1
|
Kelley N, He Y. Assessment of NLRP3 Inflammasome Activation and NLRP3-NEK7 Complex Assembly. Methods Mol Biol 2023; 2641:17-26. [PMID: 37074638 DOI: 10.1007/978-1-0716-3040-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The NLRP3 inflammasome is a critical component of innate immunity that activates caspase-1 to induce inflammation in response to a wide spectrum of endogenous and exogenous stimuli. NLRP3 inflammasome activation has been shown by assays for the cleavage of caspase-1 and gasdermin D, the maturation of IL-1β and IL-18, and ASC speck formation in innate immune cells such as macrophages and monocytes. Recently, NEK7 has been revealed as an essential regulator for NLRP3 inflammasome activation by forming high-molecular-weight complexes with NLRP3. Blue native polyacrylamide gel electrophoresis (BN-PAGE) has been used to study multi-protein complexes in many experimental systems. Here, we provide a detailed protocol to detect NLRP3 inflammasome activation and NLRP3-NEK7 complex assembly in mouse macrophages by Western blot and BN-PAGE.
Collapse
Affiliation(s)
- Nathan Kelley
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuan He
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
2
|
Diaz-Parga P, Gould A, de Alba E. Natural and engineered inflammasome adapter proteins reveal optimum linker length for self-assembly. J Biol Chem 2022; 298:102501. [PMID: 36116550 PMCID: PMC9640978 DOI: 10.1016/j.jbc.2022.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The inflammasome is a multiprotein complex that triggers the activation of proinflammatory cytokines. The adapter ASC and its isoform ASCb mediate inflammasome assembly via self-association and oligomerization with other inflammasome proteins by homotypic interactions of their two identical Death Domains, PYD and CARD, connected by a linker of different length: 23 (ASC) and 4 (ASCb) amino acids long. However, ASC is a more potent inflammasome activator compared to ASCb. Thus, adapter isoforms might be involved in the regulation of the inflammatory response. As previously reported, ASC's faster and less polydisperse self-association compared to ASCb points to interdomain flexibility resulting from the linker length as a key factor in inflammasome regulation. To test the influence of linker length in self-association, we have engineered the isoform ASC3X with identical PYD and CARD connected by a 69 amino acid-long linker (i.e., three-times longer than ASC's linker). Real-time NMR and dynamic light scattering data indicate that ASC3X polymerization is less effective and more polydisperse compared to ASC or ASCb. However, transmission electron micrographs show that ASC3X can polymerize into filaments. Comparative interdomain dynamics of the three isoforms obtained from NMR relaxation data reveal that ASCb tumbles as a rod, whereas the PYD and CARD of ASC and ASC3X tumble independently with marginally higher interdomain flexibility in ASC3X. Altogether, our data suggest that ASC's linker length is optimized for self-association by allowing enough flexibility to favor intermolecular homotypic interactions but simultaneously keeping both domains sufficiently close for essential participation in filament formation.
Collapse
Affiliation(s)
- Pedro Diaz-Parga
- Department of Bioengineering, School of Engineering, University of California Merced, California, USA; Quantitative Systems Biology PhD Program, University of California Merced, California, USA
| | - Andrea Gould
- Department of Bioengineering, School of Engineering, University of California Merced, California, USA
| | - Eva de Alba
- Department of Bioengineering, School of Engineering, University of California Merced, California, USA.
