1
|
Król M, Kupnicka P, Bosiacki M, Chlubek D. Mechanisms Underlying Anti-Inflammatory and Anti-Cancer Properties of Stretching-A Review. Int J Mol Sci 2022; 23:ijms231710127. [PMID: 36077525 PMCID: PMC9456560 DOI: 10.3390/ijms231710127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 02/07/2023] Open
Abstract
Stretching is one of the popular elements in physiotherapy and rehabilitation. When correctly guided, it can help minimize or slow down the disabling effects of chronic health conditions. Most likely, the benefits are associated with reducing inflammation; recent studies demonstrate that this effect from stretching is not just systemic but also local. In this review, we present the current body of knowledge on the anti-inflammatory properties of stretching at a molecular level. A total of 22 papers, focusing on anti-inflammatory and anti-cancer properties of stretching, have been selected and reviewed. We show the regulation of oxidative stress, the expression of pro- and anti-inflammatory genes and mediators, and remodeling of the extracellular matrix, expressed by changes in collagen and matrix metalloproteinases levels, in tissues subjected to stretching. We point out that a better understanding of the anti-inflammatory properties of stretching may result in increasing its importance in treatment and recovery from diseases such as osteoarthritis, systemic sclerosis, and cancer.
Collapse
Affiliation(s)
- Małgorzata Król
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence:
| | - Mateusz Bosiacki
- Chair and Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska 54, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Prediction of Regulatory SNPs in Putative Minor Genes of the Neuro-Cardiovascular Variant in Fabry Reveals Insights into Autophagy/Apoptosis and Fibrosis. BIOLOGY 2022; 11:biology11091287. [PMID: 36138766 PMCID: PMC9495465 DOI: 10.3390/biology11091287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Even though a mutation in monogenic diseases leads to a “classic” manifestation, many disorders exhibit great clinical variability that could be due to modifying genes also called minor genes. Fabry disease (FD) is an X-linked inborn error resulting from the deficient or absent activity of alpha-galactosidase A (α-GAL) enzyme, that leads to deposits of globotriaosylceramide. With our proprietary software SNPclinic v.1.0, we analyzed 110 single nucleotide polymorphisms (SNPs) in the proximal promoter of 14 genes that could modify the FD phenotype FD. We found seven regulatory-SNP (rSNPs) in three genes (IL10, TGFB1 and EDN1) in five cell lines relevant to FD (Cardiac myocytes and fibroblasts, Astrocytes-cerebellar, endothelial cells and T helper cells 1-TH1). Each SNP was confirmed as a true rSNP in public eQTL databases, and additional software suggested the prediction of variants. The two proposed rSNPs in IL10, could explain components for the regulation of active B cells that influence the fibrosis process. The three predicted rSNPs in TGFB1, could act in apoptosis-autophagy regulation. The two putative rSNPs in EDN1, putatively regulate chronic inflammation. The seven rSNPs described here could act to modulate Fabry’s clinical phenotype so we propose that IL10, TGFB1 and EDN1 be considered minor genes in FD.
