1
|
Song Y, Chen C, Li W. Ginsenoside Rb 1 in cardiovascular and cerebrovascular diseases: A review of therapeutic potentials and molecular mechanisms. CHINESE HERBAL MEDICINES 2024; 16:489-504. [PMID: 39606264 PMCID: PMC11589305 DOI: 10.1016/j.chmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 11/29/2024] Open
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs), which are circulatory system diseases caused by heart defects and vascular diseases, are the major noncommunicable diseases affecting global public health. With the improvement of economic level and the change of human lifestyle, the prevalence of CCVDs continues to increase. Ginseng (Panax ginseng C. A. Mey.) was widely used in traditional diseases due to its supposed tonic properties. Ginsenoside Rb1 (G-Rb1) is the most abundant active ingredient with multiple pharmacological effects extracted from ginseng, which has been shown to have potential benefits on the cardiovascular system through a variety of mechanisms, including anti-oxidation, anti-inflammatory, regulation of vasodilation, reduction of platelet adhesion, influence of calcium ion channels, improvement of lipid distribution, involving in glucose metabolism and controlling blood sugar. This review reviewed the protective effects of G-Rb1 on CCVDs and its potential mechanisms, such as atherosclerosis (AS), hypertension, coronary heart disease (CHD), ischemic stroke (IS) and periocular microvascular retinopathy. Finally, we reviewed and reported the results of in vivo and in vitro experiments using G-Rb1 to improve CCVDs, highlighted its efficacy, safety, and limitations.
Collapse
Affiliation(s)
- Yueqin Song
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun 130118, China
| |
Collapse
|
2
|
Miao H, Hui H, Fan W, Lin Y, Li H, Li D, Luo M, Qiu F, Jiang B, Zhang Y. Overexpressed pigment epithelium-derived factor alleviates pulmonary hypertension in two rat models induced by monocrotaline and SU5416/hypoxia. Biomed Pharmacother 2024; 172:116303. [PMID: 38377738 DOI: 10.1016/j.biopha.2024.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive and fatal cardiopulmonary disease characterized by vascular remodeling and is associated with endothelial-to-mesenchymal transition (EndoMT). The pigment epithelium-derived factor (PEDF), a secretory protein widely distributed in multiple organs, has been shown to demonstrate anti-EndoMT activity in cardiovascular diseases. In the present study, the role of PEDF in PH was investigated. METHODS For PEDF overexpression, Sprague Dawley rats were infected with an adeno-associated virus through injection via the internal jugular vein. To establish PH models, the animals were subjected to monocrotaline or Sugen/hypoxia. Four weeks later, pulmonary artery angiography was performed, and hemodynamic parameters, right ventricular function, and vascular remodeling were evaluated. EndoMT and cell proliferation in the pulmonary arteries were assessed via immunofluorescence staining. Moreover, pulmonary artery endothelial cells (PAECs) isolated from experimental PH rats were cultured to investigate the underlying molecular mechanisms involved. RESULTS PEDF expression was significantly downregulated in PAECs from PH patients and PH model rats. Overexpressed PEDF alleviated the development of PH by improving pulmonary artery morphology and perfusion, reducing pulmonary artery pressure, improving right ventricular function, and alleviating vascular remodeling. PEDF inhibits EndoMT and reduces excessive PAEC proliferation. Moreover, PEDF overexpression reduced EndoMT in cultured PAECs by competitively inhibiting the binding of wnt to LRP6 and downregulating phosphorylation at the 1490 site of LRP6. CONCLUSIONS Our findings suggest that PEDF may be a potential therapeutic target for PH. We also found that PEDF can inhibit EndoMT in PAECs and may exert these effects by inhibiting the Wnt/LRP6/β-catenin pathway.