| |
Collapse
|
3
|
Fan X, Jiao L, Jin T. Activation and Immune Regulation Mechanisms of PYHIN Family During Microbial Infection. Front Microbiol 2022; 12:809412. [PMID: 35145495 PMCID: PMC8822057 DOI: 10.3389/fmicb.2021.809412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
The innate immune system defenses against pathogen infections via patten-recognition receptors (PRRs). PRRs initiate immune responses by recognizing pathogen-associated molecular patterns (PAMPs), including peptidoglycan, lipopolysaccharide, and nucleic acids. Several nucleic acid sensors or families have been identified, such as RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), cyclic GMP-AMP synthase (cGAS), and PYHIN family receptors. In recent years, the PYHIN family cytosolic DNA receptors have increased attention because of their important roles in initiating innate immune responses. The family members in humans include Absent in melanoma 2 (AIM2), IFN-γ inducible protein 16 (IFI16), interferon-inducible protein X (IFIX), and myeloid cell nuclear differentiation antigen (MNDA). The PYHIN family members are also identified in mice, including AIM2, p202, p203, p204, and p205. Herein, we summarize recent advances in understanding the activation and immune regulation mechanisms of the PYHIN family during microbial infection. Furthermore, structural characterizations of AIM2, IFI16, p202, and p204 provide more accurate insights into the signaling mechanisms of PYHIN family receptors. Overall, the molecular details will facilitate the development of reagents to defense against viral infections.
Collapse
Affiliation(s)
- Xiaojiao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianying Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Molecular and Translational Medicine, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Lianying Jiao,
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai, China
- Tengchuan Jin,
| |
Collapse
|
4
|
Diaz-Parga P, de Alba E. Inflammasome regulation by adaptor isoforms, ASC and ASCb, via differential self-assembly. J Biol Chem 2022; 298:101566. [PMID: 35007535 PMCID: PMC8891976 DOI: 10.1016/j.jbc.2022.101566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
ASC is an essential adaptor of the inflammasome, a micrometer-size multiprotein complex that processes proinflammatory cytokines. Inflammasome formation depends on ASC self-association into large assemblies via homotypic interactions of its two death domains, PYD and CARD. ASCb, an alternative splicing isoform, activates the inflammasome to a lesser extent compared with ASC. Thus, it has been postulated that adaptor isoforms differentially regulate inflammasome function. At the amino acid level, ASC and ASCb differ only in the length of the linker connecting the two death domains. To understand inflammasome regulation at the molecular level, we investigated the self-association properties of ASC and ASCb using real-time NMR, dynamic light scattering (DLS), size-exclusion chromatography, and transmission electron microscopy (TEM). The NMR data indicate that ASC self-association is faster than that of ASCb; a kinetic model for this oligomerization results in differing values for both the reaction order and the rate constants. Furthermore, DLS analysis indicates that ASC self-associates into more compact macrostructures compared with ASCb. Finally, TEM data show that ASCb has a reduced tendency to form densely packed filaments relative to ASC. Overall, these differences can only be explained by an effect of the linker length, as the NMR results show structural equivalence of the PYD and CARD in both proteins. The effect of linker length was corroborated by molecular docking with the procaspase-1 CARD domain. Altogether, our results indicate that ASC’s faster and less polydisperse polymerization is more efficient, plausibly explaining inflammasome activation differences by ASC isoforms at the molecular level.
Collapse
Affiliation(s)
- Pedro Diaz-Parga
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, California, USA; Quantitative Systems Biology Ph.D. Program, University of California, Merced, Merced, California, USA
| | - Eva de Alba
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, California, USA.
| |
Collapse
|
5
|
Xu Z, Zhou Y, Liu M, Ma H, Sun L, Zahid A, Chen Y, Zhou R, Cao M, Wu D, Zhao W, Li B, Jin T. Homotypic CARD-CARD interaction is critical for the activation of NLRP1 inflammasome. Cell Death Dis 2021; 12:57. [PMID: 33431827 PMCID: PMC7801473 DOI: 10.1038/s41419-020-03342-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
Abstract
Cytosolic inflammasomes are supramolecular complexes that are formed in response to intracellular pathogens and danger signals. However, as to date, the detailed description of a homotypic caspase recruitment domain (CARD) interaction between NLRP1 and ASC has not been presented. We found the CARD-CARD interaction between purified NLRP1CARD and ASCCARD experimentally and the filamentous supramolecular complex formation in an in vitro proteins solution. Moreover, we determined a high-resolution crystal structure of the death domain fold of the human ASCCARD. Mutational and structural analysis revealed three conserved interfaces of the death domain superfamily (Type I, II, and III), which mediate the assembly of the NLRP1CARD/ASCCARD complex. In addition, we validated the role of the three major interfaces of CARDs in assembly and activation of NLRP1 inflammasome in vitro. Our findings suggest a Mosaic model of homotypic CARD interactions for the activation of NLRP1 inflammasome. The Mosaic model provides insights into the mechanisms of inflammasome assembly and signal transduction amplification.
