore, targeting immune cell activity may lead to the development of more selective drugs with fewer side effects to treat AS without compromising host defense mechanisms. At present, an increasing number of studies have found that the active ingredients of traditional Chinese medicine (TCM) can regulate the function of immune cells in multiple ways to against AS, showing great potential for the treatment of AS and promising clinical applications. In this paper, we review the mechanisms of immune cell action in AS lesions and the potential targets and/or pathways for immune cell regulation by the active ingredients of TCM to promote the understanding of the immune system interactions of AS and provide a relevant basis for the use of active ingredients of TCM as natural adjuvants for AS immunotherapy.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chaojun Zhu
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Rui Gong
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xue Qi
- Department of General Surgery, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| | - Yue Zhang
- Peripheral Vascular Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhaohui Zhang
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
13
|
Liu J, Xia C, Dong H, Liu P, Yang R, Zhang L, Liu X, Jia J, Kong X, Sun J. Wheat male-sterile 2 reduces ROS levels to inhibit anther development by deactivating ROS modulator 1. MOLECULAR PLANT 2022; 15:1428-1439. [PMID: 35864748 DOI: 10.1016/j.molp.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 05/22/2023]
Abstract
Ms2 is an important dominant male-sterile gene in wheat, but the biochemical function of Ms2 and the mechanism by which it causes male sterility remain elusive. Here, we report the molecular basis underlying Ms2-induced male sterility in wheat. We found that activated Ms2 specifically reduces the reactive oxygen species (ROS) signals in anthers and thereby induces termination of wheat anther development at an early stage. Furthermore, our results indicate that Ms2 is localized in mitochondria, where it physically interacts with a wheat homolog of ROS modulator 1 (TaRomo1). Romo1 positively regulates the ROS levels in humans but has never been studied in plants. We found that single amino acid substitutions in the Ms2 protein that rescue the ms2 male-sterile phenotype abolish the interaction between Ms2 and TaRomo1. Significantly, Ms2 promotes the transition of TaRomo1 proteins from active monomers to inactive oligomers. Taken together, our findings unravel the molecular basis of Ms2-induced male sterility and reveal a regulatory mechanism in which ROS act as essential signals guiding the anther development program in wheat.
Collapse
Affiliation(s)
- Jie Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chuan Xia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huixue Dong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pan Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruizhen Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lichao Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
14
|
Lee J, Chung JO, Park SY, Rajamohan N, Singh A, Kim J, Lowe VJ, Lee S. Natural COA water inhibits mitochondrial ROS-mediated apoptosis through Plk3 downregulation under STZ diabetic stress in pancreatic β-cell lines. Biochem Biophys Rep 2022; 30:101247. [PMID: 35300109 PMCID: PMC8921297 DOI: 10.1016/j.bbrep.2022.101247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Diabetes from pancreatic β cell death and insulin resistance is a serious metabolic disease in the world. Although the overproduction of mitochondrial reactive oxygen species (ROS) plays an important role in the pathogenesis of diabetes, its specific molecular mechanism remains unclear. Here, we show that the natural Charisma of Aqua (COA) water plays a role in Streptozotocin (STZ) diabetic stress-induced cell death inhibition. STZ induces mitochondrial ROS by increasing Polo-like kinase 3 (Plk3), a major mitotic regulator, in both Beta TC-6 and Beta TC-tet mouse islet cells and leads to apoptosis. Overexpression of Plk3 regulates an increase in mitochondrial ROS as well as cell death, also these events were inhibited by Plk3 gene knockdown in STZ diabetic stimulated-Beta TC-6 cells. Interestingly, we found that natural COA water blocks mitochondrial ROS generation through the reduction of Plk3 and prevents apoptosis in STZ-treated beta cells. Furthermore, using the 3D organoid (ex vivo) system, we confirmed that the insulin secretion of the supernatant medium under STZ treated pancreatic β-cells is protected by the natural COA water. These findings demonstrate that the natural water COA has a beneficial role in maintaining β cell function through the inhibition of mitochondrial ROS-mediated cell death, and it might be introduced as a potential insulin stabilizer. Pancreatic β cell is stabilized through natural COA water in STZ-induced diabetes. Mitochondrial membrane potential (ΔΨm) is controlled by natural COA water. Plk3 expression under STZ treatment is negatively regulated by natural COA water. Insulin secretion is stabilized by natural COA water under STZ treatment in ex vivo (3D organoid) model.
Collapse
Affiliation(s)
- Jeyeon Lee
- Division of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jin Ook Chung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 501757, Republic of Korea
| | - Seon-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 501757, Republic of Korea
| | | | - Aparna Singh
- Division of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - JungJin Kim
- Division of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Corresponding author. Division of Radiology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Val J. Lowe
- Division of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
- Corresponding author.
| | - SeungBaek Lee
- Division of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Corresponding author. Division of Radiology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
15
|
Ueda N. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury. Int J Mol Sci 2022; 23:ijms23074010. [PMID: 35409370 PMCID: PMC9000186 DOI: 10.3390/ijms23074010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) modulate sphingolipid metabolism, including enzymes that generate ceramide and sphingosine-1-phosphate (S1P), and a ROS-antioxidant rheostat determines the metabolism of ceramide-S1P. ROS induce ceramide production by activating ceramide-producing enzymes, leading to apoptosis, while they inhibit S1P production, which promotes survival by suppressing sphingosine kinases (SphKs). A ceramide-S1P rheostat regulates ROS-induced mitochondrial dysfunction, apoptotic/anti-apoptotic Bcl-2 family proteins and signaling pathways, leading to apoptosis, survival, cell proliferation, inflammation and fibrosis in the kidney. Ceramide inhibits the mitochondrial respiration chain and induces ceramide channel formation and the closure of voltage-dependent anion channels, leading to mitochondrial dysfunction, altered Bcl-2 family protein expression, ROS generation and disturbed calcium homeostasis. This activates ceramide-induced signaling pathways, leading to apoptosis. These events are mitigated by S1P/S1P receptors (S1PRs) that restore mitochondrial function and activate signaling pathways. SphK1 promotes survival and cell proliferation and inhibits inflammation, while SphK2 has the opposite effect. However, both SphK1 and SphK2 promote fibrosis. Thus, a ceramide-SphKs/S1P rheostat modulates oxidant-induced kidney injury by affecting mitochondrial function, ROS production, Bcl-2 family proteins, calcium homeostasis and their downstream signaling pathways. This review will summarize the current evidence for a role of interaction between ROS-antioxidants and ceramide-SphKs/S1P and of a ceramide-SphKs/S1P rheostat in the regulation of oxidative stress-mediated kidney diseases.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan 924-8588, Japan
| |
Collapse
|
16
|
The BCAT1 CXXC Motif Provides Protection against ROS in Acute Myeloid Leukaemia Cells. Antioxidants (Basel) 2022; 11:antiox11040683. [PMID: 35453368 PMCID: PMC9030579 DOI: 10.3390/antiox11040683] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/15/2023] Open
Abstract
The cytosolic branched-chain aminotransferase (BCAT1) has received attention for its role in myeloid leukaemia development, where studies indicate metabolic adaptations due to BCAT1 up-regulation. BCAT1, like the mitochondria isoform (BCAT2), shares a conserved CXXC motif ~10 Å from the active site. This CXXC motif has been shown to act as a ‘redox-switch’ in the enzymatic regulation of the BCAT proteins, however the response to reactive oxygen species (ROS) differs between BCAT isoforms. Studies indicate that the BCAT1 CXXC motif is several orders of magnitude less sensitive to the effects of ROS compared with BCAT2. Moreover, estimation of the reduction mid-point potential of BCAT1, indicates that BCAT1 is more reductive in nature and may possess antioxidant properties. Therefore, the aim of this study was to further characterise the BCAT1 CXXC motif and evaluate its role in acute myeloid leukaemia. Our biochemical analyses show that purified wild-type (WT) BCAT1 protein could metabolise H2O2 in vitro, whereas CXXC motif mutant or WT BCAT2 could not, demonstrating for the first time a novel antioxidant role for the BCAT1 CXXC motif. Transformed U937 AML cells over-expressing WT BCAT1, showed lower levels of intracellular ROS compared with cells over-expressing the CXXC motif mutant (CXXS) or Vector Controls, indicating that the BCAT1 CXXC motif may buffer intracellular ROS, impacting on cell proliferation. U937 AML cells over-expressing WT BCAT1 displayed less cellular differentiation, as observed by a reduction of the myeloid markers; CD11b, CD14, CD68, and CD36. This finding suggests a role for the BCAT1 CXXC motif in cell development, which is an important pathological feature of myeloid leukaemia, a disease characterised by a block in myeloid differentiation. Furthermore, WT BCAT1 cells were more resistant to apoptosis compared with CXXS BCAT1 cells, an important observation given the role of ROS in apoptotic signalling and myeloid leukaemia development. Since CD36 has been shown to be Nrf2 regulated, we investigated the expression of the Nrf2 regulated gene, TrxRD1. Our data show that the expression of TrxRD1 was downregulated in transformed U937 AML cells overexpressing WT BCAT1, which taken with the reduction in CD36 implicates less Nrf2 activation. Therefore, this finding may implicate the BCAT1 CXXC motif in wider cellular redox-mediated processes. Altogether, this study provides the first evidence to suggest that the BCAT1 CXXC motif may contribute to the buffering of ROS levels inside AML cells, which may impact ROS-mediated processes in the development of myeloid leukaemia.