Collapse
Affiliation(s)
- Haoran Miao
- Department of Thoracic Cardiovascular Surgery, China
| | - Hongliang Hui
- Department of Thoracic Cardiovascular Surgery, China
| | - Wenbin Fan
- Department of Thoracic Cardiovascular Surgery, China
| | - Yangui Lin
- Department of Thoracic Cardiovascular Surgery, China
| | - Huaming Li
- Department of Thoracic Cardiovascular Surgery, China
| | - Dan Li
- Community Health Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Min Luo
- Department of Thoracic Cardiovascular Surgery, China
| | - Fan Qiu
- Department of Thoracic Cardiovascular Surgery, China.
| | - Bo Jiang
- Department of Thoracic Cardiovascular Surgery, China.
| | - Yiqian Zhang
- Department of Thoracic Cardiovascular Surgery, China.
| |
Collapse
|
3
|
Xu L, Chen Y, Feng S, Liu Z, Ye Y, Zhou R, Liu L. PEDF inhibits LPS-induced acute lung injury in rats and promotes lung epithelial cell survival by upregulating PPAR-γ. BMC Pulm Med 2023; 23:359. [PMID: 37740176 PMCID: PMC10517507 DOI: 10.1186/s12890-023-02666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND The progression of acute lung injury (ALI) involves numerous pathological factors and complex mechanisms, and cause the destruction of epithelial and endothelial barriers. Pigment epithelium-derived factor (PEDF) is an angiogenesis inhibitor and a potential anti-inflammatory factor. The purpose of this study was to investigate the effect of PEDF on lipopolysaccharide (LPS)-induced ALI in rats. METHODS In vivo, pathological and injury related factors examination were performed on rat lung to investigate the effect of PEDF on ALI. In vitro, the effect of PEDF on inflammatory injury and apoptosis of lung epithelial type II RLE-6TN cell was evaluated, and the expression of inflammatory factors and related pathway proteins and PPAR-γ (in the presence or absence of PPAR-γ inhibitors) were analyzed. RESULTS In vivo results showed that PEDF inhibited the inflammatory factor expression (TNF-α, IL-6 and IL-1β) and progression of ALI and reduced lung cell apoptosis in rats. In vitro results showed that PEDF could effectively inhibit LPS-stimulated inflammatory damage and apoptosis of RLE-6TN cells. PEDF inhibited the RLE-6TN cell injury by enhancing the expression of PPAR-γ. CONCLUSIONS PEDF is an anti-inflammatory factor, which can inhibit apoptosis of lung epithelial cells by upregulating the expression of PPAR-γ and reducing LPS-induced ALI in rats.
Collapse
Affiliation(s)
- Lei Xu
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yifei Chen
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Shoujie Feng
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, China
- Department of Thoracic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Zeyan Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Ying Ye
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Ranran Zhou
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Lijun Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
4
|
Jones IC, Dass CR. Roles of pigment epithelium-derived factor in cardiomyocytes: implications for use as a cardioprotective therapeutic. J Pharm Pharmacol 2023:7146108. [PMID: 37104852 DOI: 10.1093/jpp/rgad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVES Cardiovascular diseases are the leading cause of death worldwide, with patients having limited options for treatment. Pigment epithelium-derived factor (PEDF) is an endogenous multifunctional protein with several mechanisms of action. Recently, PEDF has emerged as a potential cardioprotective agent in response to myocardial infarction. However, PEDF is also associated with pro-apoptotic effects, complicating its role in cardioprotection. This review summarises and compares knowledge of PEDF's activity in cardiomyocytes with other cell types and draws links between them. Following this, the review offers a novel perspective of PEDF's therapeutic potential and recommends future directions to understand the clinical potential of PEDF better. KEY FINDINGS PEDF's mechanisms as a pro-apoptotic and pro-survival protein are not well understood, despite PEDF's implication in several physiological and pathological activities. However, recent evidence suggests that PEDF may have significant cardioprotective properties mediated by key regulators dependent on cell type and context. CONCLUSIONS While PEDF's cardioprotective activity shares some key regulators with its apoptotic activity, cellular context and molecular features likely allow manipulation of PEDF's cellular activity, highlighting the importance of further investigation into its activities and its potential to be applied as a therapeutic to mitigate damage from a range of cardiac pathologies.
