1
|
Abdelghany L, Sillapachaiyaporn C, Zhivotovsky B. The concealed side of caspases: beyond a killer of cells. Cell Mol Life Sci 2024; 81:474. [PMID: 39625520 PMCID: PMC11615176 DOI: 10.1007/s00018-024-05495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024]
Abstract
Since the late 20th century, researchers have known that caspases are a pillar of cell death, particularly apoptosis. However, recent advances in cell biology have unraveled the multiple roles of caspases. These enzymes have an unconventional role in cell proliferation, differentiation, and invasion. As a result, caspase deregulation can fuel the fire of cancer, incite flames of inflammation, flare neurodegenerative disorders, and exacerbate skin pathologies. Several therapeutic approaches toward caspase inhibition have been investigated, but can caspase inhibitors harness the maladaptive effect of these proteases without causing significant side effects? A few studies have exploited caspase induction for cancer or adoptive cell therapies. Here, we provide a compelling picture of caspases, starting with their evolution, their polytomous roles beyond cell death, the flaws of their deregulation, and the merits of targeting them for therapeutic implications. Furthermore, we provide a deeper understanding of the evolution of caspase-related research up to the current era, pinpointing the role of caspases in cell survival and aiding in the development of effective caspase-targeted therapies.
Collapse
Affiliation(s)
- Lina Abdelghany
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | | | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden.
- Engelhardt Institute of Molecular Biology, RAS, Moscow, 119991, Russia.
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia.
| |
Collapse
|
2
|
Lv L, Zhang Y, Kong R, Wang C, Wang X, Zhou X. Identification of pyroptosis-related signature and development of a novel prognostic model in diffuse large B-cell lymphoma. J Cancer Res Clin Oncol 2023; 149:12677-12690. [PMID: 37452851 DOI: 10.1007/s00432-023-05018-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Emerging evidence suggests that pyroptosis plays an essential role in the development and progression of multiple cancers. However, the role of pyroptosis remains elusive in diffuse large B-cell lymphoma (DLBCL). METHODS The expression profile data of DLBCL and normal samples of pyroptosis-related genes (PRGs) were analyzed, and the clinical characteristics of DLBCL patients were further investigated. A prognostic model was established using LASSO-Cox regression analysis. The expression of these PRGs was validated by qRT-PCR in DLBCL cell lines. Cell proliferation assay and flow cytometry were utilized to explore the impact of pyroptosis inhibitor (disulfiram, DSF) combined with PD1/PD-L1 inhibitor (BMS1166) on DLBCL cell proliferation. RESULTS Most PRGs were dysregulated in DLBCL samples and associated with overall survival (OS). Six PRGs were selected to construct a prognostic risk score model. The qRT-PCR analysis revealed that CASP8, CASP9, NLRP1, NLRP6, and TIRAP are downregulated, while SCAF11 was significantly upregulated in DLBCL cell lines. This prognostic model divided DLBCL patients into low-risk and high-risk groups. Patients in the low-risk group exhibited lower mortality and longer OS than those in the high-risk group. The ROC curve and nomogram demonstrated this model's excellent predictive performance. GO and KEGG enrichment indicated that the differentially expressed genes (DEGs) between subgroups were associated with cellular protein modification processes and JAK-STAT signaling pathway regulation. Moreover, the risk score was correlated with the immune profile. Cell proliferation assay and flow cytometry further validated the synergistic anti-tumor effects of DSF and BMS1166 on DLBCL cells. CONCLUSION In summary, we developed a comprehensive prognostic model based on PRGs characteristics, which accurately predicted the prognosis of DLBCL patients. Pyroptosis-targeting coupled with immunotherapies would be a promising therapeutic strategy for DLBCL.
Collapse
Affiliation(s)
- Liemei Lv
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Yu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ran Kong
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Cong Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
3
|
Moradi-Mehr S, Khademy M, Akbari-Birgani S, Kafian H, Lalenejad M, Abdollahpour D, Moghimi M. Comparative evaluation of the therapeutic strategies using a minimal model of luminal-A breast cancer. Biochem Biophys Res Commun 2023; 666:107-114. [PMID: 37182285 DOI: 10.1016/j.bbrc.2023.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Cellular behavior is heavily influenced by cellular interactions, which are often lost in conventional cell culture methods. As a result, in vitro cellular behavior may not accurately reflect in vivo conditions. Three-dimensional (3D) culture, on the other hand, is better suited for studying cellular behavior as it allows for more comprehensive cell communication. In this study, we utilized 3D culture of the MCF-7 cell line to create a minimal model of luminal-A breast cancer and evaluated its histopathological and morphological features using various methods. To determine the optimal therapeutic strategies for eliminating cancer cells, we assessed the effectiveness of diverse therapeutic approaches, including targeting distinct phases of the cell cycle, endocrine therapy, and gene therapy in both 2D and 3D culture systems. Our findings indicate that cells derived from mammospheres respond differently to their parent cells in monolayer culture depending on the therapeutic strategy used. This variability in drug response may be due to the altered microenvironment created by heterogeneous cellular makeup and emerging cellular interactions in the 3D culture. Therefore, it is important to administer a therapeutic approach that can eradicate cells regardless of the microenvironment.