Collapse
|
17
|
Khare P, Singh VK, Pathak AK, Bala L. Serum deprivation enhanced monocrotophos mediated cellular damages in human lung carcinoma and skin keratinocyte. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Chen G, Xu Y, Fan R, Liu Y, Yao Y, Jiang H, Wu Q, Li L, Chen W, Chen X. IKKε protects against starvation-induced NLRP3 inflammasome and pyroptosis in H9c2 cells by alleviating mitochondrial injury. Biochem Biophys Res Commun 2021; 589:267-274. [PMID: 34933200 DOI: 10.1016/j.bbrc.2021.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022]
Abstract
The deprivation of myocardial nutrition causes cardiomyocyte death and disturbance of energy metabolism. IKKε plays an important regulatory role in many biological events such as inflammation, redox reaction, cell death, etc. However, the more in-depth mechanism by which IKKε contributes to cardiomyocytes death in nutrition deprivation remains poorly understood. IKKε expression was knocked down by siRNA in H9c2 cells, and cells were cultured under starvation conditions to simulate ischemic conditions. Starvation triggered greater NLRP3 activation, accompanied by more IL-1β, IL-18 and caspase-1 release in the siIKKε H9c2 cells compared with the control H9c2 cells. Western blot and immunofluorescence showed that the IKKε konckdown promoted NLRP3 expressions and ROS release under starvation conditions. Furthermore, electron micrography and JC-1 analysis revealed that IKKε konckdown resulted in aggravated mitochondrial damage and more mitochondrial ROS (mtROS) released in vitro. Notably, Western blot analysis showed that IKKε deficiency activated the TBK1 and IRF3 signaling pathways to promote pyroptosis in vitro. Collectively, our results indicate that IKKε protects against cardiomyocyte injury by reducing mitochondrial damage and NLRP3 expression following nutrition deprivation via regulation of the TBK1/IRF3 signaling pathway. This study further revealed the mechanism of IKKε in inflammation and myocardial nutrition deprivation.
Collapse
Affiliation(s)
- Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Rui Fan
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210006, China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Hongwei Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Qiyong Wu
- Department of Thoracic and Cardiovascular Surgery, Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Liangpeng Li
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China.
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China.
| |
Collapse
|
19
|
Gupta K, Pandey S, Bagang N, Mehra K, Singh G. Trimetazidine an emerging paradigm in renal therapeutics: Preclinical and clinical insights. Eur J Pharmacol 2021; 913:174624. [PMID: 34774496 DOI: 10.1016/j.ejphar.2021.174624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Trimetazidine (TMZ) is a well-known anti-ischemic agent used for the treatment of angina pectoris. In the past decades, the efficacy of this drug has been tested in a wide range of kidney injuries, including drug-induced nephrotoxicity (DIN), radio-contrast agent-induced nephropathy, and surgically induced renal ischemic injury. TMZhas renoprotective effects by attenuating oxidative stress, inflammatory cytokine release, maintaining oxygen and energy balance. Moreover, TMZ administration prevented kidney graft rejection in the porcine model by suppressing the infiltration of mononuclear cells, preserving mitochondrial functions, and maintaining Ca+ homeostasis. In DIN and diabetic kidney diseases,TMZ treatment prevents renal injury by inactivating immune cells, attenuating renal fibrosis, inflammation, apoptosis, and histological abnormalities. Interestingly, the clinical therapeutic efficacy of TMZ has also been documented in pre-existing kidney disease patients undergoing contrast exposure for diagnostic intervention. However, the mechanistic insights into the TMZ mediated renoprotective effects in other forms of renal injuries, including type-2 diabetes, drug-induced nephrotoxicity, and hypertension-induced chronic kidney diseases, remain uninvestigated and incomplete. Moreover, the clinical utility of TMZ as a renoprotective agent in radio-contrast-induced nephrotoxicity needs to be tested in a large patient population. Nevertheless, the available pieces of evidence suggest that TMZ is a promising and emerging renal therapy for the treatment and management of kidney diseases of variable etiologies. This review discusses the various pre-clinical and clinical findings and provides mechanistic insights into the TMZ mediated beneficial effects in various kidney diseases.
Collapse
Affiliation(s)
- Kirti Gupta
- Department of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana, Ambala (Haryana), India
| | - Sneha Pandey
- Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | - Newly Bagang
- Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | - Kamalpreet Mehra
- Department of Pharmacy, Maharishi Markandeshwar Deemed to be University, Mullana, Ambala (Haryana), India
| | | |
Collapse
|
20
|
Ngo ATL, Le HM, Trinh NTH, Jun APG, Bach TQ, Bui HTH, Hoang VT, Bui AV, Nguyen LT, Hoang DM. Clinically relevant preservation conditions for mesenchymal stem/stromal cells derived from perinatal and adult tissue sources. J Cell Mol Med 2021; 25:10747-10760. [PMID: 34708529 PMCID: PMC8581317 DOI: 10.1111/jcmm.17016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
The interplay between mesenchymal stem/stromal cells (MSCs) and preservation conditions is critical to maintain the viability and functionality of these cells before administration. We observed that Ringer lactate (RL) maintained high viability of bone marrow–derived MSCs for up to 72 h at room temperature (18°C–22°C), whereas adipose‐derived and umbilical cord‐derived MSCs showed the highest viability for 72 h at a cold temperature (4°C–8°C). These cells maintained their adherence ability with an improved recovery rate and metabolic profiles (glycolysis and mitochondrial respiration) similar to those of freshly harvested cells. Growth factor and cytokine analyses revealed that the preserved cells released substantial amounts of leukaemia inhibitory factors (LIFs), hepatocyte growth factor (HGF) and vascular endothelial growth factor‐A (VEGF‐A), as well as multiple cytokines (eg IL‐4, IL‐6, IL‐8, MPC‐1 and TNF‐α). Our data provide the simplest clinically relevant preservation conditions that maintain the viability, stemness and functionality of MSCs from perinatal and adult tissue sources.
Collapse
Affiliation(s)
- Anh T L Ngo
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Hang M Le
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Nhung T H Trinh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Adriel Peng Guo Jun
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trung Q Bach
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Hue T H Bui
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh V Bui
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Liem T Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
21
|
Kim SW, Kim YJ, Im GB, Kim YH, Jeong GJ, Cho SM, Lee H, Bhang SH. Phototoxicity-free blue light for enhancing therapeutic angiogenic efficacy of stem cells. Cell Biol Toxicol 2021; 39:217-236. [PMID: 34580808 DOI: 10.1007/s10565-021-09656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
Low-level light therapy (LLLT) is a safe and noninvasive technique that has drawn attention as a new therapeutic method to treat various diseases. However, little is known so far about the effect of blue light for LLLT due to the generation of reactive oxygen species (ROS) that can cause cell damage. We introduced a blue organic light-emitting diode (bOLED) as a safe and effective light source that could generate a low amount of heat and luminance compared to conventional light sources (e.g., light-emitting diodes). We compared phototoxicity of bOLED light with different light fluences to human adipose-derived stem cells (hADSC). We further explored molecular mechanisms involved in the therapeutic efficacy of bOLED for enhancing angiogenic properties of hADSC, including intracellular ROS control in hADSCs. Using optimum conditions of bOLED light proposed in this study, photobiomodulation and angiogenic properties of hADSCs were enhanced. These findings might open new methods for using blue light in LLLT. Such methods can be implemented in future treatments for ischemic disease.
Collapse
Affiliation(s)
- Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Yeoung Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Gun-Jae Jeong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sung Min Cho
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Center for Nature-inspired Technology (CNiT), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
22
|
You DG, Lee HR, Kim HK, Lee GY, Yoo YD. A Novel Peptide Derived from the Transmembrane Domain of Romo1 Is a Promising Candidate for Sepsis Treatment and Multidrug-Resistant Bacteria. Int J Mol Sci 2021; 22:ijms22158243. [PMID: 34361008 PMCID: PMC8348110 DOI: 10.3390/ijms22158243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 02/03/2023] Open
Abstract
The emergence of multidrug-resistant (MDR) bacteria through the abuse and long-term use of antibiotics is a serious health problem worldwide. Therefore, novel antimicrobial agents that can cure an infection from MDR bacteria, especially gram-negative bacteria, are urgently needed. Antimicrobial peptides, part of the innate immunity system, have been studied to find bactericidal agents potent against MDR bacteria. However, they have many problems, such as restrained systemic activity and cytotoxicity. In a previous study, we suggested that the K58–R78 domain of Romo1, a mitochondrial protein encoded by the nucleus, was a promising treatment candidate for sepsis caused by MDR bacteria. Here, we performed sequence optimization to enhance the antimicrobial activity of this peptide and named it as AMPR-22 (antimicrobial peptide derived from Romo1). It showed broad-spectrum antimicrobial activity against 17 sepsis-causing bacteria, including MDR strains, by inducing membrane permeabilization. Moreover, treatment with AMPR-22 enabled a remarkable survival rate in mice injected with MDR bacteria in a murine model of sepsis. Based on these results, we suggest that AMPR-22 could be prescribed as a first-line therapy (prior to bacterial identification) for patients diagnosed with sepsis.