Collapse
Affiliation(s)
- Isobel C Jones
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| |
Collapse
|
5
|
Ho TC, Yeh SI, Chen SL, Chu TW, Tsao YP. A short peptide derived from pigment epithelial-derived factor exhibits an angioinhibitory effect. BMC Ophthalmol 2022; 22:88. [PMID: 35193548 PMCID: PMC8864869 DOI: 10.1186/s12886-022-02295-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Pigment epithelial-derived factor (PEDF), a 50 kDa secreted glycoprotein, exhibits distinct effects on a range of cell types. PEDF has been shown to inhibit vascular endothelial growth factor (VEGF)-mediated angiogenesis and widely accepted as a promising agent for treatment eye diseases related to neovascularization. A pool of short peptide fragments derived from PEDF reportedly manifests angioinhibitory activity. This study aims to determine the minimal PEDF fragment which can exert the anti-VEGF effect. Methods A series of shorter synthetic peptides, derived from the 34-mer (PEDF amino acid positions Asp44-Asn77), were synthesized. An MTT assay was used to evaluate the ability of the 34-mer-derived peptides to inhibit VEGF-induced proliferation of multiple myeloma RPMI8226 cells. Cell apoptosis was monitored by annexin V-FITC staining. Western blot analysis was used to detect phosphorylated kinases, including c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), and the expression of apoptosis-associated proteins, including p53, bax and caspase-3. VEGF-mediated angiogenesis of human umbilical vein endothelial cells (HUVECs), rat aortic ring and mouse cornea were used to detect the angioinhibitory activity of the PEDF-derived peptides. Results The MTT assay showed that the anti-VEGF effect of a 7-mer (Asp64-Ser70) was 1.5-fold greater than the 34-mer. In addition, massive apoptosis (37%) was induced by 7-mer treatment. The 7-mer induced JNK phosphorylation in RPMI8226 cells. Cell apoptosis and apoptosis-associated proteins induced by the 7-mer were blocked by pharmacological inhibition of JNK, but not p38 MAPK. Moreover, the 7-mer prevented VEGF-mediated angiogenesis of endothelial cells (ECs), including tube formation, aortic EC spreading and corneal neovascularization in mice. Conclusions This is the first study to show that the PEDF 7-mer peptide manifests anti-VEGF activity, further establishing its potential as an anti-angiogenic agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02295-0.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan
| | - Shu-I Yeh
- Department of Medicine, Mackay Medical College, Zhongzheng Rd., Sanzhi Dist, New Taipei City, 25245, Taiwan.,Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, 7F, No. 1, Sec. 1, Jen-Ai Rd., Taipei, 10617, Taiwan
| | - Ting-Wen Chu
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan. .,Department of Medicine, Mackay Medical College, Zhongzheng Rd., Sanzhi Dist, New Taipei City, 25245, Taiwan. .,Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan.
| |
Collapse
|
6
|
Chai M, Jiang M, Gu C, Lu Q, Zhou Y, Jin Z, Zhou Y, Tan W. Osteogenically differentiated mesenchymal stem cells promote the apoptosis of human umbilical vein endothelial cells in vitro. Biotechnol Appl Biochem 2021; 69:2138-2150. [PMID: 34694656 DOI: 10.1002/bab.2274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
The absence of blood vessels in tissue engineered bone often leads to necrosis of internal cells after implantation, ultimately affecting the process of bone repair. Herein, mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured to induce osteogenesis and angiogenesis. Based on the findings, the number of HUVECs in the coculture system increased in the growth medium group, but decreased in the osteogenic induction medium (OIM) group. Considering that the paracrine effects of MSCs had changed, we tested the genes expression of osteogenically differentiated MSCs. The expression of osteogenic genes in MSCs increased during osteogenesis. Further, the expression levels of pigment epithelial-derived factor (PEDF) gene and protein, an antivascular factor, were also increased. To verify whether MSCs promote HUVECs apoptosis via PEDF, PEDF was silenced via siRNA. The conditioned medium of differentiated MSCs with PEDF silencing significantly improved the proliferation and apoptosis of HUVECs. Based on further experiments, PEDF mediated the apoptosis and proliferation of HUVECs through p53, BAX/BCL-2, FAS, and c-Caspase-3. However, when PEDF was silenced with siRNA, the osteogenic potential of MSCs was affected. The results of this study provide a theoretical basis for the construction of prevascularized bone tissues in vitro.