Collapse
|
3
|
Mou Z, Yuan YH, Zhang Z, Song LK, Chen NH. Endoplasmic reticulum stress, an important factor in the development of Parkinson’s disease. Toxicol Lett 2020; 324:20-29. [DOI: 10.1016/j.toxlet.2020.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
|
4
|
Yang F, Ma H, Butler MR, Ding XQ. Potential contribution of ryanodine receptor 2 upregulation to cGMP/PKG signaling-induced cone degeneration in cyclic nucleotide-gated channel deficiency. FASEB J 2020; 34:6335-6350. [PMID: 32173907 PMCID: PMC7299158 DOI: 10.1096/fj.201901951rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/01/2020] [Accepted: 03/01/2020] [Indexed: 12/28/2022]
Abstract
Photoreceptor cyclic nucleotide-gated (CNG) channels regulate Ca2+ influx in rod and cone photoreceptors. Mutations in cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. Mice lacking functional cone CNG channel show endoplasmic reticulum (ER) stress-associated cone degeneration. The elevated cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) signaling and upregulation of the ER Ca2+ channel ryanodine receptor 2 (RyR2) have been implicated in cone degeneration. This work investigates the potential contribution of RyR2 to cGMP/PKG signaling-induced ER stress and cone degeneration. We demonstrated that the expression and activity of RyR2 were highly regulated by cGMP/PKG signaling. Depletion of cGMP by deleting retinal guanylate cyclase 1 or inhibition of PKG using chemical inhibitors suppressed the upregulation of RyR2 in CNG channel deficiency. Depletion of cGMP or deletion of Ryr2 equivalently inhibited unfolded protein response/ER stress, activation of the CCAAT-enhancer-binding protein homologous protein, and activation of the cyclic adenosine monophosphate response element-binding protein, leading to early-onset cone protection. In addition, treatment with cGMP significantly enhanced Ryr2 expression in cultured photoreceptor-derived Weri-Rb1 cells. Findings from this work demonstrate the regulation of cGMP/PKG signaling on RyR2 in the retina and support the role of RyR2 upregulation in cGMP/PKG signaling-induced ER stress and photoreceptor degeneration.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael R. Butler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
5
|
Chu YL, Xu YR, Yang WX, Sun Y. The role of FSH and TGF-β superfamily in follicle atresia. Aging (Albany NY) 2019; 10:305-321. [PMID: 29500332 PMCID: PMC5892684 DOI: 10.18632/aging.101391] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/23/2018] [Indexed: 01/02/2023]
Abstract
Most of the mammalian follicles undergo a degenerative process called “follicle atresia”. Apoptosis of granulosa cells is the main characteristic of follicle atresia. Follicle stimulating hormone (FSH) and the transforming growth factor β (TGF-β) superfamily have important regulatory functions in this process. FSH activates protein kinase A and cooperating with insulin receptor substrates, it promotes the PI3K/Akt pathway which weakens apoptosis. Both Smad or non-Smad signaling of the transforming growth factor β superfamily seem to be related to follicle atresia, and the effect of several important family members on follicle atresia is concluded in this article. FSH and TGF-β are likely to mutually influence each other and what we have already known about the possible underlying molecular mechanism is also discussed below.
Collapse
Affiliation(s)
- Yu-Lan Chu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ya-Ru Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Sun
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
A novel combinatorial treatment option for metastatic uveal melanoma. Oncotarget 2018; 9:26096-26108. [PMID: 29899845 PMCID: PMC5995237 DOI: 10.18632/oncotarget.25445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/28/2018] [Indexed: 01/01/2023] Open
Abstract
Uveal melanoma (UM) is the most frequent intraocular tumor in adult patients. When metastases occur, systemic therapy with alkylating agents (fotemustine or dacarbazine (DTIC)) has shown only modest efficacy. The common chemotherapeutic drug doxorubicin (DOX) is not used to treat metastatic UM (mUM). To expand the chemotherapeutic arsenal for mUM, we tested the effect of DOX on UM cell mortality. We have previously shown that CREB knockdown enhances sensitivity to DOX. UM cells infected with recombinant MuLV-based replicative competent retroviruses (RCR) expressing shRNA targeting CREB were co-treated with either DTIC or DOX. We found that CREB knockdown increases the sensitivity of these cells to both DOX and DTIC in normoxia and more so in hypoxia as measured by cell survival and Caspase 3 activation. The ability to combine CREB knockdown by infection with the RCR recombinant virus which preferentially infects replicating tumor cells and chemotherapy to achieve the same amount of cell death in lower concentrations may result in fewer side effects of the drugs. This combination is a possible new treatment for mUM.