Collapse
Affiliation(s)
- Deok-Gyun You
- Laboratory of Molecular Cell Biology, Graduate School of Medicines, Korea University College of Medicine, Korea University, Seoul 02841, Korea; (D.-G.Y.); (H.-R.L.); (G.-Y.L.)
| | - Hye-Ra Lee
- Laboratory of Molecular Cell Biology, Graduate School of Medicines, Korea University College of Medicine, Korea University, Seoul 02841, Korea; (D.-G.Y.); (H.-R.L.); (G.-Y.L.)
| | - Hong-Kyu Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Gi-Young Lee
- Laboratory of Molecular Cell Biology, Graduate School of Medicines, Korea University College of Medicine, Korea University, Seoul 02841, Korea; (D.-G.Y.); (H.-R.L.); (G.-Y.L.)
| | - Young-Do Yoo
- Laboratory of Molecular Cell Biology, Graduate School of Medicines, Korea University College of Medicine, Korea University, Seoul 02841, Korea; (D.-G.Y.); (H.-R.L.); (G.-Y.L.)
- Correspondence:
| |
Collapse
|
23
|
Campolo M, Casili G, Lanza M, Filippone A, Cordaro M, Ardizzone A, Scuderi SA, Cuzzocrea S, Esposito E, Paterniti I. The inhibition of mammalian target of rapamycin (mTOR) in improving inflammatory response after traumatic brain injury. J Cell Mol Med 2021; 25:7855-7866. [PMID: 34245104 PMCID: PMC8358860 DOI: 10.1111/jcmm.16702] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022] Open
Abstract
Traumatic brain injury (TBI) provokes primary and secondary damage on endothelium and brain parenchyma, leading neurons die rapidly by necrosis. The mammalian target of rapamycin signalling pathway (mTOR) manages numerous aspects of cellular growth, and it is up-regulated after moderate to severe traumatic brain injury (TBI). Currently, the significance of this increased signalling event for the recovery of brain function is unclear; therefore, we used two different selective inhibitors of mTOR activity to discover the functional role of mTOR inhibition in a mouse model of TBI performed by a controlled cortical impact injury (CCI). Treatment with KU0063794, a dual mTORC1 and mTORC2 inhibitor, and with rapamycin as well-known inhibitor of mTOR, was performed 1 and 4 hours subsequent to TBI. Results proved that mTOR inhibitors, especially KU0063794, significantly improved cognitive and motor recovery after TBI, reducing lesion volumes. Also, treatment with mTOR inhibitors ameliorated the neuroinflammation associated with TBI, showing a diminished neuronal death and astrogliosis after trauma. Our findings propose that the involvement of selective mTORC1/2 inhibitor may represent a therapeutic strategy to improve recovery after brain trauma.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy.,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
24
|
Kim SW, Im GB, Jeong GJ, Baik S, Hyun J, Kim YJ, Pang C, Jang YC, Bhang SH. Delivery of a spheroids-incorporated human dermal fibroblast sheet increases angiogenesis and M2 polarization for wound healing. Biomaterials 2021; 275:120954. [PMID: 34130141 DOI: 10.1016/j.biomaterials.2021.120954] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022]
Abstract
Low cell engraftment is a major problem in tissue engineering. Although various methods related with cell sheets have been attempted to resolve the issue, low cell viability due to oxygen and nutrient depletion remains an obstacle toward advanced therapeutic applications. Cell therapy using fibroblasts is thought of as a good alternative due to the short doubling times of fibroblasts together with their immunomodulatory properties. Furthermore, three-dimensional (3D) fibroblasts exhibit unique angiogenic and inflammation-manipulating properties that are not present in two-dimensional (2D) forms. However, the therapeutic effect of 3D fibroblasts in tissue regeneration has not been fully elucidated. Macrophage polarization has been widely studied, as it stimulates the transition from the inflammation to the proliferation phase of wound healing. Although numerous strategies have been developed to achieve better polarization of macrophages, the low efficacy of these strategies and safety issues remain problematic. To this end, we introduced a biocompatible flat patch with specifically designed holes that form a spheroids-incorporated human dermal fibroblast sheet (SIS) to mediate the activity of inflammatory cytokines for M2 polarization and increase angiogenic efficacy. We further confirmed in vivo enhancement of wound healing with an SIS-laden skin patch (SISS) compared to conventional cell therapy.
Collapse
Affiliation(s)
- Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Gun-Jae Jeong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sangyul Baik
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Young Charles Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
25
|
Nesci S, Trombetti F, Pagliarani A, Ventrella V, Algieri C, Tioli G, Lenaz G. Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology. Life (Basel) 2021; 11:242. [PMID: 33804034 PMCID: PMC7999509 DOI: 10.3390/life11030242] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Under aerobic conditions, mitochondrial oxidative phosphorylation (OXPHOS) converts the energy released by nutrient oxidation into ATP, the currency of living organisms. The whole biochemical machinery is hosted by the inner mitochondrial membrane (mtIM) where the protonmotive force built by respiratory complexes, dynamically assembled as super-complexes, allows the F1FO-ATP synthase to make ATP from ADP + Pi. Recently mitochondria emerged not only as cell powerhouses, but also as signaling hubs by way of reactive oxygen species (ROS) production. However, when ROS removal systems and/or OXPHOS constituents are defective, the physiological ROS generation can cause ROS imbalance and oxidative stress, which in turn damages cell components. Moreover, the morphology of mitochondria rules cell fate and the formation of the mitochondrial permeability transition pore in the mtIM, which, most likely with the F1FO-ATP synthase contribution, permeabilizes mitochondria and leads to cell death. As the multiple mitochondrial functions are mutually interconnected, changes in protein composition by mutations or in supercomplex assembly and/or in membrane structures often generate a dysfunctional cascade and lead to life-incompatible diseases or severe syndromes. The known structural/functional changes in mitochondrial proteins and structures, which impact mitochondrial bioenergetics because of an impaired or defective energy transduction system, here reviewed, constitute the main biochemical damage in a variety of genetic and age-related diseases.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Gaia Tioli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
26
|
Paunovic V, Kosic M, Misirkic-Marjanovic M, Trajkovic V, Harhaji-Trajkovic L. Dual targeting of tumor cell energy metabolism and lysosomes as an anticancer strategy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118944. [PMID: 33383091 DOI: 10.1016/j.bbamcr.2020.118944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
To sustain their proliferative and metastatic capacity, tumor cells increase the activity of energy-producing pathways and lysosomal compartment, resorting to autophagolysosomal degradation when nutrients are scarce. Consequently, large fragile lysosomes and enhanced energy metabolism may serve as targets for anticancer therapy. A simultaneous induction of energy stress (by caloric restriction and inhibition of glycolysis, oxidative phosphorylation, Krebs cycle, or amino acid/fatty acid metabolism) and lysosomal stress (by lysosomotropic detergents, vacuolar ATPase inhibitors, or cationic amphiphilic drugs) is an efficient anti-cancer strategy demonstrated in a number of studies. However, the mechanisms of lysosomal/energy stress co-amplification, apart from the protective autophagy inhibition, are poorly understood. We here summarize the established and suggest potential mechanisms and candidates for anticancer therapy based on the dual targeting of lysosomes and energy metabolism.
Collapse
Affiliation(s)
- Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Milica Kosic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Maja Misirkic-Marjanovic
- Department of Neurophysiology, Institute for Biological Research, "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research, "Sinisa Stankovic"- National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| |
Collapse
|
27
|
Lee ES, Lee EY, Yoon J, Hong A, Nam SJ, Ko J. Sarmentosamide, an Anti-Aging Compound from a Marine-Derived Streptomyces sp. APmarine042. Mar Drugs 2020; 18:md18090463. [PMID: 32927886 PMCID: PMC7551700 DOI: 10.3390/md18090463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Many bioactive materials have been isolated from marine microorganisms, including alkaloids, peptides, lipids, mycosporine-like amino acids, glycosides, and isoprenoids. Some of these compounds have great potential in the cosmetic industry due to their photo-protective, anti-aging, and anti-oxidant activities. In this study, sarmentosamide (1) was isolated from marine-derived Streptomyces sp. APmarine042, after which its capacity to decrease skin aging was examined in-vitro. Sarmentosamide (1) was found to significantly reduce UVB-induced matrix metalloproteinase-1 (MMP-1) expression in normal human dermal fibroblasts (NHDFs) by inhibiting the extracellular signal-regulated kinase (ERK) and the c-Jun N-terminal kinase (JNK) phosphorylation, which are regulatory pathways upstream of MMP-1 transcription. Additionally, we confirmed that sarmentosamide (1) decreased tumor necrosis factor-alpha (TNF-α), induced MMP-1 secretion in NHDFs, and exhibited free-radical scavenging activity, as demonstrated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Therefore, our study suggests that sarmentosamide (1) could be a promising anti-aging agent that acts via the downregulation of MMP-1 expression.