Collapse
Affiliation(s)
- Miaomiao Chai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Mingli Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ce Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiaohui Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ziyang Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Yang X, Wang L, Zhang Z, Hu J, Liu X, Wen H, Liu M, Zhang X, Dai H, Ni M, Li R, Guo R, Zhang L, Luan X, Lin H, Dong M, Lu H. Ginsenoside Rb 1 Enhances Plaque Stability and Inhibits Adventitial Vasa Vasorum via the Modulation of miR-33 and PEDF. Front Cardiovasc Med 2021; 8:654670. [PMID: 34124194 PMCID: PMC8192703 DOI: 10.3389/fcvm.2021.654670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/20/2021] [Indexed: 01/25/2023] Open
Abstract
Background: Atherosclerosis is closely associated with proliferation of the adventitial vasa vasorum, leading to the atherosclerotic plaque progression and vulnerability. In this report, we investigated the role of Ginsenoside Rb1 (Rb1) on atherosclerotic plaque stabilization and adventitial vasa vasorum (VV) along with the mechanisms involved. Methods and Results: Apolipoprotein E-deficient (ApoE-/-) mice were fed with a high-fat diet for 20 weeks, and then Ginsenoside Rb1 (50 mg/kg/d, intraperitoneal) was given for 4 weeks. Rb1 treatment significantly inhibited adventitial VV proliferation, alleviated inflammation, decreased plaque burden, and stabilized atherosclerotic plaques in apoE-/- mice. However, the beneficial effects of Rb1 on atherosclerotic lesion was attenuated by overexpression of miR-33. The analysis from atherosclerotic plaque revealed that Rb1 treatment could result in an induction of Pigment epithelium-derived factor (PEDF) expression and reduction of the miR-33 generation. Overexpression of miR-33 significantly reverted the Rb1-mediated elevation of PEDF and anti-angiogenic effect. Conclusions: Ginsenoside Rb1 attenuates plaque growth and enhances plaque stability partially through inhibiting adventitial vasa vasorum proliferation and inflammation in apoE-/- mice. The anti-angiogenic and anti-inflammation effects of Rb1 are exerted via the modulation of miR-33 and its target gene PEDF.
Collapse
Affiliation(s)
- Xiaoyan Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Lei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zihao Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiayi Hu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoling Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hao Wen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Second School of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Minghao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| | - Hongyan Dai
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, China
| | - Mei Ni
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Li
- Department of Cardiology, China-Japan Friendship Hospital, Ministry of Health, Beijing, China
| | - Rong Guo
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Lei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaorong Luan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huili Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huixia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Che D, Fang Z, Yan L, Du J, Li F, Xie J, Feng J, Yin P, Qi W, Yang Z, Ma J, Yang X, Gao G, Zhou T. Elevated pigment epithelium-derived factor induces diabetic erectile dysfunction via interruption of the Akt/Hsp90β/eNOS complex. Diabetologia 2020; 63:1857-1871. [PMID: 32377760 DOI: 10.1007/s00125-020-05147-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/09/2020] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS Diabetes mellitus erectile dysfunction (DMED) is a common complication of diabetes. The level of pigment epithelium-derived factor (PEDF) is significantly upregulated in the serum of individuals with obesity and diabetes. However, whether elevated PEDF levels contribute to DMED remains unknown. This study aimed to investigate the pathogenic role of PEDF and its related mechanism in DMED. METHODS We enrolled 65 men, of whom 20 were nondiabetic control participants, 21 participants with diabetes but without erectile dysfunction, and 24 with DMED. The International Index of Erectile Function (IIEF-5) questionnaire was administered to evaluate erectile function. Plasma PEDF in diabetic participants and streptozotocin (STZ)-induced diabetic animals was detected by ELISA. Erectile function was evaluated by measuring the intracavernous pressure (ICP) and the ICP/mean arterial pressure (MAP) ratio in STZ-induced diabetic rats treated with PEDF-neutralising antibody (PEDF-Ab), db/db mice treated with PEDF-Ab, and Pedf knockout mice with STZ-induced diabetes. The overexpression of PEDF was implemented by intraperitoneal