Collapse
|
7
|
Qiu Y, Wang Y, Wang X, Wang C, Xia ZY. Role of the hippocampal 5-HT1A receptor-mediated cAMP/PKA signalling pathway in sevoflurane-induced cognitivedysfunction in aged rats. J Int Med Res 2018; 46:1073-1085. [PMID: 29332488 PMCID: PMC5972259 DOI: 10.1177/0300060517744037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective This study aimed to evaluate the role of the hippocampal 5-hydroxytryptamine-1A (5-HT1A)-mediated cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signalling pathway in sevoflurane-induced cognitive dysfunction in aged rats. Methods Sixty 18-month-old Sprague–Dawley rats were divided into the control (n = 30) and experimental (Sev, n = 30) groups. The experimental group inhaled 50% air/oxygen mixture (2 L/min) and 2% sevoflurane for 4 hours. The control group inhaled 50% air/oxygen mixture (2 L/min) for 4 hours. The Morris water maze test was performed The mRNA expression of 5-HT1A receptor, and cAMP PKA, cAMP response element-binding protein (CREB), and phosphorylated CREB (p-CREB) protein expression were determined. Results The escape latency and swimming distance were greater, and the number of crossings of the platform location and time spent in the platform quadrant were less in the Sev group compared with the control group. cAMP, PKA, CREB, and p-CREB protein expression was downregulated in the Sev group 1 day after anaesthesia compared with the control group. Hippocampal 5-HT1A receptor mRNA expression was higher 7 days after anaesthesia compared with the control group. Conclusion Sevoflurane-induced cognitive dysfunction in aged rats may be related to inhibited expression of the hippocampal 5-HT1A receptor-mediated cAMP/PKA signalling pathway.
Collapse
Affiliation(s)
- Yi Qiu
- 1 Department of Anesthesiology, Renmin Hospitai of Wuhan University, Wuhan, Hubei Province, China
| | - Ying Wang
- 2 Department of Anesthesiology, The Second Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia, China
| | - Xiaodong Wang
- 2 Department of Anesthesiology, The Second Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia, China
| | - Caixia Wang
- 2 Department of Anesthesiology, The Second Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia, China
| | - Zhong-Yuan Xia
- 1 Department of Anesthesiology, Renmin Hospitai of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Protein Kinase A/CREB Signaling Prevents Adriamycin-Induced Podocyte Apoptosis via Upregulation of Mitochondrial Respiratory Chain Complexes. Mol Cell Biol 2017; 38:MCB.00181-17. [PMID: 29038164 DOI: 10.1128/mcb.00181-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 09/14/2017] [Indexed: 12/26/2022] Open
Abstract
Previous work showed that the activation of protein kinase A (PKA) signaling promoted mitochondrial fusion and prevented podocyte apoptosis. The cAMP response element binding protein (CREB) is the main downstream transcription factor of PKA signaling. Here we show that the PKA agonist 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate-cyclic AMP (pCPT-cAMP) prevented the production of adriamycin (ADR)-induced reactive oxygen species and apoptosis in podocytes, which were inhibited by CREB RNA interference (RNAi). The activation of PKA enhanced mitochondrial function and prevented the ADR-induced decrease of mitochondrial respiratory chain complex I subunits, NADH-ubiquinone oxidoreductase complex (ND) 1/3/4 genes, and protein expression. Inhibition of CREB expression alleviated pCPT-cAMP-induced ND3, but not the recovery of ND1/4 protein, in ADR-treated podocytes. In addition, CREB RNAi blocked the pCPT-cAMP-induced increase in ATP and the expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1-α). The chromatin immunoprecipitation assay showed enrichment of CREB on PGC1-α and ND3 promoters, suggesting that these promoters are CREB targets. In vivo, both an endogenous cAMP activator (isoproterenol) and pCPT-cAMP decreased the albumin/creatinine ratio in mice with ADR nephropathy, reduced glomerular oxidative stress, and retained Wilm's tumor suppressor gene 1 (WT-1)-positive cells in glomeruli. We conclude that the upregulation of mitochondrial respiratory chain proteins played a partial role in the protection of PKA/CREB signaling.