Collapse
Affiliation(s)
- Eun-Soo Lee
- Amorepacific Corporation R&D Center, Yongin 17074, Korea;
| | - Eun-Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (E.-Y.L.); (J.Y.)
| | - Jisoo Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (E.-Y.L.); (J.Y.)
| | - Ahreum Hong
- Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea; (E.-Y.L.); (J.Y.)
- Correspondence: (S.-J.N.); (J.K.); Tel.: +82-2-3277-6805 (S.-J.N.); +82-31-280-5928 (J.K.)
| | - Jaeyoung Ko
- Amorepacific Corporation R&D Center, Yongin 17074, Korea;
- Correspondence: (S.-J.N.); (J.K.); Tel.: +82-2-3277-6805 (S.-J.N.); +82-31-280-5928 (J.K.)
| |
Collapse
|
28
|
Pang Y, Qin M, Hu P, Ji K, Xiao R, Sun N, Pan X, Zhang X. Resveratrol protects retinal ganglion cells against ischemia induced damage by increasing Opa1 expression. Int J Mol Med 2020; 46:1707-1720. [PMID: 32901846 PMCID: PMC7521588 DOI: 10.3892/ijmm.2020.4711] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Loss of idiopathic retinal ganglion cells (RGCs) leads to irreversible vision defects and is considered the primary characteristic of glaucoma. However, effective treatment strategies in terms of RGC neuroprotection remain elusive. In the present study, the protective effects of resveratrol on RGC apoptosis, and the mechanisms underlying its effects were investigated, with a particular emphasis on the function of optic atrophy 1 (Opa1). In an ischemia/reperfusion (I/R) injury model, the notable thinning of the retina, significant apoptosis of RGCs, reduction in Opa1 expression and long Opa1 isoform to short Opa1 isoform ratios (L-Opa1/S-Opa1 ratio) were observed, all of which were reversed by resveratrol administration. Serum deprivation resulted in reductions in R28 cell viability, superoxide dismutase (SOD) activity, Opa1 expression and induced apoptosis, which were also partially reversed by resveratrol treatment. To conclude, results from the present study suggest that resveratrol treatment significantly reduced retinal damage and RGC apoptosis in I/R injury and serum deprivation models. In addition, resveratrol reversed the downregulated expression of Opa1 and reduced SOD activity. Mechanistically, resveratrol influenced mitochondrial dynamics by regulating the L-Opa1/S-Opa1 ratio. Therefore, these observations suggest that resveratrol may exhibit potential as a therapeutic agent for RGC damage in the future.
Collapse
Affiliation(s)
- Yulian Pang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Mengqi Qin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Piaopiao Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Kaibao Ji
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Ruihan Xiao
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Nan Sun
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Xinghui Pan
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
29
|
Serum deprivation initiates adaptation and survival to oxidative stress in prostate cancer cells. Sci Rep 2020; 10:12505. [PMID: 32719369 PMCID: PMC7385110 DOI: 10.1038/s41598-020-68668-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 06/22/2020] [Indexed: 02/08/2023] Open
Abstract
Inadequate nutrient intake leads to oxidative stress disrupting homeostasis, activating signaling, and altering metabolism. Oxidative stress serves as a hallmark in developing prostate lesions, and an aggressive cancer phenotype activating mechanisms allowing cancer cells to adapt and survive. It is unclear how adaptation and survival are facilitated; however, literature across several organisms demonstrates that a reversible cellular growth arrest and the transcription factor, nuclear factor-kappaB (NF-κB), contribute to cancer cell survival and therapeutic resistance under oxidative stress. We examined adaptability and survival to oxidative stress following nutrient deprivation in three prostate cancer models displaying varying degrees of tumorigenicity. We observed that reducing serum (starved) induced reactive oxygen species which provided an early oxidative stress environment and allowed cells to confer adaptability to increased oxidative stress (H2O2). Measurement of cell viability demonstrated a low death profile in stressed cells (starved + H2O2), while cell proliferation was stagnant. Quantitative measurement of apoptosis showed no significant cell death in stressed cells suggesting an adaptive mechanism to tolerate oxidative stress. Stressed cells also presented a quiescent phenotype, correlating with NF-κB nuclear translocation, suggesting a mechanism of tolerance. Our data suggests that nutrient deprivation primes prostate cancer cells for adaptability to oxidative stress and/or a general survival mechanism to anti-tumorigenic agents.
Collapse
|
30
|
Park S, Jang JW, Moon EY. BAFF attenuates oxidative stress-induced cell death by the regulation of mitochondria membrane potential via Syk activation in WiL2-NS B lymphoblasts. Sci Rep 2020; 10:11784. [PMID: 32678160 PMCID: PMC7366908 DOI: 10.1038/s41598-020-68628-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/16/2020] [Indexed: 01/06/2023] Open
Abstract
Cell survival is facilitated by the maintenance of mitochondrial membrane potential (MMP). B cell activating factor (BAFF) plays a role in survival, differentiation, and maturation of B cells. In the present study, we examined whether BAFF could attenuate oxidative stress-induced B cell death by the regulation of MMP collapse via spleen tyrosine kinase (Syk) activation using WiL2-NS human B lymphoblast cells. BAFF binds to receptors on WiL2-NS cells. When the cells were incubated in serum-deprived conditions with 1% fetal bovine serum (FBS), BAFF reduced the percentage of dead cells as determined through trypan blue staining and caspase 3 activity. BAFF also inhibited MMP collapse with 1% FBS, as indicated by a decrease in the number of cells with high-red fluorescence of MitoProbe™ JC-1 reagent or a decrease in the percentage of DiOC6-stained cells. Reactive oxygen species (ROS) production was reduced by incubation with BAFF in the presence of 10% or 1% FBS. BAFF inhibited MMP collapse, cell growth retardation, dead cell formation, and caspase 3 activation caused by treatment with H2O2. Syk phosphorylation on tyrosine (Y) 525/526 was increased in cells incubated with 1% FBS in the presence of BAFF than cells incubated with 1% FBS or BAFF alone. BAY61-3606, a Syk inhibitor reduced the effect of BAFF on MMP collapse, caspase 3 activation, cell growth retardation, and dead cell formation. Together, these data demonstrate that BAFF might attenuate oxidative stress-induced B cell death and growth retardation by the maintenance of MMP through Syk activation by Y525/526 phosphorylation. Therefore, BAFF and Syk might be therapeutic targets in the pathogenesis of B cell-associated diseases such as autoimmune disease.
Collapse
Affiliation(s)
- Sojin Park
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro Kwangjin-gu, Seoul, 05006, Republic of Korea
| | - Ju-Won Jang
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro Kwangjin-gu, Seoul, 05006, Republic of Korea
| | - Eun-Yi Moon
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro Kwangjin-gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
31
|
Boyer MJ, Kimura Y, Akiyama T, Baggett AY, Preston KJ, Scalia R, Eguchi S, Rizzo V. Endothelial cell-derived extracellular vesicles alter vascular smooth muscle cell phenotype through high-mobility group box proteins. J Extracell Vesicles 2020; 9:1781427. [PMID: 32944170 PMCID: PMC7480479 DOI: 10.1080/20013078.2020.1781427] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The vascular endothelium and smooth muscle form adjacent cellular layers that comprise part of the vascular wall. Each cell type can regulate the other’s structure and function through a variety of paracrine effectors. Extracellular vesicles (EVs) are released from and transit between cells constituting a novel means of cell–cell communication. Here, we characterized the proteome of EVs released from each vascular cell type and examined the extent to which these vesicles participate in endothelial-vascular smooth muscle cell (VSMC) communication. EVs were collected by ultracentrifugation from media of rat aortic endothelial and smooth muscle cells cultured under serum-free conditions. Vesicle morphology, size and concentration were evaluated by transmission electron microscopy and nanoparticle tracking analysis. Western blot as well as shot gun proteomic analyses revealed sets of proteins common to both endothelial- and smooth muscle-derived EVs as well as proteins unique to each vascular cell type. Functionally, endothelial-derived EVs stimulated vascular cell adhesion molecule-1 (VCAM-1) expression and enhanced leukocyte adhesion in VSMCs while smooth muscle EVs did not elicit similar effects in endothelial cells (ECs). EVs from ECs also induced protein synthesis and senescence in VSMCs. Proteomic analysis of VSMCs following exposure to EC-derived EVs revealed upregulation of several proteins including pro-inflammatory molecules, high-mobility group box (HMGB) 1 and HMGB2. Pharmacological blockade HMGB1 and HMGB2 and siRNA depletion of HMGB1 in smooth muscle cells attenuated VCAM-1 expression and leukocyte adhesion induced by EC EVs. These data suggest that EC-derived EVs can enhance signalling pathways which influence smooth muscle cell phenotype.