Collapse
Affiliation(s)
- Sahar Moradi-Mehr
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Mitra Khademy
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Hosein Kafian
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Meelad Lalenejad
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Daryoush Abdollahpour
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Optics Research Center, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Minoosh Moghimi
- Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Villarreal OE, Kopetz S. EMP1 + tumor cells drive metastatic relapse. Cell Res 2023; 33:337-338. [PMID: 36646758 PMCID: PMC10156804 DOI: 10.1038/s41422-022-00769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Oscar E Villarreal
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Short peptide domains of the Wnt inhibitor sFRP4 target ovarian cancer stem cells by neutralizing the Wnt β-catenin pathway, disrupting the interaction between β-catenin and CD24 and suppressing autophagy. Life Sci 2023; 316:121384. [PMID: 36646377 DOI: 10.1016/j.lfs.2023.121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
AIMS One of the hallmarks of cancer stem cells (CSC) is hyperactive Wnt β-catenin signaling due to the decreased presence of Wnt antagonists such as secreted frizzled related protein 4 (SFRP4). Cysteine-rich domain (CRD) and netrin-like domain (NLD) are the two functional domains of SFRP4 having anti-tumor properties. In this study, we have explored the effectiveness of short micropeptides SC-301 (from CRD) and SC-401 (from NLD) on CSC properties, EMT, apoptosis and autophagy in ovarian CSCs enriched from PA-1 and SKOV-3 cell lines. MAIN METHODS Gene expression analysis, Western blot and immunocytochemistry were performed on ovarian CSCs to evaluate the inhibitory potential of micropeptides to various CSC associated oncogenic properties. Co-immunoprecipitation was performed to detect the binding of CD24 to β-catenin protein complex. CYTO-ID Autophagy Detection Kit 2.0 was used to monitor autophagic flux in peptide treated CSCs. KEY FINDINGS It is clearly seen that the micropeptides derived from both the domains inhibit Wnt pathway, initiate apoptosis, inhibit migration and chemosensitize CSCs. Specifically, CD24, a defining marker of ovarian CSC was suppressed by peptide treatment. Notably, interaction between CD24 and β-catenin was disrupted upon peptide treatment. SFRP4 peptide treatment also suppressed the autophagic process which is crucial for CSC survival. SIGNIFICANCE The study demonstrated that although both peptides have inhibitory effects, SC-401 was emphatically more effective in targeting CSC properties and down regulating the Wnt β-catenin machinery.
Collapse
|
6
|
Batoon L, Koh AJ, Kannan R, McCauley LK, Roca H. Caspase-9 driven murine model of selective cell apoptosis and efferocytosis. Cell Death Dis 2023; 14:58. [PMID: 36693838 PMCID: PMC9873735 DOI: 10.1038/s41419-023-05594-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Apoptosis and efficient efferocytosis are integral to growth, development, and homeostasis. The heterogeneity of these mechanisms in different cells across distinct tissues renders it difficult to develop broadly applicable in vivo technologies. Here, we introduced a novel inducible caspase-9 (iCasp9) mouse model which allowed targeted cell apoptosis and further facilitated investigation of concomitant efferocytosis. We generated iCasp9+/+ mice with conditional expression of chemically inducible caspase-9 protein that is triggered in the presence of Cre recombinase. In vitro, bone marrow cells from iCasp9+/+ mice showed expression of the iCasp9 protein when transduced with Cre-expressing adenovirus. Treatment of these cells with the chemical dimerizer (AP20187/AP) resulted in iCasp9 processing and cleaved caspase-3 upregulation, indicating successful apoptosis induction. The in vivo functionality and versatility of this model was demonstrated by crossing iCasp9+/+ mice with CD19-Cre and Osteocalcin (OCN)-Cre mice to target CD19+ B cells or OCN+ bone-lining osteoblasts. Immunofluorescence and/or immunohistochemical staining in combination with histomorphometric analysis of EGFP, CD19/OCN, and cleaved caspase-3 expression demonstrated that a single dose of AP effectively induced apoptosis in CD19+ B cells or OCN+ osteoblasts. Examination of the known efferocytes in the target tissues showed that CD19+ cell apoptosis was associated with infiltration of dendritic cells into splenic B cell follicles. In the bone, where efferocytosis remains under-explored, the use of iCasp9 provided direct in vivo evidence that macrophages are important mediators of apoptotic osteoblast clearance. Collectively, this study presented the first mouse model of iCasp9 which achieved selective apoptosis, allowing examination of subsequent efferocytosis. Given its unique feature of being controlled by any Cre-expressing mouse lines, the potential applications of this model are extensive and will bring forth more insights into the diversity of mechanisms and cellular effects induced by apoptosis including the physiologically important efferocytic process that follows.
Collapse
Affiliation(s)
- Lena Batoon
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA
| | - Amy J Koh
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA
| | - Rahasudha Kannan
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Medical School, Ann Arbor, MI, USA.
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Cell-to-cell variability in inducible Caspase9-mediated cell death. Cell Death Dis 2022; 13:34. [PMID: 35013114 PMCID: PMC8748834 DOI: 10.1038/s41419-021-04468-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
iCasp9 suicide gene has been widely used as a promising killing strategy in various cell therapies. However, different cells show significant heterogeneity in response to apoptosis inducer, posing challenges in clinical applications of killing strategy. The cause of the heterogeneity remains elusive so far. Here, by simultaneously monitoring the dynamics of iCasp9 dimerization, Caspase3 activation, and cell fate in single cells, we found that the heterogeneity was mainly due to cell-to-cell variability in initial iCasp9 expression and XIAP/Caspase3 ratio. Moreover, multiple-round drugging cannot increase the killing efficiency. Instead, it will place selective pressure on protein levels, especially on the level of initial iCasp9, leading to drug resistance. We further show this resistance can be largely eliminated by combinatorial drugging with XIAP inhibitor at the end, but not at the beginning, of the multiple-round treatments. Our results unveil the source of cell fate heterogeneity and drug resistance in iCasp9-mediated cell death, which may enlighten better therapeutic strategies for optimized killing.