Collapse
Affiliation(s)
- Zhihao Xu
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China ,grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Ying Zhou
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Muziying Liu
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Huan Ma
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Liangqi Sun
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Ayesha Zahid
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Yulei Chen
- grid.411902.f0000 0001 0643 6866College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021 China
| | - Rongbin Zhou
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China ,grid.9227.e0000000119573309CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031 China
| | - Minjie Cao
- grid.411902.f0000 0001 0643 6866College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021 China
| | - Dabao Wu
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Weidong Zhao
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Bofeng Li
- grid.59053.3a0000000121679639Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China 230001
| | - Tengchuan Jin
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China ,grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China ,grid.9227.e0000000119573309CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031 China
| |
Collapse
|
6
|
Devi S, Stehlik C, Dorfleutner A. An Update on CARD Only Proteins (COPs) and PYD Only Proteins (POPs) as Inflammasome Regulators. Int J Mol Sci 2020; 21:E6901. [PMID: 32962268 PMCID: PMC7555848 DOI: 10.3390/ijms21186901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammasomes are protein scaffolds required for the activation of caspase-1 and the subsequent release of interleukin (IL)-1β, IL-18, and danger signals, as well as the induction of pyroptotic cell death to restore homeostasis following infection and sterile tissue damage. However, excessive inflammasome activation also causes detrimental inflammatory disease. Therefore, extensive control mechanisms are necessary to prevent improper inflammasome responses and inflammatory disease. Inflammasomes are assembled by sequential nucleated polymerization of Pyrin domain (PYD) and caspase recruitment domain (CARD)-containing inflammasome components. Once polymerization is nucleated, this process proceeds in a self-perpetuating manner and represents a point of no return. Therefore, regulation of this key step is crucial for a controlled inflammasome response. Here, we provide an update on two single domain protein families containing either a PYD or a CARD, the PYD-only proteins (POPs) and CARD-only proteins (COPs), respectively. Their structure allows them to occupy and block access to key protein-protein interaction domains necessary for inflammasome assembly, thereby regulating the threshold of these nucleated polymerization events, and consequently, the inflammatory host response.
Collapse
Affiliation(s)
- Savita Devi
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
| | - Christian Stehlik
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
- Department of Biomedical Sciences, and Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai, Los Angeles, CA 90048, USA
| | - Andrea Dorfleutner
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
- Department of Biomedical Sciences, Cedars Sinai, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
de Alba E. Structure, interactions and self-assembly of ASC-dependent inflammasomes. Arch Biochem Biophys 2019; 670:15-31. [PMID: 31152698 PMCID: PMC8455077 DOI: 10.1016/j.abb.2019.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
The inflammasome is a multi-protein platform that assembles upon the presence of cues derived from infection or tissue damage, and triggers the inflammatory response. Inflammasome components include sensor proteins that detect danger signals, procaspase 1 and the adapter ASC (apoptosis-associated speck-like protein containing a CARD) tethering these molecules together. Upon inflammasome assembly, procaspase 1 self-activates and renders functional cytokines to arbitrate in the defense mechanism. This assembly is mediated by self-association and protein interactions via Death Domains. The inflammasome plays a critical role in innate immunity and its dysregulation is the culprit of many autoimmune disorders. An in-depth understanding of the factors involved in inflammasome assembly could help fight these conditions. This review describes our current knowledge on the biophysical aspects of inflammasome formation from the perspective of ASC. The specific characteristics of the three-dimensional solution structure and interdomain dynamics of ASC are explained in relation to its function in inflammasome assembly. Additionally, the review elaborates on the identification of ASC interacting surfaces at the amino acid level using NMR techniques. Finally, the macrostructures formed by full-length ASC and its two Death Domains studied with Transmission Electron Microscopy are compared in the context of a directional model for inflammasome assembly.