Collapse
Affiliation(s)
- Michael J Boyer
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Tomoko Akiyama
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Ariele Y Baggett
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kyle J Preston
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
32
|
Hsieh YC, Lin WC, Chuang WY, Chen MH, Chang SC, Lee TT. Effects of mushroom waster medium and stalk residues on the growth performance and oxidative status in broilers. Anim Biosci 2020; 34:265-275. [PMID: 32138471 PMCID: PMC7876722 DOI: 10.5713/ajas.19.0889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/21/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The study developed mushroom stalk residues as feed additives in the broiler diet for improving the growth performance and immunity of broilers as well as to increase the value of mushroom stalk residues. METHODS In total, 300 ROSS 308 broilers were randomly allocated into fifteen pens with five dietary treatments: i) control, basal diet; ii) CMWM, supplemented with 1% Cordyceps militaris waster medium (CM); iii) CMPE, supplemented with 0.5% CM+0.5% Pleurotus eryngii stalk residue (PE); iv) CMPS, supplemented with 0.5% CM+0.5% Pleurotus sajorcaju stalk residue (PS); v) CMFV, supplemented with 0.5% CM+0.5% Fammulina velutipes stalk residue (FV). RESULTS The chemical analysis results showed that CM extracts, PE extracts, PS extracts, and FV extracts contain functional components such as polysaccharides and phenols and have both 2, 2-diphenyl-1-picryl-hydrazyl-hydrate scavenging and Ferrous scavenging capacities. The group CMWM saw increased body weight gain and feed conversion rate and the promotion of jejunum villus growth, but there is no significant difference in the intestinal bacteria phase. Antioxidant genes in the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)- antioxidant responsive element pathway among the groups are significantly higher than that of the control group, especially in group CMWM. CONCLUSION The mushroom stalk residues have antioxidant functional components, can improve the intestinal health and body weight gain of chickens, and can activate the antioxidant pathway of Nrf2 to increase the heme oxygenase-1 expression. The treatment with 1% CM was the most promising as a feed additive.
Collapse
Affiliation(s)
- Y C Hsieh
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan
| | - W C Lin
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan
| | - W Y Chuang
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan
| | - M H Chen
- Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung City, 41362, Taiwan
| | - S C Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Pingtung, 91201, Taiwan
| | - T T Lee
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
33
|
Son E, Lee D, Woo CW, Kim YH. The optimal model of reperfusion injury in vitro using H9c2 transformed cardiac myoblasts. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:173-183. [PMID: 32140041 PMCID: PMC7043999 DOI: 10.4196/kjpp.2020.24.2.173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
Abstract
An in vitro model for ischemia/reperfusion injury has not been well-established. We hypothesized that this failure may be caused by serum deprivation, the use of glutamine-containing media, and absence of acidosis. Cell viability of H9c2 cells was significantly decreased by serum deprivation. In this condition, reperfusion damage was not observed even after simulating severe ischemia. However, when cells were cultured under 10% dialyzed FBS, cell viability was less affected compared to cells cultured under serum deprivation and reperfusion damage was observed after hypoxia for 24 h. Reperfusion damage after glucose or glutamine deprivation under hypoxia was not significantly different from that after hypoxia only. However, with both glucose and glutamine deprivation, reperfusion damage was significantly increased. After hypoxia with lactic acidosis, reperfusion damage was comparable with that after hypoxia with glucose and glutamine deprivation. Although high-passage H9c2 cells were more resistant to reperfusion damage than low-passage cells, reperfusion damage was observed especially after hypoxia and acidosis with glucose and glutamine deprivation. Cell death induced by reperfusion after hypoxia with acidosis was not prevented by apoptosis, autophagy, or necroptosis inhibitors, but significantly decreased by ferrostatin-1, a ferroptosis inhibitor, and deferoxamine, an iron chelator. These data suggested that in our SIR model, cell death due to reperfusion injury is likely to occur via ferroptosis, which is related with ischemia/reperfusion-induced cell death in vivo. In conclusion, we established an optimal reperfusion injury model, in which ferroptotic cell death occurred by hypoxia and acidosis with or without glucose/glutamine deprivation under 10% dialyzed FBS.
Collapse
Affiliation(s)
- Euncheol Son
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul 05505, Korea.,Bio-Medical Institute of Technology, University of Ulsan, Seoul 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dongju Lee
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul 05505, Korea.,Bio-Medical Institute of Technology, University of Ulsan, Seoul 05505, Korea.,Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chul-Woong Woo
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Young-Hoon Kim
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul 05505, Korea.,Bio-Medical Institute of Technology, University of Ulsan, Seoul 05505, Korea
| |
Collapse
|
34
|
Ye L, Mao S, Fang S, Zhang J, Tan Y, Gu W. Increased Serum Romo1 Was Correlated with Lung Function, Inflammation, and Oxidative Stress in Chronic Obstructive Pulmonary Disease. Inflammation 2020; 42:1555-1560. [PMID: 31049771 DOI: 10.1007/s10753-019-01017-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with abnormal inflammation and high oxidative stress. Studies suggest that reactive oxygen species modulator 1 (Romo1) involve in diseases associated with oxidative stress and inflammation. However, the relationship between COPD and Romo1 is still not clear. In this study, we compared serum Romo1 in 49 COPD patients and 34 health controls, and their correlation with lung function, systematic inflammation, and oxidative stress. In addition, serum levels of Romo1, C-reactive protein (CRP), and oxidative stress (measured by reactive oxygen species, ROS) were analyzed using commercial kits. Serum Romo1 was significantly higher in COPD patients than that of control (132.24 ± 10.34 vs. 93.26 ± 7.75 pg/ml, P < 0.05). Serum CRP and ROS were also significantly higher in COPD patients. Serum Romo1 was correlated inversely with FEV1% predicted in COPD patients (푟 = - 0.347, 푃 = 0.016), while it was correlated positively with CRP and ROS levels, respectively. These results suggest that serum Romo1 increase in COPD patients and that these levels are associated with lung function, inflammation, and oxidative stress in COPD.
Collapse
Affiliation(s)
- Liang Ye
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Qinhuai District, Nanjing, 210006, China
| | - Shan Mao
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Qinhuai District, Nanjing, 210006, China
| | - Surong Fang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Qinhuai District, Nanjing, 210006, China
| | - Jing Zhang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Qinhuai District, Nanjing, 210006, China
| | - Yan Tan
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Qinhuai District, Nanjing, 210006, China
| | - Wei Gu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Qinhuai District, Nanjing, 210006, China.
| |
Collapse
|
35
|
Zhang K, Huang W, Chen W, Zhou Q, Zhang Q, Wu X, Xu Y, Li D, Xie T, Liu J. Morphine stimulates angiogenesis through Akt/mTOR/eIF4E activation under serum deprivation or H
2
O
2
‐induced oxidative stress condition. Clin Exp Pharmacol Physiol 2019; 47:227-235. [PMID: 31612523 DOI: 10.1111/1440-1681.13191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Kun Zhang
- Department of Anesthesiology Jingzhou Central Hospital The Second Clinical Medical College Yangtze University Jingzhou China
| | - Wei Huang
- Department of Neurology Taihe Hospital Hubei University of Medicine Shiyan China
| | - Wei Chen
- Department of Anesthesiology The First People’s Hospital of Jingzhou The First Clinical Medical College Yangtze University Jingzhou China
| | - Qian Zhou
- Department of Anesthesiology Jingzhou Central Hospital The Second Clinical Medical College Yangtze University Jingzhou China
| | - Qiongxia Zhang
- Department of Anesthesiology Jingzhou Central Hospital The Second Clinical Medical College Yangtze University Jingzhou China
| | - Xiaoqin Wu
- Department of Anesthesiology Jingzhou Central Hospital The Second Clinical Medical College Yangtze University Jingzhou China
| | - Yong Xu
- Department of Anesthesiology Jingzhou Central Hospital The Second Clinical Medical College Yangtze University Jingzhou China
| | - Dezhan Li
- Department of Anesthesiology Jingzhou Central Hospital The Second Clinical Medical College Yangtze University Jingzhou China
| | - Tao Xie
- Department of Anesthesiology Jingzhou Central Hospital The Second Clinical Medical College Yangtze University Jingzhou China
| | - Jie Liu
- Department of Anesthesiology Jingzhou Traditional Chinese Medicine Hospital The Third Clinical Medical College Yangtze University Jingzhou China
| |
Collapse
|
36
|
Yang H, Cheam NMJ, Cao H, Lee MKH, Sze SK, Tan NS, Tay CY. Materials Stiffness-Dependent Redox Metabolic Reprogramming of Mesenchymal Stem Cells for Secretome-Based Therapeutic Angiogenesis. Adv Healthc Mater 2019; 8:e1900929. [PMID: 31532923 DOI: 10.1002/adhm.201900929] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/23/2019] [Indexed: 11/08/2022]
Abstract
Cellular redox metabolism has emerged as a key tenet in stem cell biology that can profoundly influence the paracrine activity and therapeutic efficacy of mesenchymal stem cells (MSCs). Although the use of materials cues to direct the differentiation of MSCs has been widely investigated, little is known regarding the role of materials in the control of redox paracrine signaling in MSCs. Herein, using a series of mechanically tunable fibronectin-conjugated polyacrylamide (FN-PAAm) hydrogel substrates, it is shown that a mechanically compliant microenvironment with native-tissue mimicking stiffness (E = 0.15 kPa) can mechano-regulate the intracellular reactive oxygen species (ROS) level in human adipose-derived MSCs (ADMSCs). The cells reciprocate to the ROS imbalance by co-activating the nuclear factor erythroid 2-related factor 2 and hypoxia-inducible factor 1 alpha stress response signaling pathways to increase the production of vascular endothelial growth factor and basic fibroblast growth factor. Conditioned medium collected from ADMSCs grown on the 0.15 kPa FN-PAAm is found to significantly promote in vitro and ex ovo vascularization events. Collectively, these findings highlight the importance of delineating critical materials properties that can enable the reprogramming of cellular redox signaling for advanced MSCs-based secretome regenerative medicine.