injection of recombinant PEDF and intracavernous injection of PEDF-expressing adenovirus. A mechanistic study was performed by immunofluorescence staining, bimolecular fluorescence complementation (BiFC), immunoprecipitation and western blotting. RESULTS We found that the plasma level of PEDF was significantly higher in participants with DMED compared with diabetic counterparts without erectile dysfunction and nondiabetic controls. Interestingly, PEDF levels were negatively correlated with plasma nitrite/nitrate levels and erectile function in DMED patients and STZ-induced diabetic rats. Furthermore, overexpression of PEDF significantly suppressed ICP and endothelial nitric oxide synthase (eNOS) phosphorylation in control rats. In contrast, the PEDF-Ab and Pedf knockout ameliorated ICP and eNOS phosphorylation in diabetic rats and mice. Mechanistically, PEDF promoted the membrane translocation of Hsp90β and directly bound to the amino acid residues 341-724 of Hsp90β on the endothelial cell surface, subsequently blocking intracellular Hsp90β/Akt/eNOS complex formation and downregulating eNOS phosphorylation. CONCLUSIONS/INTERPRETATION These results indicate that elevated PEDF levels contribute to impaired erectile function by suppressing Hsp90β-mediated eNOS phosphorylation and that PEDF may represent a novel therapeutic target for diabetic erectile dysfunction. Graphical abstract.
Collapse
Affiliation(s)
- Di Che
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zhenzhen Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Li Yan
- Department of Endocrinology, Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieping Du
- Department of Endocrinology, Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fangping Li
- Department of Endocrinology, Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinye Xie
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Juan Feng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Ping Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China
| | - Jianxing Ma
- Department of Physiology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK, USA
| | - Xia Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China.
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, China.
| | - Guoquan Gao
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Ti Zhou
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Ju W, Lu W, Ding L, Bao Y, Hong F, Chen Y, Gao H, Xu X, Wang G, Wang W, Zhang X, Fu C, Qi K, Li Z, Xu K, Qiao J, Zeng L. PEDF promotes the repair of bone marrow endothelial cell injury and accelerates hematopoietic reconstruction after bone marrow transplantation. J Biomed Sci 2020; 27:91. [PMID: 32873283 PMCID: PMC7466818 DOI: 10.1186/s12929-020-00685-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Background Preconditioning before bone marrow transplantation such as irradiation causes vascular endothelial cells damage and promoting the repair of damaged endothelial cells is beneficial for hematopoietic reconstitution. Pigment epithelium-derived factor (PEDF) regulates vascular permeability. However, PEDF’s role in the repair of damaged endothelial cells during preconditioning remains unclear. The purpose of our study is to investigate PEDF’s effect on preconditioning-induced damage of endothelial cells and hematopoietic reconstitution. Methods Damaged endothelial cells induced by irradiation was co-cultured with hematopoietic stem cells (HSC) in the absence or presence of PEDF followed by analysis of HSC number, cell cycle, colony formation and differentiation. In addition, PEDF was injected into mice model of bone marrow transplantation followed by analysis of bone marrow injury, HSC number and peripheral hematopoietic reconstitution as well as the secretion of cytokines (SCF, TGF-β, IL-6 and TNF-α). Comparisons between two groups were performed by student t-test and multiple groups by one-way or two-way ANOVA. Results Damaged endothelial cells reduced HSC expansion and colony formation, induced HSC cell cycle arrest and apoptosis and promoted HSC differentiation as well as decreased PEDF expression. Addition of PEDF increased CD144 expression in damaged endothelial cells and inhibited the increase of endothelial permeability, which were abolished after addition of PEDF receptor inhibitor Atglistatin. Additionally, PEDF ameliorated the inhibitory effect of damaged endothelial cells on HSC expansion in vitro. Finally, PEDF accelerated hematopoietic reconstitution after bone marrow transplantation in mice and promoted the secretion of SCF, TGF-β and IL-6. Conclusions PEDF inhibits the increased endothelial permeability induced by irradiation and reverse the inhibitory effect of injured endothelial cells on hematopoietic stem cells and promote hematopoietic reconstruction.