Collapse
|
8
|
Luo B, Lin J, Cai W, Wang M. Identification of the Pyroptosis-Related Gene Signature and Risk Score Model for Colon Adenocarcinoma. Front Genet 2021; 12:771847. [PMID: 34938319 PMCID: PMC8686197 DOI: 10.3389/fgene.2021.771847] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 01/10/2023] Open
Abstract
The prognosis of advanced colon adenocarcinoma (COAD) remains poor. However, existing methods are still difficult to assess patient prognosis. Pyroptosis, a lytic and inflammatory process of programmed cell death caused by the gasdermin protein, is involved in the development and progression of various tumors. Moreover, there are no related studies using pyroptosis-related genes to construct a model to predict the prognosis of COAD patients. Thus, in this study, bioinformatics methods were used to analyze the data of COAD patients downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to construct a risk model for the patient prognosis. TCGA database was used as the training set, and GSE39582 downloaded from GEO was used as the validation set. A total of 24 pyroptosis-related genes shown significantly different expression between normal and tumor tissues in COAD and seven genes (CASP4, CASP5, CASP9, IL6, NOD1, PJVK, and PRKACA) screened by univariate and LASSO cox regression analysis were used to construct the risk model. The receiver operating characteristic (ROC) and Kaplan–Meier (K–M curves) curves showed that the model based on pyroptosis-related genes can be used to predict the prognosis of COAD and can be validated by the external cohort well. Then, the clinicopathological factors were combined with the risk score to establish a nomogram with a C-index of 0.774. In addition, tissue validation results also showed that CASP4, CASP5, PRKACA, and NOD1 were differentially expressed between tumor and normal tissues from COAD patients. In conclusion, the risk model based on the pyroptosis-related gene can be used to assess the prognosis of COAD patients well, and the related genes may become the potential targets for treatment.
Collapse
Affiliation(s)
- Bixian Luo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Guercio M, Manni S, Boffa I, Caruso S, Di Cecca S, Sinibaldi M, Abbaszadeh Z, Camera A, Ciccone R, Polito VA, Ferrandino F, Reddel S, Catanoso ML, Bocceri E, Del Bufalo F, Algeri M, De Angelis B, Quintarelli C, Locatelli F. Inclusion of the Inducible Caspase 9 Suicide Gene in CAR Construct Increases Safety of CAR.CD19 T Cell Therapy in B-Cell Malignancies. Front Immunol 2021; 12:755639. [PMID: 34737753 PMCID: PMC8560965 DOI: 10.3389/fimmu.2021.755639] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
T cells engineered with chimeric antigen receptor (CAR-T cells) are an effective treatment in patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia or B-cell non-Hodgkin lymphoma. Despite the reported exciting clinical results, the CAR-T cell approach needs efforts to improve the safety profile, limiting the occurrence of adverse events in patients given this treatment. Besides the most common side effects, such as cytokine release syndrome and CAR-T cell–related encephalopathy syndrome, another potential issue involves the inadvertent transduction of leukemia B cells with the CAR construct during the manufacturing process, thus leading to the possibility of a peculiar mechanism of antigen masking and treatment resistance. In this study, we investigated whether the inclusion of the inducible caspase 9 (iC9) suicide gene in the CAR construct design could be an effective safety switch to control malignant CAR+ B cells, ultimately counteracting this serious adverse event. iC9 is a suicide gene able to be activated through binding with an otherwise inert small biomolecule, known as AP1903. The exposure of iC9.CAR.CD19-DAUDI lymphoma and iC9.CAR.CD19-NALM-6 leukemia cells in vitro to 20 nM of AP1903 resulted into the prompt elimination of CAR+ B-leukemia/lymphoma cell lines. The results obtained in the animal model corroborate in vitro data, since iC9.CAR.CD19+ tumor cells were controlled in vivo by the activation of the suicide gene through administration of AP1903. Altogether, our data indicate that the inclusion of the iC9 suicide gene may result in a safe CAR-T cell product, even when manufacturing starts from biological materials characterized by heavy leukemia blast contamination.
Collapse
Affiliation(s)
- Marika Guercio
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Simona Manni
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Iolanda Boffa
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Simona Caruso
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Stefano Di Cecca
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Matilde Sinibaldi
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Zeinab Abbaszadeh
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonio Camera
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Roselia Ciccone
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vinicia Assunta Polito
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesca Ferrandino
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Sofia Reddel
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Luigia Catanoso
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Emilia Bocceri
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesca Del Bufalo
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Mattia Algeri
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Biagio De Angelis
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Concetta Quintarelli
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Franco Locatelli
- Department of Oncology-Haematology and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Madadi Z, Akbari-Birgani S, Mohammadi S, Khademy M, Mousavi SA. The effect of caspase-9 in the differentiation of SH-SY5Y cells. Eur J Pharmacol 2021; 904:174138. [PMID: 33933463 DOI: 10.1016/j.ejphar.2021.174138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/26/2022]
Abstract
Neuroblastoma is the most common solid malignant tumor in infants and young children. Its origin is the incompletely committed precursor cells from the autonomic nervous system. Neuroblastoma cells are multipotent cells with a high potency of differentiation into the neural cell types. Neural differentiation leads to the treatment of neuroblastoma by halting the cell and tumor growth and consequently its expansion. Caspases are a family of proteins involved in apoptosis and differentiation. The present study aimed to investigate the potential role of caspase-9 activation on the differentiation of the human neuroblastoma SH-SY5Y cells. Here we investigated the caspase-9 and 3/7 activity during 1,25-dihydroxycholecalciferol (D3)-mediated differentiation of SH-SY5Y cells and took advantage of the inducible caspase-9 system in putting out the differentiation of the neuroblastoma cells. D3-induced differentiation of the cells could lead to activation of caspase-9 and caspase-3/7, astrocyte-like morphology, and increased expression of Glial fibrillary acidic protein (GFAP). By using the inducible caspase-9 system, we showed differentiation of SH-SY5Y cells to astrocyte-like morphology and increased level of GFAP expression. Furthered studies using a specific caspase-9 inhibitor showed inhibition of differentiation mediated by D3 or caspase-9 to astrocyte-like cells. These results show the potency of caspase-9 to direct differentiation of the human neuroblastoma SH-SY5Y cells into cells showing an astrocyte-like morphology.