Collapse
Affiliation(s)
- Haibo Yang
- School of Materials Science and EngineeringNanyang Technological University N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Nicole Mein Ji Cheam
- School of Materials Science and EngineeringNanyang Technological University N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Huan Cao
- School of Materials Science and EngineeringNanyang Technological University N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Melissa Kao Hui Lee
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Siu Kwan Sze
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Nguan Soon Tan
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 11 Mandalay Road Singapore 308232 Singapore
| | - Chor Yong Tay
- School of Materials Science and EngineeringNanyang Technological University N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| |
Collapse
|
37
|
Amini MA, Talebi SS, Karimi J. Reactive Oxygen Species Modulator 1 (ROMO1), a New Potential Target for Cancer Diagnosis and Treatment. Chonnam Med J 2019; 55:136-143. [PMID: 31598470 PMCID: PMC6769249 DOI: 10.4068/cmj.2019.55.3.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 02/01/2023] Open
Abstract
Today, the incidence of cancer in the world is rising, and it is expected that in the next several decades, the number of people suffering from cancer or (the cancer rate) will double. Cancer is defined as the excessive and uncontrolled growth of cells; of course (in simple terms), cancer is considered to be a set of other diseases that ultimately causes normal cells to be transformed into neoplastic cells. One of the most important causes of the onset and exacerbation of cancer is excessive oxidative stress. One of the most important proteins in the inner membrane of mitochondria is Reactive Oxygen Species (ROS) Modulator 1 (ROMO1) that interferes with the production of ROS, and with increasing the rate of this protein, oxidative stress will increase, which ultimately leads to some diseases, especially cancer. In this overview, we use some global databases to provide information about ROMO1 cellular signaling pathways, their related proteins and molecules, and some of the diseases associated with the mitochondrial protein, especially cancer.
Collapse
Affiliation(s)
- Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Saman Talebi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
38
|
Avril M, Benjamin M, Dols MM, Smith JD. Interplay of Plasmodium falciparum and thrombin in brain endothelial barrier disruption. Sci Rep 2019; 9:13142. [PMID: 31511575 PMCID: PMC6739390 DOI: 10.1038/s41598-019-49530-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/19/2019] [Indexed: 01/05/2023] Open
Abstract
Recent concepts suggest that both Plasmodium falciparum factors and coagulation contribute to endothelial activation and dysfunction in pediatric cerebral malaria (CM) pathology. However, there is still limited understanding of how these complex inflammatory stimuli are integrated by brain endothelial cells. In this study, we examined how mature-stage P. falciparum infected erythrocytes (IE) interact with tumor necrosis factor α (TNFα) and thrombin in the activation and permeability of primary human brain microvascular endothelial cell (HBMEC) monolayers. Whereas trophozoite-stage P. falciparum-IE have limited effect on the viability of HBMEC or the secretion of pro-inflammatory cytokines or chemokines, except at super physiological parasite-host cell ratios, schizont-stage P. falciparum-IE induced low levels of cell death. Additionally, schizont-stage parasites were more barrier disruptive than trophozoite-stage P. falciparum-IE and prolonged thrombin-induced barrier disruption in both resting and TNFα-activated HBMEC monolayers. These results provide evidence that parasite products and thrombin may interact to increase brain endothelial permeability.
Collapse
Affiliation(s)
- Marion Avril
- Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Max Benjamin
- Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | | | - Joseph D Smith
- Seattle Children's Research Institute, Seattle, WA, 98109, USA. .,Department of Global Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
39
|
Li Q, Wang Y, Wu S, Zhou Z, Ding X, Shi R, Thorne RF, Zhang XD, Hu W, Wu M. CircACC1 Regulates Assembly and Activation of AMPK Complex under Metabolic Stress. Cell Metab 2019; 30:157-173.e7. [PMID: 31155494 DOI: 10.1016/j.cmet.2019.05.009] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
We report that circACC1, a circular RNA derived from human ACC1, plays a critical role in cellular responses to metabolic stress. CircACC1 is preferentially produced over ACC1 in response to serum deprivation by the transcription factor c-Jun. It functions to stabilize and promote the enzymatic activity of the AMPK holoenzyme by forming a ternary complex with the regulatory β and γ subunits. The cellular levels of circACC1 modulate both fatty acid β-oxidation and glycolysis, resulting in profound changes in cellular lipid storage. In a tumor xenograft model, silencing or enforced expression of circACC1 resulted in growth inhibition and enhancement, respectively. Moreover, increased AMPK activation in colorectal cancer tissues was frequently associated with elevated circACC1 expression. We conclude that circACC1 serves as an economic means to elicit AMPK activation and moreover propose that cancer cells exploit circACC1 during metabolic reprogramming.
Collapse
Affiliation(s)
- Qidong Li
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Yichun Wang
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Shuang Wu
- Department of Immunology, Anhui Medical University, Hefei 230027, China
| | - Zhong Zhou
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Xiaojuan Ding
- Department of Immunology, Anhui Medical University, Hefei 230027, China
| | - Ronghua Shi
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; School of Environmental & Life Sciences, University of Newcastle, Newcastle, NSW 2258, Australia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Wanglai Hu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Department of Immunology, Anhui Medical University, Hefei 230027, China.
| | - Mian Wu
- The Chinese Academy of Sciences (CAS), Key Laboratory of Innate Immunity & Chronic Disease, CAS Center for Excellence in Cell & Molecular Biology, School of Life Sciences, University of Science & Technology of China, Hefei 230026, China; Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou 450003, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China.
| |
Collapse
|
40
|
Lunde‐Young R, Ramirez J, Naik V, Orzabal M, Lee J, Konganti K, Hillhouse A, Threadgill D, Ramadoss J. Hippocampal transcriptome reveals novel targets of FASD pathogenesis. Brain Behav 2019; 9:e01334. [PMID: 31140755 PMCID: PMC6625466 DOI: 10.1002/brb3.1334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Prenatal alcohol exposure can contribute to fetal alcohol spectrum disorders (FASD), characterized by a myriad of developmental impairments affecting behavior and cognition. Studies show that many of these functional impairments are associated with the hippocampus, a structure exhibiting exquisite vulnerability to developmental alcohol exposure and critically implicated in learning and memory; however, mechanisms underlying alcohol-induced hippocampal deficits remain poorly understood. By utilizing a high-throughput RNA-sequencing (RNA-seq) approach to address the neurobiological and molecular basis of prenatal alcohol-induced hippocampal functional deficits, we hypothesized that chronic binge prenatal alcohol exposure alters gene expression and global molecular pathways in the fetal hippocampus. METHODS Timed-pregnant Sprague-Dawley rats were randomly assigned to a pair-fed control (PF) or binge alcohol (ALC) treatment group on gestational day (GD) 4. ALC dams acclimatized from GDs 5-10 with a daily treatment of 4.5 g/kg alcohol and subsequently received 6 g/kg on GDs 11-20. PF dams received a once daily maltose dextrin gavage on GDs 5-20, isocalorically matching ALC counterparts. On GD 21, bilateral hippocampi were dissected, flash frozen, and stored at -80° C. Total RNA was then isolated from homogenized tissues. Samples were normalized to ~4nM and pooled equally. Sequencing was performed by Illumina NextSeq 500 on a 75 cycle, single-end sequencing run. RESULTS RNA-seq identified 13,388 genes, of these, 76 genes showed a significant difference (p < 0.05, log2 fold change ≥2) in expression between the PF and ALC groups. Forty-nine genes showed sex-dependent dysregulation; IPA analysis showed among female offspring, dysregulated pathways included proline and citrulline biosynthesis, whereas in males, xenobiotic metabolism signaling and alaninine biosynthesis etc. were altered. CONCLUSION We conclude that chronic binge alcohol exposure during pregnancy dysregulates fetal hippocampal gene expression in a sex-specific manner. Identification of subtle, transcriptome-level dysregulation in hippocampal molecular pathways offers potential mechanistic insights underlying FASD pathogenesis.