Collapse
Affiliation(s)
- Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenyi Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lan Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yurong Bao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fei Hong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuting Chen
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hui Gao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoqi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guozhang Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Weiwei Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chunling Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kunming Qi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China. .,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China. .,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China. .,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China. .,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China. .,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
10
|
Guo X, Liu X, Wang J, Fu X, Yao J, Zhang X, Jackson S, Li J, Zhang W, Sun D. Pigment epithelium-derived factor (PEDF) ameliorates arsenic-induced vascular endothelial dysfunction in rats and toxicity in endothelial EA.hy926 cells. ENVIRONMENTAL RESEARCH 2020; 186:109506. [PMID: 32315827 DOI: 10.1016/j.envres.2020.109506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/28/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Although the harmful effects of arsenic exposure on the cardiovascular system have received great attention, there is still no effective treatment. Vascular endothelial dysfunction (VED) is the initial step of cardiovascular diseases, where pigment epithelium-derived factor (PEDF) plays an important role in maintaining endothelial function. Here, we explored the protective role of PEDF in VED induced by arsenic, and its underlying molecular mechanism, designing an in vivo rat model of arsenic exposure recovery and in vitro endothelial EA. hy926 cell-based assays. The edema of aortic endothelial cells in rats significantly improved during recovery from arsenite exposure compared with rats exposed to 10 and 50 mg/L arsenite continuously. In addition, serum levels of nitric oxide (NO), von Willebrand factor, and nitric oxide synthase (inducible and total activities) in rats, which were greatly affected by arsenite exposure, returned to levels similar to those in the control group after recovery with distilled water. The recovery from arsenite exposure was associated with increased levels of PEDF; decreased protein levels of Fas, FasL, P53, and phospho-p38; and inhibited apoptosis in aortic endothelial cells in vivo. Recombinant human PEDF treatment (100 nM) prevented the toxic effects of arsenite (50 μM) on endothelial cells in vitro by increasing NO content, decreasing reactive oxygen species (ROS) levels, and inhibiting apoptosis, as well as increasing cell viability and decreasing levels of P53 and phospho-p38. Our findings suggest that PEDF protects endothelial cells from arsenic-induced VED by increasing NO release and inhibiting apoptosis, where P53 and p38MAPK are its main targets.
Collapse
Affiliation(s)
- Xiangnan Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China; Harbin Medical University Cancer Hospital, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Jingqiu Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Xiaoyan Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Jinyin Yao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Xiaodan Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Sira Jackson
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Jinyu Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China.
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China.
| |
Collapse
|
11
|
Spatiotemporal regulation of PEDF signaling by type I collagen remodeling. Proc Natl Acad Sci U S A 2020; 117:11450-11458. [PMID: 32385162 DOI: 10.1073/pnas.2004034117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dynamic remodeling of the extracellular matrix affects many cellular processes, either directly or indirectly, through the regulation of soluble ligands; however, the mechanistic details of this process remain largely unknown. Here we propose that type I collagen remodeling regulates the receptor-binding activity of pigment epithelium-derived factor (PEDF), a widely expressed secreted glycoprotein that has multiple important biological functions in tissue and organ homeostasis. We determined the crystal structure of PEDF in complex with a disulfide cross-linked heterotrimeric collagen peptide, in which the α(I) chain segments-each containing the respective PEDF-binding region (residues 930 to 938)-are assembled with an α2α1α1 staggered configuration. The complex structure revealed that PEDF specifically interacts with a unique amphiphilic sequence, KGHRGFSGL, of the type I collagen α1 chain, with its proposed receptor-binding sites buried extensively. Molecular docking demonstrated that the PEDF-binding surface of type I collagen contains the cross-link-susceptible Lys930 residue of the α1 chain and provides a good foothold for stable docking with the α1(I) N-telopeptide of an adjacent triple helix in the fibril. Therefore, the binding surface is completely inaccessible if intermolecular crosslinking between two crosslink-susceptible lysyl residues, Lys9 in the N-telopeptide and Lys930, is present. These structural analyses demonstrate that PEDF molecules, once sequestered around newly synthesized pericellular collagen fibrils, are gradually liberated as collagen crosslinking increases, making them accessible for interaction with their target cell surface receptors in a spatiotemporally regulated manner.