Collapse
Affiliation(s)
- Zahra Madadi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Center for Research in Basic Sciences and Contemporary Technologies, IASBS, Zanjan, Iran.
| | - Saeed Mohammadi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mitra Khademy
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Seyed Asadollah Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Yenuganti VR, Yadala R, Azad R, Singh S, Chiluka V, Ahire J, Reddanna P. In vitro evaluation of anticancer effects of different probiotic strains on HCT-116 cell line. J Appl Microbiol 2021; 131:1958-1969. [PMID: 33694215 DOI: 10.1111/jam.15060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
AIM Since the evolution of man, microbes are associated with humans, playing a vital role in the maintenance of good health. However, an imbalance in the gut microbial ecosystem is associated with several diseases including colorectal cancer (CRC). The supplementation with probiotics has been proven to be beneficial in improving CRC. In this study, we have evaluated the anticancer effects of 11 probiotic strains on human colorectal carcinoma cell line (HCT-116). METHODS AND RESULTS In this study, HCT-116 cells were treated with various concentrations (0·5, 5, 10, 20 and 200 million CFU per ml) of probiotic strains. The viability was analysed using a MTT assay and IC50 values were determined. Besides this, we evaluated the expression of multiple genes involved in the apoptosis and stress tolerance by real-time PCR. Lactobacillus reuteri (UBLRu-87), Saccharomyces boulardii (Unique-28), Bacillus clausii (UBBC-07), Bacillus coagulans (Unique-IS2), Streptococcus salivarius (UBSS-01), Lactobacillus fermentum (UBLF-31), Lactobacillus salivarius (UBLS-22), Bifidobacterium bifidum (UBBB-55) and Lactobacillus plantarum (UBLP-40) exhibited potent cytotoxicity on HCT 116 cells. Furthermore, UBLF-31 and Unique-28 induced the expression of CJUN, CFOS and CASP-9, and downregulated the expression of BCL6. UBLRu-87 and UBBB-55 induced the expression of CJUN, CFOS and CASP-9 but not BCL-6. UBLP-40, UBBC-07, UBLS-22, and Unique-IS2 induced the expression of CJUN and CASP-9 and downregulated the expression of BCL-6. CONCLUSION These studies indicate the anticancer effects of selected probiotic strains by inducing apoptosis. SIGNIFICANCE AND IMPACT OF THE STUDY The probiotic strains with the anticancer effects identified in this study can be proposed as potential candidates in the treatment of CRCs.
Collapse
Affiliation(s)
- V R Yenuganti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - R Yadala
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - R Azad
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - S Singh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - V Chiluka
- Department of Biological Sciences, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - J Ahire
- Centre for Research & Development, Unique Biotech Ltd, Hyderabad, Telangana, India
| | - P Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
12
|
Lipus A, Janosz E, Ackermann M, Hetzel M, Dahlke J, Buchegger T, Wunderlich S, Martin U, Cathomen T, Schambach A, Moritz T, Lachmann N. Targeted Integration of Inducible Caspase-9 in Human iPSCs Allows Efficient in vitro Clearance of iPSCs and iPSC-Macrophages. Int J Mol Sci 2020; 21:E2481. [PMID: 32260086 PMCID: PMC7177583 DOI: 10.3390/ijms21072481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) offer great promise for the field of regenerative medicine, and iPSC-derived cells have already been applied in clinical practice. However, potential contamination of effector cells with residual pluripotent cells (e.g., teratoma-initiating cells) or effector cell-associated side effects may limit this approach. This also holds true for iPSC-derived hematopoietic cells. Given the therapeutic benefit of macrophages in different disease entities and the feasibility to derive macrophages from human iPSCs, we established human iPSCs harboring the inducible Caspase-9 (iCasp9) suicide safety switch utilizing transcription activator-like effector nuclease (TALEN)-based designer nuclease technology. Mono- or bi-allelic integration of the iCasp9 gene cassette into the AAVS1 locus showed no effect on the pluripotency of human iPSCs and did not interfere with their differentiation towards macrophages. In both, iCasp9-mono and iCasp9-bi-allelic clones, concentrations of 0.1 nM AP20187 were sufficient to induce apoptosis in more than 98% of iPSCs and their progeny-macrophages. Thus, here we provide evidence that the introduction of the iCasp9 suicide gene into the AAVS1 locus enables the effective clearance of human iPSCs and thereof derived macrophages.
Collapse
Affiliation(s)
- Alexandra Lipus
- RG Reprogramming and Gene Therapy, Hannover Medical School, Hannover 30625, Germany; (A.L.); (E.J.); (M.H.); (T.M.)
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
| | - Ewa Janosz
- RG Reprogramming and Gene Therapy, Hannover Medical School, Hannover 30625, Germany; (A.L.); (E.J.); (M.H.); (T.M.)
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
| | - Mania Ackermann
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
- RG Translational Hematology of Congenital Diseases, Hannover Medical School, Hannover 30625, Germany
| | - Miriam Hetzel
- RG Reprogramming and Gene Therapy, Hannover Medical School, Hannover 30625, Germany; (A.L.); (E.J.); (M.H.); (T.M.)