Collapse
Affiliation(s)
- Raine Lunde‐Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - Josue Ramirez
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - Vishal Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - Marcus Orzabal
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - Kranti Konganti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - Andrew Hillhouse
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - David Threadgill
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| |
Collapse
|
41
|
Hepatitis B virus X protein induces size-selective membrane permeabilization through interaction with cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:729-737. [DOI: 10.1016/j.bbamem.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/25/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
|
42
|
Tangtrongsup S, Kisiday JD. Differential Effects of the Antioxidants N-Acetylcysteine and Pyrrolidine Dithiocarbamate on Mesenchymal Stem Cell Chondrogenesis. Cell Mol Bioeng 2019; 12:153-163. [PMID: 31719906 DOI: 10.1007/s12195-019-00566-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023] Open
Abstract
Introduction Mesenchymal stem cell (MSC) chondrogenesis is associated with increases in intracellular reactive oxygen species (ROS), which may result in oxidative stress that is detrimental to cartilage regeneration. This study evaluated the ability of the antioxidants N-acetylcysteine (NAC) or pyrrolidine dithiocarbamate (PDTC) to reduce intracellular ROS, and their effect on MSC chondrogenesis and maturation of cartilage-like extracellular matrix. Methods Equine bone marrow MSCs were cultured in serum-supplemented chondrogenic medium with or without NAC or PDTC. ROS was quantified in monolayer after 8 and 72 h of culture. MSCs were seeded into agarose, cultured for 15 days, and analyzed for viable cell density, glycosaminoglycan (GAG) and hydroxyproline accumulation, and collagen gene expression. PDTC cultures were evaluated for oxidative damage by protein carbonylation, and mechanical properties via compressive testing. Results NAC significantly lowered levels of ROS after 8 but not 72 h, and suppressed GAG accumulation (70%). In secondary experiments using serum-free medium, NAC significantly increased levels of ROS at 72 h, and lowered cell viability and extracellular matrix accumulation. PDTC significantly reduced levels of ROS (~ 30%) and protein carbonylation (27%), and enhanced GAG accumulation (20%). However, the compressive modulus for PDTC-treated samples was significantly lower (40%) than controls. Gene expression was largely unaffected by the antioxidants. Conclusions NAC demonstrated a limited ability to reduce intracellular ROS in chondrogenic culture, and generally suppressed accumulation of extracellular matrix. Conversely, PDTC was an effective antioxidant that enhanced GAG accumulation, although the concomitant reduction in compressive properties is a significant limitation for cartilage repair.
Collapse
Affiliation(s)
- Suwimol Tangtrongsup
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300W. Drake Road, Fort Collins, CO 80523 USA
| | - John D Kisiday
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300W. Drake Road, Fort Collins, CO 80523 USA
| |
Collapse
|
43
|
Agrahari G, Sah SK, Kim TY. Superoxide dismutase 3 protects mesenchymal stem cells through enhanced autophagy and regulation of FoxO3a trafficking. BMB Rep 2018; 51:344-349. [PMID: 29921412 PMCID: PMC6089869 DOI: 10.5483/bmbrep.2018.51.7.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 01/08/2023] Open
Abstract
Therapeutic applications of mesenchymal stem cells (MSCs) are limited due to their early death within the first few days of transplantation. Therefore, to improve the efficacy of cellbased therapies, it is necessary to manipulate MSCs so that they can resist various stresses imposed by the microenvironment. Moreover, the role of superoxide dismutase 3 (SOD3) in regulating such survival under different stress conditions remain elusive. In this study, we overexpressed SOD3 in MSCs (SOD3-MSCs) and evaluated its effect under serum starvation conditions. Nutritional limitation can decrease the survival rate of transplanted MSCs and thus can reduce their efficacy during therapy. Interestingly, we found that SOD3-MSCs exhibited reduced reactive oxygen species levels and greater survival rates than normal MSCs under serum-deprived conditions. In addition, overexpression of SOD3 attenuated starvationinduced apoptosis with increased autophagy in MSCs. Moreover, we have demonstrated that SOD3 protects MSCs against the negative effects of serum deprivation via modulation of AMP-activated protein kinase/sirtulin 1, extracellular signalregulated kinase activation, and promoted Forkhead box O3a trafficking to the nucleus. Taken together, these results demonstrate that SOD3 promotes MSCs survival and add further evidence to the concept that SOD3-MSCs may be a potential therapeutic agent with better outcomes than normal MSCs for various diseases involving oxidative stress and compromised MSCs survival during therapy. [BMB Reports 2018; 51(7): 344-349].
Collapse
Affiliation(s)
- Gaurav Agrahari
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Shyam Kishor Sah
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Tae-Yoon Kim
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
44
|
An BC, Choi YD, Oh IJ, Kim JH, Park JI, Lee SW. GPx3-mediated redox signaling arrests the cell cycle and acts as a tumor suppressor in lung cancer cell lines. PLoS One 2018; 13:e0204170. [PMID: 30260967 PMCID: PMC6160013 DOI: 10.1371/journal.pone.0204170] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Glutathione peroxidase 3 (GPx3), a major scavenger of reactive oxygen species (ROS) in plasma, acts as a redox signal modulator. However, the mechanism underlying GPx3-mediated suppression of cancer cell growth is unclear. The aim of this study was to identify these mechanisms with respect to lung cancer. To enhance the redox modulating properties of GPx3, lung cancer cells were subjected to serum starvation for 12 h, resulting in ROS generation in the absence of oxidant treatment. We then investigated whether suppression of tumorigenesis under conditions of oxidative stress was dependent on GPx3. The results showed that GPx3 effectively suppressed proliferation, migration, and invasion of lung cancer cells under oxidative stress. In addition, GPx3 expression led to a significant reduction in ROS production by cancer cells and induced G2/M phase arrest. We also found that inactivation of cyclin B1 significantly suppressed by nuclear factor-κB(NF-κB) inactivation in lung cancer cells was dependent on GPx3 expression. To further elucidate the mechanism(s) underlying GPx3-medited suppression of tumor proliferation, we next examined the effect of GPx3-mediated redox signaling on the ROS-MKP3-extracellular signal-regulated kinase (Erk)-NF-κB-cyclin B1 pathway and found that GPx3 strongly suppressed activation of the Erk-NF-κB-cyclin B1 signaling cascade by protecting MKP3 (an Erk-specific phosphatase) from the effects of ROS. Thus, this study demonstrates for the first time that the GPx3 suppresses proliferation of lung cancer cells by modulating redox-mediated signals.
Collapse
Affiliation(s)
- Byung Chull An
- Department of Anatomy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea
| | - Yoo-Duk Choi
- Department of Pathology, Chonnam National University Hospital, Dong-gu, Gwangju, Korea
| | - In-Jae Oh
- Department of Lung and Esophageal Cancer Clinic, Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea
| | - Ju Han Kim
- Department of Internal Medicine, Chonnam National University Hospital, Dong-gu, Gwangju, Korea
| | - Jae-Il Park
- Animal Facility of Aging Science, Korea Basic Science Institute, Buk-gu, Gwangju, Korea
| | - Seung-won Lee
- Department of Anatomy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea
- * E-mail:
| |
Collapse
|
45
|
Park S, Jang JW, Moon EY. Spleen tyrosine kinase-dependent Nrf2 activation regulates oxidative stress-induced cell death in WiL2-NS human B lymphoblasts. Free Radic Res 2018; 52:977-987. [PMID: 30203714 DOI: 10.1080/10715762.2018.1505044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autoimmune rheumatic lesions are often characterised by the immune cell recruitment including B lymphocytes and the presence of reactive oxygen species (ROS), which increase antioxidant gene transcription via nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Spleen tyrosine kinase (Syk) has a major role in the signal transmission of all haematopoietic lineage cells including B/T cells, mast cells, and macrophages. In this study, we investigated whether B cell survival is regulated by Nrf2 via ROS-mediated Syk activation in WiL2-NS human B lymphoblast cells. When WiL2-NS cells were incubated with 1% foetal bovine serum (FBS), the survival rate and mitochondrial membrane potential (MMP) were reduced. In addition, 1% FBS increased caspase 3 activity, cytochrome C release, nuclear localisation of Nrf2, and ROS production. N-acetylcysteine attenuated ROS production and nuclear translocation of Nrf2. It also inhibited cell death, caspase 3 activation, MMP collapse, and cytochrome C release. Results from the 1% FBS treatment were consistent with those of H2O2 treatment. Syk phosphorylation at tyrosine 525/526 was increased by incubation with 1% FBS or treatment with 100 µM H2O2. Nuclear translocation of Nrf2 by H2O2 was inhibited by treatment with BAY61-3606, a Syk inhibitor. BAY61-3606 also promoted MMP collapse, cytochrome C release, caspase 3 activation, and cell death. Taken together, these results implicate that Syk controls oxidative stress-induced human B cell death via nuclear translocation of Nrf2 and MMP collapse. These results suggest that Syk is a novel regulator of Nrf2 activation.