Collapse
|
12
|
Sheibani N, Zaitoun IS, Wang S, Darjatmoko SR, Suscha A, Song YS, Sorenson CM, Shifrin V, Albert DM, Melgar-Asensio I, Kandela I, Henkin J. Inhibition of retinal neovascularization by a PEDF-derived nonapeptide in newborn mice subjected to oxygen-induced ischemic retinopathy. Exp Eye Res 2020; 195:108030. [PMID: 32272114 DOI: 10.1016/j.exer.2020.108030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/24/2023]
Abstract
Retinopathy of prematurity (ROP) is a growing cause of lifelong blindness and visual defects as improved neonatal care worldwide increases survival in very-low-birthweight preterm newborns. Advancing ROP is managed by laser surgery or a single intravitreal injection of anti-VEGF, typically at 33-36 weeks gestational age. While newer methods of scanning and telemedicine improve monitoring ROP, the above interventions are more difficult to deliver in developing countries. There is also concern as to laser-induced detachment and adverse developmental effects in newborns of anti-VEGF treatment, spurring a search for alternative means of mitigating ROP. Pigment epithelium-derived factor (PEDF), a potent angiogenesis inhibitor appears late in gestation, is undetected in 25-28 week vitreous, but present at full term. Its absence may contribute to ROP upon transition from high-to-ambient oxygen environment or with intermittent hypoxia. We recently described antiangiogenic PEDF-derived small peptides which inhibit choroidal neovascularization, and suggested that their target may be laminin receptor, 67LR. The latter has been implicated in oxygen-induced ischemic retinopathy (OIR). Here we examined the effect of a nonapeptide, PEDF 336, in a newborn mouse OIR model. Neovascularization was significantly decreased in a dose-responsive manner by single intravitreal (IVT) injections of 1.25-7.5 μg/eye (1.0-6.0 nmol/eye). By contrast, anti-mouse VEGFA164 was only effective at 25 ng/eye, with limited dose-response. Combination of anti-VEGFA164 with PEDF 336 gave only the poorer anti-VEGF response while abrogating the robust inhibition seen with peptide-alone, suggesting a need for VEGF in sensitizing the endothelium to the peptide. VEGF stimulated 67LR presentation on endothelial cells, which was decreased in the presence of PEDF 336. Mouse and rabbit eyes showed no histopathology or inflammation after IVT peptide injection. Thus, PEDF 336 is a potential ROP therapeutic, but is not expected to be beneficial in combination with anti-VEGF.
Collapse
Affiliation(s)
- Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ismail S Zaitoun
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Shoujian Wang
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Soesiawati R Darjatmoko
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Andrew Suscha
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yong-Seok Song
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Daniel M Albert
- Department of Ophthalmology, Casey Eye Institute, Oregon Health Sciences University, Portland, USA
| | | | - Irawati Kandela
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
13
|
Li N, Liu C, Ma G, Tseng Y, Pan D, Chen J, Li F, Zeng X, Luo T, Chen S. Asparaginyl endopeptidase may promote liver sinusoidal endothelial cell angiogenesis via PI3K/Akt pathway. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2020; 111:214-222. [PMID: 30507245 DOI: 10.17235/reed.2018.5709/2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS pathological angiogenesis plays an important role in the progression of chronic liver diseases. Asparaginyl endopeptidase (AEP) participates in tumor angiogenesis and was recently shown to be associated with liver fibrosis. This study aimed to explore the effect of AEP on liver sinusoidal endothelial cell (LSECs) angiogenesis and determine the underlying mechanism. METHODS cultured LSECs were infected with lentiviruses in order to suppress AEP expression (AEP-KD1, AEP-KD2). The effect of AEP on LSECs proliferation, apoptosis and migration were subsequently determined by a CCK8 assay, flow cytometry and wound-healing and Transwell assays, respectively, in AEP knocked-down and control LSECs. The expression of the endothelial cell surface markers CD31, CD34 and von Willebrand factor (vWF) were detected by immunofluorescence assay and western blot. The angiogenic factors, vascular endothelial growth factor receptor 2 (VEGFR2) and interleukin 8 (IL 8) were detected by real-time PCR and western blot. The effect of AEP on vessel tube formation by LSECs was examined by Matrigel™ tube-formation assay. Phosphoinositide 3-kinase (PI3K)/Akt expression and phosphorylation were detected by western blot. RESULTS AEP was effectively knocked down by lentivirus infection in LSECs. Down-regulation of AEP expression significantly decreased proliferation and migration and increased apoptosis of LSECs. Moreover, expression levels of the endothelial cell surface markers CD31, CD34 and vWF, as well as angiogenic factors VEGFR2 and IL 8, were also reduced after AEP was knocked-down. The vessel tube formation abilities of AEP-KD1 and AEP-KD2 LSECs were significantly inhibited compared with LSECs without AEP knocked-down. Down-regulation of AEP also inhibited the phosphorylation of PI3K and Akt. CONCLUSION AEP promotes LSECs angiogenesis in vitro, possibly via the PI3K/Akt pathway. AEP may therefore be a potential therapeutic target for preventing the progression of liver fibrosis.