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
| | - Julia Dahlke
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
| | - Theresa Buchegger
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
- RG Translational Hematology of Congenital Diseases, Hannover Medical School, Hannover 30625, Germany
| | - Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover 30625, Germany; (S.W.); (U.M.)
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover 30625, Germany; (S.W.); (U.M.)
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg 79106, Germany;
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg 79095, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
| | - Thomas Moritz
- RG Reprogramming and Gene Therapy, Hannover Medical School, Hannover 30625, Germany; (A.L.); (E.J.); (M.H.); (T.M.)
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH, Hannover Medical School, Hannover 30625, Germany; (M.A.); (J.D.); (T.B.); (A.S.)
- RG Translational Hematology of Congenital Diseases, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
13
|
Aaes TL, Verschuere H, Kaczmarek A, Heyndrickx L, Wiernicki B, Delrue I, De Craene B, Taminau J, Delvaeye T, Bertrand MJM, Declercq W, Berx G, Krysko DV, Adjemian S, Vandenabeele P. Immunodominant AH1 Antigen-Deficient Necroptotic, but Not Apoptotic, Murine Cancer Cells Induce Antitumor Protection. THE JOURNAL OF IMMUNOLOGY 2020; 204:775-787. [DOI: 10.4049/jimmunol.1900072] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 12/11/2019] [Indexed: 11/19/2022]
|
14
|
Mahmoudi N, Delirezh N, Sam MR. Modulating Pluripotency Network Genes with Omega-3 DHA is followed by Caspase- 3 Activation and Apoptosis in DNA Mismatch Repair-Deficient/KRAS-Mutant Colorectal Cancer Stem-Like Cells. Anticancer Agents Med Chem 2020; 20:1221-1232. [PMID: 32116204 DOI: 10.2174/1871520620666200302113722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Targeting DNA mismatch repair-deficient/KRAS-mutant Colorectal Cancer Stem Cells (CRCSCs) with chemical compounds remains challenging. Modulating stemness factors Bmi-1, Sox-2, Oct-4 and Nanog in CRCSCs which are direct downstream targets of carcinogenesis pathways may lead to the reactivation of caspase-3 and apoptosis in these cells. Omega-3 DHA modulates different signaling pathways involved in carcinogenesis. However, little is known, whether in vitro concentrations of DHA equal to human plasma levels are able to modulate pluripotency genes expression, caspase-3 reactivation and apoptosis in DNA mismatch repair-deficient/KRAS-mutant CRC stem-like cells. METHODS DNA mismatch repair-deficient/KRAS-mutant CRC stem-like cells (LS174T cells) were treated with DHA, after which, cell number and proliferation-rate, Bmi-1, Sox-2, Nanog and Oct-4 expression, caspase-3 activation and apoptosis were evaluated with different cellular and molecular techniques. RESULTS DHA changed the morphology of cells to apoptotic forms and disrupted cell connections. After 48h treatment with 50- to 200μM DHA, cell numbers and proliferation-rates were measured to be 86%-35% and 93.6%-45.7% respectively. Treatment with 200 μM DHA dramatically decreased the expression of Bmi-1, Sox- 2, Oct-4 and Nanog by 69%, 70%, 97.5% and 53% respectively. Concurrently, DHA induced caspase-3 activation by 1.8-4.7-fold increases compared to untreated cells. An increase in the number of apoptotic cells ranging from 9.3%-38.4% was also observed with increasing DHA concentrations. CONCLUSIONS DHA decreases the high expression level of pluripotency network genes suggesting Bmi-1, Sox-2, Oct-4 and Nanog as promising molecular targets of DHA. DHA reactivates caspase-3 and apoptosis in DNA mismatch repair-deficient/KRAS-mutant CRC stem-like cells, representing the high potential of this safe compound for therapeutic application in CRC.
Collapse
Affiliation(s)
- Nazila Mahmoudi
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Nowruz Delirezh
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Mohammad Reza Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| |
Collapse
|
15
|
Madadi Z, Akbari-Birgani S, Monfared PD, Mohammadi S. The non-apoptotic role of caspase-9 promotes differentiation in leukemic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118524. [DOI: 10.1016/j.bbamcr.2019.118524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/26/2019] [Accepted: 08/04/2019] [Indexed: 12/22/2022]
|
16
|
Mohseni-Dargah M, Akbari-Birgani S, Madadi Z, Saghatchi F, Kaboudin B. Carbon nanotube-delivered iC9 suicide gene therapy for killing breast cancer cells in vitro. Nanomedicine (Lond) 2019; 14:1033-1047. [PMID: 30925115 DOI: 10.2217/nnm-2018-0342] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM To induce a safe death to MCF-7 human breast cancer cell line through gene therapy based on iC9 suicide gene. MATERIALS & METHODS To induce apoptosis to MCF-7 cell line, iC9 gene was transfected using pyridine-functionalized multi-walled carbon nanotubes. Then, to enhance chemotherapy, iC9 suicide gene therapy was performed alongside. RESULTS The results show that the MCF-7 cells were efficiently eliminated in a high percentage by this approach. Furthermore, the suicide gene by itself/in combination with the chemotherapeutic drugs managed to pass the cell cycle arrests. CONCLUSION We introduced an in vitro treatment approach based on suicide gene therapy and the first step was taken toward the enhancement of chemotherapy, although more investigation is required.