Collapse
Affiliation(s)
- Sojin Park
- a Department of Bioscience and Biotechnology , Sejong University , Seoul , Republic of Korea
| | - Ju-Won Jang
- a Department of Bioscience and Biotechnology , Sejong University , Seoul , Republic of Korea
| | - Eun-Yi Moon
- a Department of Bioscience and Biotechnology , Sejong University , Seoul , Republic of Korea
| |
Collapse
|
46
|
Cesarini E, Cerioni L, Canonico B, Di Sario G, Guidarelli A, Lattanzi D, Savelli D, Guescini M, Nasoni MG, Bigini N, Cuppini R, Stocchi V, Ambrogini P, Papa S, Luchetti F. Melatonin protects hippocampal HT22 cells from the effects of serum deprivation specifically targeting mitochondria. PLoS One 2018; 13:e0203001. [PMID: 30157259 PMCID: PMC6114848 DOI: 10.1371/journal.pone.0203001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023] Open
Abstract
Neurons contain a high number of mitochondria, these neuronal cells produce elevated levels of oxidative stress and live for a long time without proliferation; therefore, mitochondrial homeostasis is crucial to their health. Investigations have recently focused on mitochondrial dynamics revealing the ability of these organelles to change their distribution and morphology. It is known that mitochondrial fission is necessary for the transmission of mitochondria to daughter cells during mitosis and mitochondrial fragmentation has been used as an indicator of cell death and mitochondrial dysfunction. Oxidative stress is a trigger able to induce changes in the mitochondrial network. The aim of the present study was to determine the effects of melatonin on the mitochondrial network in HT22 serum-deprived cells. Our results showed that serum deprivation increased reactive oxygen species (ROS) content, promoted the activation of plasma membrane voltage-dependent anion channels (VDACs) and affected the expression of pDRP1 and DRP1 fission proteins. Moreover, parallel increases in apoptotic and autophagic features were found. Damaged and dysfunctional mitochondria are deleterious to the cell; hence, the degradation of such mitochondria through mitophagy is crucial to cell survival. Our results suggest that melatonin supplementation reduces cell death and restores mitochondrial function through the regulation of autophagy.
Collapse
Affiliation(s)
- Erica Cesarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Liana Cerioni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Gianna Di Sario
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Davide Lattanzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - David Savelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Maria Gemma Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Noemi Bigini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Riccardo Cuppini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- * E-mail:
| |
Collapse
|
47
|
Magalhães DM, Pereira N, Rombo DM, Beltrão-Cavacas C, Sebastião AM, Valente CA. Ex vivo model of epilepsy in organotypic slices-a new tool for drug screening. J Neuroinflammation 2018; 15:203. [PMID: 29996878 PMCID: PMC6042335 DOI: 10.1186/s12974-018-1225-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 06/14/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Epilepsy is a prevalent neurological disorder worldwide. It is characterized by an enduring predisposition to generate seizures and its development is accompanied by alterations in many cellular processes. Organotypic slice cultures represent a multicellular environment with the potential to assess biological mechanisms, and they are used as a starting point for refining molecules for in vivo studies. Here, we investigated organotypic slice cultures as a model of epilepsy. METHODS We assessed, by electrophysiological recordings, the spontaneous activity of organotypic slices maintained under different culture protocols. Moreover, we evaluated, through molecular-based approaches, neurogenesis, neuronal death, gliosis, expression of proinflammatory cytokines, and activation of NLRP3 inflammasome (nucleotide-binding, leucine-rich repeat, pyrin domain) as biomarkers of neuroinflammation. RESULTS We demonstrated that organotypic slices, maintained under a serum deprivation culture protocol, develop epileptic-like activity. Furthermore, throughout a comparative study with slices that do not depict any epileptiform activity, slices with epileptiform activity were found to display significant differences in terms of inflammation-related features, such as (1) increased neuronal death, with higher incidence in CA1 pyramidal neurons of the hippocampus; (2) activation of astrocytes and microglia, assessed through western blot and immunohistochemistry; (3) upregulation of proinflammatory cytokines, specifically interleukin-1β (IL-1β), interleukin-6, and tumor necrosis factor α, revealed by qPCR; and (4) enhanced expression of NLRP3, assessed by western blot, together with increased NLRP3 activation, showed by IL-1β quantification. CONCLUSIONS Thus, organotypic slice cultures gradually deprived of serum mimic the epileptic-like activity, as well as the inflammatory events associated with in vivo epilepsy. This system can be considered a new tool to explore the interplay between neuroinflammation and epilepsy and to screen potential drug candidates, within the inflammatory cascades, to reduce/halt epileptogenesis.
Collapse
Affiliation(s)
- Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Noémia Pereira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diogo M Rombo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Beltrão-Cavacas
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
48
|
Cid-Castro C, Hernández-Espinosa DR, Morán J. ROS as Regulators of Mitochondrial Dynamics in Neurons. Cell Mol Neurobiol 2018; 38:995-1007. [PMID: 29687234 PMCID: PMC11481975 DOI: 10.1007/s10571-018-0584-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial dynamics is a complex process, which involves the fission and fusion of mitochondrial outer and inner membranes. These processes organize the mitochondrial size and morphology, as well as their localization throughout the cells. In the last two decades, it has become a spotlight due to their importance in the pathophysiological processes, particularly in neurological diseases. It is known that Drp1, mitofusin 1 and 2, and Opa1 constitute the core of proteins that coordinate this intricate and dynamic process. Likewise, changes in the levels of reactive oxygen species (ROS) lead to modifications in the expression and/or activity of the proteins implicated in the mitochondrial dynamics, suggesting an involvement of these molecules in the process. In this review, we discuss the role of ROS in the regulation of fusion/fission in the nervous system, as well as the involvement of mitochondrial dynamics proteins in neurodegenerative diseases.
Collapse
Affiliation(s)
- Carolina Cid-Castro
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, 04510, Mexico, DF, Mexico
| | - Diego Rolando Hernández-Espinosa
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, 04510, Mexico, DF, Mexico
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, 04510, Mexico, DF, Mexico.
| |
Collapse
|
49
|
Holmila RJ, Vance SA, Chen X, Wu H, Shukla K, Bharadwaj MS, Mims J, Wary Z, Marrs G, Singh R, Molina AJ, Poole LB, King SB, Furdui CM. Mitochondria-targeted Probes for Imaging Protein Sulfenylation. Sci Rep 2018; 8:6635. [PMID: 29703899 PMCID: PMC5923234 DOI: 10.1038/s41598-018-24493-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/27/2018] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial reactive oxygen species (ROS) are essential regulators of cellular signaling, metabolism and epigenetics underlying the pathophysiology of numerous diseases. Despite the critical function of redox regulation in mitochondria, currently there are limited methods available to monitor protein oxidation in this key subcellular organelle. Here, we describe compounds for imaging sulfenylated proteins in mitochondria: DCP-NEt2-Coumarin (DCP-NEt2C) and rhodamine-based DCP-Rho1. Side-by-side comparison studies are presented on the reactivity of DCP-NEt2C and DCP-Rho1 with a model protein sulfenic acid (AhpC-SOH) and mitochondrial localization to identify optimized experimental conditions for labeling and visualization of protein sulfenylation that would be independent of mitochondria membrane potential and would not impact mitochondrial function. These probes are applied to image mitochondrial protein sulfenylation under conditions of serum starvation and in a cell culture model of lung cancer exposed to ionizing radiation and silver nanoparticles, agents serving dual functions as environmental stressors and cancer therapeutics.
Collapse
Affiliation(s)
- Reetta J Holmila
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Stephen A Vance
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Kirtikar Shukla
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Manish S Bharadwaj
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Jade Mims
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Zack Wary
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Glen Marrs
- Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Anthony J Molina
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
50
|
Gornostaeva AN, Andreeva ER, Bobyleva PI, Buravkova LB. Interaction of allogeneic adipose tissue-derived stromal cells and unstimulated immune cells in vitro: the impact of cell-to-cell contact and hypoxia in the local milieu. Cytotechnology 2018; 70:299-312. [PMID: 28975481 PMCID: PMC5809659 DOI: 10.1007/s10616-017-0144-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/07/2017] [Indexed: 01/22/2023] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) are an attractive tool for cell therapy and regenerative medicine. Being applied in vivo, allogeneic MSCs are faced with both activated and unstimulated immune cells. The effects of MSCs on activated immune cells are well described and are mainly suppressive. Less is known about the interaction of MSCs with unstimulated immune cells. We evaluated the contribution of tissue-related O2 level ("physiological" hypoxia-5% O2) and cell-to-cell contact to the interaction between allogeneic adipose tissue-derived MSCs (ASCs) and unstimulated peripheral blood mononuclear cells (PBMCs). Under both O2 levels, ASCs affected the immune response by elevating the proportion of CD69+ T cells and modifying the functional activity of unstimulated PBMCs, providing a significant reduction of ROS level and activation of lysosome compartment. "Physiological" hypoxia partially attenuated the ASC modulation of PBMC function, reducing CD69+ cell activation and more significantly supressing ROS. In direct co-culture, the ASC effects were more pronounced. PBMC viability was preferentially maintained, and the lymphocyte subset ratio was altered in favour of B cells. Our findings demonstrate that allogeneic ASCs do not enhance the activation of unstimulated immune cells and can provide supportive functions. The "hypoxic" phenotype of ASCs may be more "desirable" for the interaction with allogeneic immune cells that may be required in cell therapy protocols.
Collapse
Affiliation(s)
- Aleksandra N Gornostaeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, Moscow, Russia, 123007
| | - Elena R Andreeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, Moscow, Russia, 123007.
| | - Polina I Bobyleva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, Moscow, Russia, 123007
| | - Ludmila B Buravkova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76a, Moscow, Russia, 123007
| |
Collapse
|