Collapse
|
9
|
Varga J, Bátor J, Nádasdi G, Árvai Z, Schipp R, Szeberényi J. Partial Protection of PC12 Cells from Cellular Stress by Low-Dose Sodium Nitroprusside Pre-treatment. Cell Mol Neurobiol 2016; 36:1161-8. [PMID: 26626595 PMCID: PMC11482442 DOI: 10.1007/s10571-015-0312-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
The PC12 rat pheochromocytoma cell line is an in vitro model system widely used for the investigation of intracellular signaling events contributing to neuronal differentiation and cell death. We found earlier that the nitric oxide donor compound sodium nitroprusside (SNP) induced apoptosis of PC12 cells if it was applied in high concentration (400 µM). Yoshioka et al. (J Pharmacol Sci 101:126-134, 2006) reported that cell death evoked by cytotoxic concentrations of SNP could be prevented by a 100 µM SNP pre-treatment in a murine macrophage cell line. The apoptosis caused by toxic-dose SNP treatment (400 µM) could be partially overcome in PC12 cells as well by the low-dose SNP pre-treatment. The partial inhibition of apoptosis was accompanied by reduced phosphorylation of certain proteins (such as stress-activated protein kinases, the p53, and the eIF2α proteins), decreased caspase activation, and less intense internucleosomal DNA fragmentation. The 100 µM SNP pre-treatment reduced the pro-apoptotic potential of certain other stress stimuli (serum withdrawal, cisplatin and tunicamycin treatments) as well, although the underlying biochemical changes were not entirely uniform. On the contrary, the 100 µM SNP pre-treatment was unable to prevent cell death caused by the protein synthesis inhibitor anisomycin. Further clarification of the above-mentioned processes may be important in understanding the mechanisms by which mild nitrosative stress protects cells against certain forms of cellular stress conditions.
Collapse
Affiliation(s)
- Judit Varga
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary
- Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary
| | - Judit Bátor
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary
- Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary
| | - Gergő Nádasdi
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary
| | - Zita Árvai
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary
- Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary
| | - Renáta Schipp
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary
- Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary
| | - József Szeberényi
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12., Pecs, 7624, Hungary.
- Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20., Pecs, 7624, Hungary.
| |
Collapse
|
10
|
Anania VG, Yu K, Gnad F, Pferdehirt RR, Li H, Ma TP, Jeon D, Fortelny N, Forrest W, Ashkenazi A, Overall CM, Lill JR. Uncovering a Dual Regulatory Role for Caspases During Endoplasmic Reticulum Stress-induced Cell Death. Mol Cell Proteomics 2016; 15:2293-307. [PMID: 27125827 PMCID: PMC4937505 DOI: 10.1074/mcp.m115.055376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 12/13/2022] Open
Abstract
Many diseases are associated with endoplasmic reticulum (ER) stress, which results from an accumulation of misfolded proteins. This triggers an adaptive response called the "unfolded protein response" (UPR), and prolonged exposure to ER stress leads to cell death. Caspases are reported to play a critical role in ER stress-induced cell death but the underlying mechanisms by which they exert their effect continue to remain elusive. To understand the role caspases play during ER stress, a systems level approach integrating analysis of the transcriptome, proteome, and proteolytic substrate profile was employed. This quantitative analysis revealed transcriptional profiles for most human genes, provided information on protein abundance for 4476 proteins, and identified 445 caspase substrates. Based on these data sets many caspase substrates were shown to be downregulated at the protein level during ER stress suggesting caspase activity inhibits their cellular function. Additionally, RNA sequencing revealed a role for caspases in regulation of ER stress-induced transcriptional pathways and gene set enrichment analysis showed expression of multiple gene targets of essential transcription factors to be upregulated during ER stress upon inhibition of caspases. Furthermore, these transcription factors were degraded in a caspase-dependent manner during ER stress. These results indicate that caspases play a dual role in regulating the cellular response to ER stress through both post-translational and transcriptional regulatory mechanisms. Moreover, this study provides unique insight into progression of the unfolded protein response into cell death, which may help identify therapeutic strategies to treat ER stress-related diseases.