Collapse
Affiliation(s)
- Masoud Mohseni-Dargah
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.,Center for Research in Basic Sciences, & Contemporary Technologies (IASBS), Zanjan, Iran
| | - Zahra Madadi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Fatemeh Saghatchi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Babak Kaboudin
- Center for Research in Basic Sciences, & Contemporary Technologies (IASBS), Zanjan, Iran.,Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
17
|
Kolos JM, Voll AM, Bauder M, Hausch F. FKBP Ligands-Where We Are and Where to Go? Front Pharmacol 2018; 9:1425. [PMID: 30568592 PMCID: PMC6290070 DOI: 10.3389/fphar.2018.01425] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, many members of the FK506-binding protein (FKBP) family were increasingly linked to various diseases. The binding domain of FKBPs differs only in a few amino acid residues, but their biological roles are versatile. High-affinity ligands with selectivity between close homologs are scarce. This review will give an overview of the most prominent ligands developed for FKBPs and highlight a perspective for future developments. More precisely, human FKBPs and correlated diseases will be discussed as well as microbial FKBPs in the context of anti-bacterial and anti-fungal therapeutics. The last section gives insights into high-affinity ligands as chemical tools and dimerizers.
Collapse
Affiliation(s)
| | | | | | - Felix Hausch
- Department of Chemistry, Institute of Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| |
Collapse
|
18
|
Visualization and targeting of LGR5 + human colon cancer stem cells. Nature 2017; 545:187-192. [PMID: 28355176 DOI: 10.1038/nature22081] [Citation(s) in RCA: 539] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 03/23/2017] [Indexed: 12/25/2022]
Abstract
The cancer stem cell (CSC) theory highlights a self-renewing subpopulation of cancer cells that fuels tumour growth. The existence of human CSCs is mainly supported by xenotransplantation of prospectively isolated cells, but their clonal dynamics and plasticity remain unclear. Here, we show that human LGR5+ colorectal cancer cells serve as CSCs in growing cancer tissues. Lineage-tracing experiments with a tamoxifen-inducible Cre knock-in allele of LGR5 reveal the self-renewal and differentiation capacity of LGR5+ tumour cells. Selective ablation of LGR5+ CSCs in LGR5-iCaspase9 knock-in organoids leads to tumour regression, followed by tumour regrowth driven by re-emerging LGR5+ CSCs. KRT20 knock-in reporter marks differentiated cancer cells that constantly diminish in tumour tissues, while reverting to LGR5+ CSCs and contributing to tumour regrowth after LGR5+ CSC ablation. We also show that combined chemotherapy potentiates targeting of LGR5+ CSCs. These data provide insights into the plasticity of CSCs and their potential as a therapeutic target in human colorectal cancer.
Collapse
|
19
|
Ahmed M, Chaudhari K, Babaei-Jadidi R, Dekker LV, Shams Nateri A. Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells. Stem Cells 2017; 35:839-850. [DOI: 10.1002/stem.2579] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Mehreen Ahmed
- Cancer Genetics & Stem Cell Group; Nottingham United Kingdom
| | | | - Roya Babaei-Jadidi
- Cancer Genetics & Stem Cell Group; Nottingham United Kingdom
- Tumor & Vascular Biology Laboratories; Cancer Biology, Division of Cancer and Stem Cells, School of Medicine; Nottingham United Kingdom
| | - Lodewijk V. Dekker
- Division of Medicinal Chemistry and Structural Biology, School of Pharmacy; Centre for Biomolecular Science, University of Nottingham; Nottingham United Kingdom
| | | |
Collapse
|
20
|
Li W, Lee MR, Choi E, Cho MY. Clinicopathologic Significance of Survivin Expression in Relation to CD133 Expression in Surgically Resected Stage II or III Colorectal Cancer. J Pathol Transl Med 2016; 51:17-23. [PMID: 27989099 PMCID: PMC5267540 DOI: 10.4132/jptm.2016.09.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023] Open
Abstract
Background Cancer stem cells have been investigated as new targets for colorectal cancer (CRC) treatment. We recently reported that CD133+ colon cancer cells showed chemoresistance to 5-fluorouracil through increased survivin expression and proposed the survivin inhibitor YM155 as an effective therapy for colon cancer in an in vitro study. Here, we investigate the relationship between survivin and CD133 expression in surgically resected CRC to identify whether the results obtained in our in vitro study are applicable to clinical samples. Methods We performed immunohistochemical staining for survivin and CD133 in surgically resected tissue from 187 stage II or III CRC patients. We also comparatively analyzed apoptosis according to survivin and CD133 expression using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling. Results The results of the Mantel-Haenszel test established a linear association between nuclear survivin and CD133 expression (p = .018), although neither had prognostic significance, according to immunohistochemical expression level. No correlation was found between survivin expression and the following pathological parameters: invasion depth, lymph node metastasis, or histologic differentiation (p > .05). The mean apoptotic index in survivin+ and CD133+ tumors was higher than that in negative tumors: 5.116 ± 4.894 in survivin+ versus 4.103 ± 3.691 in survivin– (p = .044); 5.165 ± 4.961 in CD133+ versus 4.231 ± 3.812 in CD133– (p = .034). Conclusions As observed in our in vitro study, survivin expression is significantly related to CD133 expression. Survivin may be considered as a new therapeutic target for chemoresistant CRC.