Collapse
Affiliation(s)
- Eva de Alba
- Department of Bioengineering. School of Engineering. University of California, Merced, 5200 North Lake Road, Merced, CA, 95343, USA.
| |
Collapse
|
8
|
Diaz-Parga P, de Alba E. Protein interactions of the inflammasome adapter ASC by solution NMR. Methods Enzymol 2019; 625:223-252. [PMID: 31455529 PMCID: PMC8455076 DOI: 10.1016/bs.mie.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ASC (apoptosis-associated speck-like protein containing a CARD) is a modular protein that functions as an adapter of the inflammasome, a multi-protein complex that triggers the inflammatory response in the presence of infection or cell damage. ASC bridges the inflammasome components (PYD-containing sensors and procaspase 1) via homotypic interactions mediated by its two death domains, PYD and CARD. The self-assembly and oligomerization of multiple copies of these three proteins result in the activation of procaspase 1, in turn rendering different cytokines functional. An in-depth understanding of ASC binding capabilities is crucial to decipher the molecular mechanisms of its role in inflammasome formation. In this chapter, we discuss the use of solution NMR to identify specific interacting surfaces of the inflammasome adapter ASC, and describe detailed protocols to perform NMR titrations with Death Domains to obtain apparent dissociation constants of the resulting complexes. The incorporation of NMR restraints in molecular docking to obtain models of these protein assemblies is presented.
Collapse
Affiliation(s)
- Pedro Diaz-Parga
- Department of Bioengineering, School of Engineering, University of California, Merced, CA, United States,Quantitative Systems Biology Graduate Program, University of California, Merced, CA, United States
| | - Eva de Alba
- Department of Bioengineering, School of Engineering, University of California, Merced, CA, United States,Corresponding author:
| |
Collapse
|
9
|
Li Y, Huang Y, Cao X, Yin X, Jin X, Liu S, Jiang J, Jiang W, Xiao TS, Zhou R, Cai G, Hu B, Jin T. Functional and structural characterization of zebrafish ASC. FEBS J 2018; 285:2691-2707. [PMID: 29791979 PMCID: PMC6105367 DOI: 10.1111/febs.14514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/29/2018] [Accepted: 05/18/2018] [Indexed: 01/07/2023]
Abstract
The zebrafish genome encodes homologs for most of the proteins involved in inflammatory pathways; however, the molecular components and activation mechanisms of fish inflammasomes are largely unknown. ASC [apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)] is the only adaptor involved in the formation of multiple types of inflammasomes. Here, we demonstrate that zASC is also involved in inflammasome activation in zebrafish. When overexpressed in vitro and in vivo in zebrafish, both the zASC and zASC pyrin domain (PYD) proteins form speck and filament structures. Importantly, the crystal structures of the N-terminal PYD and C-terminal CARD of zebrafish ASC were determined independently as two separate entities fused to maltose-binding protein. Structure-guided mutagenesis revealed the functional relevance of the PYD hydrophilic surface found in the crystal lattice. Finally, the fish caspase-1 homolog Caspy, but not the caspase-4/11 homolog Caspy2, interacts with zASC through homotypic PYD-PYD interactions, which differ from those in mammals. These observations establish the conserved and unique structural/functional features of the zASC-dependent inflammasome pathway. DATABASE Structural data are available in the PDB under accession numbers 5GPP and 5GPQ.
Collapse
Affiliation(s)
- Yajuan Li
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Yi Huang
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Xiaocong Cao
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Xueying Yin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Xiangyu Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Sheng Liu
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Jiansheng Jiang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wei Jiang
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Rongbin Zhou
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Gang Cai
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Bing Hu
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China,CAS Center for Excellence in Molecular Cell Science, Shanghai, China
| |
Collapse
|
10
|
Jin T, Huang M, Jiang J, Smith P, Xiao TS. Crystal structure of human NLRP12 PYD domain and implication in homotypic interaction. PLoS One 2018; 13:e0190547. [PMID: 29293680 PMCID: PMC5749810 DOI: 10.1371/journal.pone.0190547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/15/2017] [Indexed: 11/23/2022] Open
Abstract
NLRP12 is a NOD-like receptor that plays multiple roles in both inflammation and tumorigenesis. Despite the importance, little is known about its mechanism of action at the molecular level. Here, we report the crystal structure of NLRP12 PYD domain at 1.70 Å fused with an maltose-binding protein (MBP) tag. Interestingly, the PYD domain forms a dimeric configuration through a disulfide bond in the crystal. The possible biological significance is discussed in the context of ROS induced NF-κB activation.