Collapse
Affiliation(s)
| | - Kebing Yu
- From the Departments of ‡Protein Chemistry
| | | | | | | | | | - Diana Jeon
- From the Departments of ‡Protein Chemistry
| | - Nikolaus Fortelny
- ‖Departments of Oral Biological and Medical Sciences, and University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Christopher M Overall
- ‖Departments of Oral Biological and Medical Sciences, and University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
11
|
Markó L, Vigolo E, Hinze C, Park JK, Roël G, Balogh A, Choi M, Wübken A, Cording J, Blasig IE, Luft FC, Scheidereit C, Schmidt-Ott KM, Schmidt-Ullrich R, Müller DN. Tubular Epithelial NF-κB Activity Regulates Ischemic AKI. J Am Soc Nephrol 2016; 27:2658-69. [PMID: 26823548 DOI: 10.1681/asn.2015070748] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022] Open
Abstract
NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of AKI. The cell type-specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)-induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed that IRI induced widespread NF-κB activation in renal tubular epithelia and in interstitial cells that peaked 2-3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBαΔN in renal proximal, distal, and collecting duct epithelial cells. Compared with control mice, these mice exhibited improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration after IRI-induced AKI. Furthermore, tubular NF-κB-dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBαΔN-expressing mice and exposed to hypoxia-mimetic agent cobalt chloride exhibited less apoptosis and expressed lower levels of chemokines than cells from control mice did. Our results indicate that postischemic NF-κB activation in renal tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response.
Collapse
Affiliation(s)
- Lajos Markó
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany;
| | - Emilia Vigolo
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | - Giulietta Roël
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - András Balogh
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mira Choi
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Anne Wübken
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jimmi Cording
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany; and
| | - Ingolf E Blasig
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany; and
| | - Friedrich C Luft
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine, Berlin, Germany; Department of Nephrology, Charité Medical Faculty, Berlin, Germany
| | | | - Dominik N Müller
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
12
|
Chen WK, Kuo WW, Hsieh DJY, Chang HN, Pai PY, Lin KH, Pan LF, Ho TJ, Viswanadha VP, Huang CY. CREB Negatively Regulates IGF2R Gene Expression and Downstream Pathways to Inhibit Hypoxia-Induced H9c2 Cardiomyoblast Cell Death. Int J Mol Sci 2015; 16:27921-30. [PMID: 26610485 PMCID: PMC4661925 DOI: 10.3390/ijms161126067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/23/2015] [Indexed: 01/18/2023] Open
Abstract
During hypoxia, gene expression is altered by various transcription factors. Insulin-like growth factor-II (IGF2) is known to be induced by hypoxia, which binds to IGF2 receptor IGF2R that acts like a G protein-coupled receptor, might cause pathological hypertrophy or activation of the mitochondria-mediated apoptosis pathway. Cyclic adenosine monophosphate (cAMP) responsive element-binding protein (CREB) is central to second messenger-regulated transcription and plays a critical role in the cardiomyocyte survival pathway. In this study, we found that IGF2R level was enhanced in H9c2 cardiomyoblasts exposed to hypoxia in a time-dependent manner but was down-regulated by CREB expression. The over-expression of CREB in H9c2 cardiomyoblasts suppressed the induction of hypoxia-induced IGF2R expression levels and reduced cell apoptosis. Gel shift assay results further indicated that CREB binds to the promoter sequence of IGF2R. With a luciferase assay method, we further observed that CREB represses IGF2R promoter activity. These results suggest that CREB plays an important role in the inhibition of IGF2R expression by binding to the IGF2R promoter and further suppresses H9c2 cardiomyoblast cell apoptosis induced by IGF2R signaling under hypoxic conditions.
Collapse
Affiliation(s)
- Wei-Kung Chen
- Department of Emergency Medicine, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Hsin-Nung Chang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung 40402, Taiwan.
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
- College of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Lung-Fa Pan
- Cardiology Department, Taichung Armed Forces General Hospital. Taichung 41152, Taiwan.
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan.
| | - Tsung-Jung Ho
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Chinese Medicine Department, China Medical University Beigang Hospital, Yunlin 651, Taiwan.
| | | | - Chih-Yang Huang
- Chinese Medicine Department, China Medical University Beigang Hospital, Yunlin 651, Taiwan.
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|