Collapse
Affiliation(s)
- Wanlu Li
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Mi-Ra Lee
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - EunHee Choi
- Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Mee-Yon Cho
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea.,Institute of Genomic Cohort, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
21
|
Koren E, Fuchs Y. The bad seed: Cancer stem cells in tumor development and resistance. Drug Resist Updat 2016; 28:1-12. [DOI: 10.1016/j.drup.2016.06.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/11/2016] [Accepted: 06/19/2016] [Indexed: 12/17/2022]
|
22
|
Ahmad R, Dhawan P, Singh AB. Cancer Stem Cell and Gastrointestinal Cancer: Current Status, Targeted Therapy and Future Implications. ACTA ACUST UNITED AC 2016; 5. [PMID: 31656694 PMCID: PMC6814166 DOI: 10.4172/2167-0501.1000202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cancer stem cells (CSCs) are biologically distinct subset of rare cancer cells with inherent ability of self-renewal, de-differentiation, and capacity to initiate and maintain malignant tumor growth. Studies have further reported that CSCs prime cancer recurrence and therapy resistance. Therefore, targeting CSCs to inhibit cancer progression has become an attractive anti-cancer therapeutical strategy. Recent technical advances have provided a greater appreciation of the multistep nature of the oncogenesis and also clarified that CSC concept is not universally applicable. Irrespective, the role of the CSCs in gastrointestinal (GI) cancers, responsible for the most cancer-associated death, has been widely accepted and appreciated. However, despite the tremendous progress made in the last decade in developing markers to identify CSCs, and assays to assess tumorigenic function of CSCs, it remains an area of active investigation. In current article, we review findings related to the role and identification of CSCs in GI-cancers and discuss the crucial pathways involved in regulating CSCs populations’ development and drug resistance, and use of the tumoroid culture to test novel CSCs-targeted cancer therapies.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,VA Nebraska- Western Iowa Health Care System, Omaha, NE, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,VA Nebraska- Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
23
|
Klopfleisch R, Kohn B, Gruber AD. Mechanisms of tumour resistance against chemotherapeutic agents in veterinary oncology. Vet J 2015; 207:63-72. [PMID: 26526523 DOI: 10.1016/j.tvjl.2015.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022]
Abstract
Several classes of chemotherapy drugs are used as first line or adjuvant treatment of the majority of tumour types in veterinary oncology. However, some types of tumour are intrinsically resistant to several anti-cancer drugs, and others, while initially sensitive, acquire resistance during treatment. Chemotherapy often significantly prolongs survival or disease free interval, but is not curative. The exact mechanisms behind intrinsic and acquired chemotherapy resistance are unknown for most animal tumours, but there is increasing knowledge on the mechanisms of drug resistance in humans and a few reports on molecular changes in resistant canine tumours have emerged. In addition, approaches to overcome or prevent chemotherapy resistance are becoming available in humans and, given the overlaps in molecular alterations between human and animal tumours, these may also be relevant in veterinary oncology. This review provides an overview of the current state of research on general chemotherapy resistance mechanisms, including drug efflux, DNA repair, apoptosis evasion and tumour stem cells. The known resistance mechanisms in animal tumours and the potential of these findings for improving treatment efficacy in veterinary oncology are also explored.
Collapse
Affiliation(s)
- R Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany.
| | - B Kohn
- Small Animal Clinic, Freie Universität Berlin, Oertzenweg 19 b, 14163 Berlin, Germany
| | - A D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, 14163 Berlin, Germany
| |
Collapse
|
24
|
Sensitizing osteosarcoma stem cells to doxorubicin-induced apoptosis through retention of doxorubicin and modulation of apoptotic-related proteins. Life Sci 2015; 130:47-56. [DOI: 10.1016/j.lfs.2015.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/27/2015] [Accepted: 03/11/2015] [Indexed: 01/13/2023]
|
25
|
Lee MR, Ji SY, Mia-Jan K, Cho MY. Chemoresistance of CD133(+) colon cancer may be related with increased survivin expression. Biochem Biophys Res Commun 2015; 463:229-34. [PMID: 26002465 DOI: 10.1016/j.bbrc.2015.05.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/09/2015] [Indexed: 12/21/2022]
Abstract
CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133(+) colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133(-) cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133(+) and siRNA-induced CD133(-) cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133(+) cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133(+) cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133(+) cells at 96 h after siRNA transfection. From this study, we conclude that CD133(+) cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133(+) colon cancer.
Collapse
Affiliation(s)
- Mi-Ra Lee
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, South Korea
| | - Sun-Young Ji
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, South Korea
| | - Khalilullah Mia-Jan
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, South Korea
| | - Mee-Yon Cho
- Department of Pathology, Yonsei University, Wonju College of Medicine, Wonju, South Korea; Institute of Genomic Cohort, Yonsei University, Wonju College of Medicine, Wonju, South Korea.
| |
Collapse
|
26
|
Colak S, Medema JP. Cancer stem cells--important players in tumor therapy resistance. FEBS J 2014; 281:4779-91. [PMID: 25158828 DOI: 10.1111/febs.13023] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/07/2014] [Accepted: 08/20/2014] [Indexed: 01/02/2023]
Abstract
Resistance to tumor therapy is an unsolved problem in cancer treatment. A plethora of studies have attempted to explain this phenomenon and many mechanisms of resistance have been suggested over recent decades. The concept of cancer stem cells (CSCs), which describes tumors as hierarchically organized, has added a new level of complexity to therapy failure. CSCs are the root of cancers and resist chemo- and radiotherapy, explaining cancer recurrence even many years after therapy is ended. This review discusses briefly CSCs in cancers, gives an overview of the role of CSCs in therapy resistance, and discusses the potential means of targeting these therapy-resistant tumor cells.