Collapse
Affiliation(s)
- Tengchuan Jin
- Laboratory of structural immunology, CAS Key Laboratory of innate immunity and chronic diseases, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, PRC
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (TJ); (TSX)
| | - Mo Huang
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jiansheng Jiang
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patrick Smith
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tsan Sam Xiao
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (TJ); (TSX)
| |
Collapse
|
11
|
Krocova Z, Macela A, Kubelkova K. Innate Immune Recognition: Implications for the Interaction of Francisella tularensis with the Host Immune System. Front Cell Infect Microbiol 2017; 7:446. [PMID: 29085810 PMCID: PMC5650615 DOI: 10.3389/fcimb.2017.00446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
The intracellular bacterial pathogen Francisella tularensis causes serious infectious disease in humans and animals. Moreover, F. tularensis, a highly infectious pathogen, poses a major concern for the public as a bacterium classified under Category A of bioterrorism agents. Unfortunately, research has so far failed to develop effective vaccines, due in part to the fact that the pathogenesis of intracellular bacteria is not fully understood and in part to gaps in our understanding of innate immune recognition processes leading to the induction of adaptive immune response. Recent evidence supports the concept that immune response to external stimuli in the form of bacteria is guided by the primary interaction of the bacterium with the host cell. Based on data from different Francisella models, we present here the basic paradigms of the emerging innate immune recognition concept. According to this concept, the type of cell and its receptor(s) that initially interact with the target constitute the first signaling window; the signals produced in the course of primary interaction of the target with a reacting cell act in a paracrine manner; and the innate immune recognition process as a whole consists in a series of signaling windows modulating adaptive immune response. Finally, the host, in the strict sense, is the interacting cell.
Collapse
Affiliation(s)
- Zuzana Krocova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Ales Macela
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
12
|
Qu X, Xia X, Lai Z, Zhong T, Li G, Fan L, Shu W. Apoptosis-like cell death induced by nematocyst venom from Chrysaora helvola Brandt jellyfish and an in vitro evaluation of commonly used antidotes. Comp Biochem Physiol C Toxicol Pharmacol 2016; 180:31-9. [PMID: 26538054 DOI: 10.1016/j.cbpc.2015.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 11/15/2022]
Abstract
The present work investigated the in vitro cytotoxicity of nematocyst venom (NV) from Chrysaora helvola Brandt (C. helvola) jellyfish against human MCF-7 and CNE-2 tumor cell lines. Potent cytotoxicity was quantified using the MTT assay (LC50=12.07±3.13 and 1.6±0.22μg/mL (n=4), respectively). Apoptosis-like cell death was further confirmed using the LDH release assay and Annexin V/PI double staining-based flow cytometry analysis. However, only activation of caspase-4 was observed. It is possible that some caspase-independent pathways were activated by the NV treatment. Since no reference or antivenom is available, the effects of several commonly used antidotes on the cytotoxicity of NV were examined on more sensitive CNE-2 cells to determine the appropriate emergency measures for envenomation by C. helvola. The phospholipase A2 (PLA2) inhibitor para-bromophenacyl bromide (pBPB) showed no protective effect, while Mg(2+) potentiated cytotoxicity. Voltage-gated L-type Ca(2+) channel blockers (verapamil, nifedipine and felodipine) and Na-Ca(2+) exchanger inhibitor KB-R7943 also showed no effect. Assays using Ca(2+)-free culture media or the intracellular Ca(2+) chelator BAPTA also could not inhibit the cytotoxicity. Taken together, these results suggest that PLA2 and Ca(2+) are not directly involved in the cytotoxicity of NV from C. helvola. Our work also suggests caution regarding the choice for first aid for envenomation by C. helvola jellyfish.