Collapse
Affiliation(s)
- Selcuk Colak
- LEXOR (Laboratory of Experimental Oncology and Radiobiology), Center for Experimental Molecular Medicine and Cancer Genomics Center, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
27
|
Decreased mitochondrial priming determines chemoresistance of colon cancer stem cells. Cell Death Differ 2014; 21:1170-7. [PMID: 24682005 DOI: 10.1038/cdd.2014.37] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/09/2014] [Accepted: 02/09/2014] [Indexed: 12/20/2022] Open
Abstract
Tumor heterogeneity is in part determined by the existence of cancer stem cells (CSCs) and more differentiated tumor cells. CSCs are considered to be the tumorigenic root of cancers and suggested to be chemotherapy resistant. Here we exploited an assay that allowed us to measure chemotherapy-induced cell death in CSCs and differentiated tumor cells simultaneously. This confirmed that CSCs are selectively resistant to conventional chemotherapy, which we revealed is determined by decreased mitochondrial priming. In agreement, lowering the anti-apoptotic threshold using ABT-737 and WEHI-539 was sufficient to enhance chemotherapy efficacy, whereas ABT-199 failed to sensitize CSCs. Our data therefore point to a crucial role of BCLXL in protecting CSCs from chemotherapy and suggest that BH3 mimetics, in combination with chemotherapy, can be an efficient way to target chemotherapy-resistant CSCs.
Collapse
|
28
|
Joudeh J, Allen JE, Das A, Prabhu V, Farbaniec M, Adler J, El-Deiry WS. Novel antineoplastics targeting genetic changes in colorectal cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:1-34. [PMID: 23288633 DOI: 10.1007/978-1-4614-6176-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytotoxic chemotherapy remains the mainstay of the medical -management of colorectal cancer (CRC). Research over the last two decades has led to a molecular understanding of the oncogenic mechanisms involved in CRC and has contributed to the rational development of antineoplastics that target these mechanisms. During carcinogenesis, genetic changes often occur in molecules that play key functional roles in cancer such as cell proliferation, angiogenesis, apoptosis, cell death and immune-mediated destruction of cancer cells. Here, we review novel antineoplastics that are approved or in development for CRC that target molecules associated with genetic aberrations in CRC. Some of these targeted antineoplastics have proven effective against other solid tumors and hold promise in treating CRC whereas others are now routinely used in combination with cytotoxic agents. This article reviews antineoplastics that target genetic changes in CRC, their antitumor mechanisms, and their stage of development.
Collapse
Affiliation(s)
- Jamal Joudeh
- Penn State Hershey Medical Center, Hershey, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR, Corbeil D, Kunz-Schughart LA. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol 2012; 229:355-78. [DOI: 10.1002/path.4086] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/30/2012] [Accepted: 08/04/2012] [Indexed: 12/11/2022]
Affiliation(s)
- Philipp Grosse-Gehling
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Christine A Fargeas
- Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD); Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Claudia Dittfeld
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Yvette Garbe
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Malcolm R Alison
- Blizard Institute; Barts and The London School of Medicine and Dentistry; London; UK
| | - Denis Corbeil
- Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD); Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| | - Leoni A Kunz-Schughart
- Tumor Pathophysiology, OncoRay, National Center for Radiation Research in Oncology; Dresden University of Technology; Fetscherstrasse 74; 01307; Dresden; Germany
| |
Collapse
|
30
|
Caruso S, Bazan V, Rolfo C, Insalaco L, Fanale D, Bronte G, Corsini LR, Rizzo S, Cicero G, Russo A. MicroRNAs in colorectal cancer stem cells: new regulators of cancer stemness? Oncogenesis 2012; 1:e32. [PMID: 23552465 PMCID: PMC3511678 DOI: 10.1038/oncsis.2012.33] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recently, the hypothesis that colorectal tumors originate from a subpopulation of cells called ‘cancer stem cells' (CSCs) or tumor-initiating cells, which exhibit stem-like features, has been confirmed experimentally in various human cancers. Several studies have confirmed the existence of colorectal CSCs (CRCSCs) and have demonstrated that this rare cell population can be isolated by the expression of specific cell surface biomarkers. MicroRNAs (miRNAs) are a class of small non-coding RNAs, which are crucial for post-transcriptional regulation of gene expression and participate in a wide variety of biological functions, including development, cell proliferation, differentiation, metabolism and signal transduction. Moreover, new evidences suggest that miRNAs could contribute to preserve stemness of embryonic stem cells and could be involved in maintaining stemness of CSCs. Recent studies have begun to outline the role of miRNAs in regulation of CRCSCs. This review aims to summarize the recent advancement about the roles of miRNAs in CRCSCs that may represent a step forward in understanding the molecular mechanisms and the possible approaches for colorectal cancer therapy.
Collapse
Affiliation(s)
- S Caruso
- Section of Medical Oncology, Department of Surgical and Oncology Sciences, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fulda S. Regulation of apoptosis pathways in cancer stem cells. Cancer Lett 2012; 338:168-73. [PMID: 22429999 DOI: 10.1016/j.canlet.2012.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 12/18/2022]
Abstract
Cancer stem cell are considered to represent a population within the bulk tumor that share many similarities to normal stem cells as far as their capacities to self-renew, differentiate, proliferate and to reconstitute the entire tumor upon serial transplantation are concerned. Since cancer stem cells have been shown to be critical for maintaining tumor growth and have been implicated in treatment resistance and tumor progression, they constitute relevant targets for therapeutic intervention. Indeed, it has been postulated that eradication of cancer stem cells will be pivotal in order to achieve long-term relapse-free survival. However, one of the hallmarks of cancer stem cells is their high resistance to undergo cell death including apoptosis in response to environmental cues or cytotoxic stimuli. Since activation of apoptosis programs in tumor cells underlies the antitumor activity of most currently used cancer therapeutics, it will be critical to develop strategies to overcome the intrinsic resistance to apoptosis of cancer stem cells. Thus, a better understanding of the molecular mechanisms that are responsible for the ability of cancer stem cells to evade apoptosis will likely open new avenues to target this critical pool of cells within the tumor in order to develop more efficient treatment options for patients suffering from cancer.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528 Frankfurt, Germany.
| |
Collapse
|