Collapse
Affiliation(s)
- Xiaosheng Qu
- Engineering Lab for Endangered Medicinal Resources of Southwest China, Guangxi Medicinal Herb Garden, Nanning 530023, China.
| | - Xianghua Xia
- Engineering Lab for Endangered Medicinal Resources of Southwest China, Guangxi Medicinal Herb Garden, Nanning 530023, China
| | - Zefeng Lai
- Department of Pharmacology, Guangxi Medicinal University, Nanning 530021, China
| | - Taozheng Zhong
- Engineering Lab for Endangered Medicinal Resources of Southwest China, Guangxi Medicinal Herb Garden, Nanning 530023, China
| | - Gang Li
- Engineering Lab for Endangered Medicinal Resources of Southwest China, Guangxi Medicinal Herb Garden, Nanning 530023, China
| | - Lanlan Fan
- Guangxi University of Traditional Chinese Medicine, Nanning, 530200, China
| | - Wei Shu
- Department of Cell Biology and Genetics, Guangxi Medicinal University, Nanning 530021, China.
| |
Collapse
|
13
|
Abstract
Inflammasomes are protein complexes that promote the maturation and release of pro-inflammatory cytokines and danger signals as well as pyroptosis in response to infections and cellular stress. Inflammasomes consist of a sensor, an adapter, and the effector caspase-1, which interact through homotypic interactions of caspase recruitment domains (CARDs) or PYRIN domains (PYDs). Hence, decoy proteins encoding only a CARD or PYD, COPs and POPs, respectively, are assumed to inhibit inflammasome assembly. Sensors encoding a PYD belong to the families of NOD-like receptors containing a PYD (NLRPs) or AIM2-like receptors (ALRs), which interact with the PYD- and CARD-containing adapter ASC through homotypic PYD interactions. Subsequently, ASC undergoes PYD-dependent oligomerization, which promotes CARD-mediated interactions between ASC and caspase-1, resulting in caspase-1 activation. POPs are suggested to interfere with the interaction between NLRPs/ALRs and ASC to prevent nucleation of ASC and therefore prevent an oligomeric platform for caspase-1 activation. Similarly, COPs are suggested to bind to the CARD of caspase-1 to prevent its recruitment to the oligomeric ASC platform and its activation. Alternatively, the adapter ASC may regulate inflammasome activity by expressing different isoforms, which are either capable or incapable of assembling an oligomeric ASC platform. The molecular mechanism of inflammasome assembly has only recently been elucidated, but the effects of most COPs and POPs on inflammasome assembly have not been investigated. Here, we discuss our model of COP- and POP-mediated inflammasome regulation.
Collapse
Affiliation(s)
- Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
14
|
The nematocysts venom of Chrysaora helvola Brandt leads to apoptosis-like cell death accompanied by uncoupling of oxidative phosphorylation. Toxicon 2015; 110:74-8. [PMID: 26718259 DOI: 10.1016/j.toxicon.2015.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 11/21/2022]
Abstract
The present work investigated the effects of the nematocysts venom (NV) from the Chrysaora helvola Brandt (C. helvola) jellyfish on the human nasopharyngeal carcinoma cell line, CNE-2. The medium lethal concentration (LC50), quantified by MTT assays, was 1.7 ± 0.53 μg/mL (n = 5). An atypical apoptosis-like cell death was confirmed by LDH release assay and Annexin V-FITC/PI staining-based flow cytometry. Interestingly, activation of caspase-4 other than caspase-3, -8, -9 and -1 was observed. Moreover, the NV stimuli caused a time-dependent loss of mitochondrial membrane potential (ΔΨm) as was an intracellular ROS burst. These results indicated that there was uncoupling of oxidative phosphorylation (UOP). An examination of the intracellular pH value by a pH-sensitive fluorescent probe, BCECF, suggested that the UOP was due to the time-dependent increase in the intracellular pH. This is the first report that jellyfish venom can induce UOP.
Collapse
|