Collapse
Affiliation(s)
- Na Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Chu Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan Ubiversity, China
| | - Guifen Ma
- Department of Radiotherapy, Zhongshan Hospital, Fudan University, China
| | - Yujen Tseng
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Duyi Pan
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Jie Chen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Feng Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Xiaoqing Zeng
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Tiancheng Luo
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Shiyao Chen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| |
Collapse
|
14
|
Sun H, Sui Z, Wang D, Ba H, Zhao H, Zhang L, Li C. Identification of interactive molecules between antler stem cells and dermal papilla cells using an in vitro co-culture system. J Mol Histol 2020; 51:15-31. [PMID: 31858326 DOI: 10.1007/s10735-019-09853-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/30/2019] [Indexed: 12/25/2022]
Abstract
Deer antlers are the only mammalian organs capable of complete renewal. Antler renewal is a stem cell-based [antler stem cells (ASCs)] process. Maintenance and activation of the ASCs require them to be located in a specialized microenvironment (niche), and to interact with the cells resident in the niche. Based on previous experiments we found that niche of the ASCs is provided by the closely associated enveloping skin, which currently was known includes dermal papilla cells (DPCs) and epidermal cells. Antler generation/regeneration are triggered by the interactions between ASCs and the niche. In the present study, we established an in vitro co-culture system in which ASCs and DPCs, were cultured together to mimic the in vivo state. A MLEFF strategy was adopted to identify the interactive molecules from the co-culture system. In total, 128 molecules were identified and over 60% belonged to exosomes. Important biological processes that were activated by these molecules included osteoblast differentiation, angiogenesis, and the PI3K-AKT signaling pathway. In so doing, we have significantly simplified the process for identifying interactive molecules, which may be the key signals for triggering antler formation/renewal. Further study of these molecules will help us to gain insights into the mechanism of mammalian organ regeneration.
Collapse
Affiliation(s)
- Hongmei Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhigang Sui
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Datao Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hengxing Ba
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haiping Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China.
| | - Chunyi Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.
- Changchun Sci-Tech University, Changchun, China.
| |
Collapse
|
15
|
Brook N, Brook E, Dharmarajan A, Chan A, Dass CR. The role of pigment epithelium-derived factor in protecting against cellular stress. Free Radic Res 2019; 53:1166-1180. [PMID: 31760841 DOI: 10.1080/10715762.2019.1697809] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Since its discovery as a neurotrophic factor in retinal pigmented epithelium cells in the late 1980s, there has been an increase in understanding of the role that pigment epithelium-derived factor (PEDF) plays in cellular functions. PEDF plays an important role in mediating cellular protection during exposure to oxidative stress and inflammation by preventing stress-induced angiogenesis and apoptosis. PEDF acts to reduce oxidative stress by promoting mitochondrial stability and by regulating the expression of enzymes involved in ROS accumulation and clearance. PEDF protects against the negative effects of oxidative stress by regulating cell survival pathways and the expression of inflammatory and proangiogenic mediators. PEDF-mediated cellular protection may be of clinical importance in diseases characterised by oxidative stress, chronic inflammation and pathological neovascularization, indicating that targeting PEDF may be a potential focus for therapeutic interventions in chronic diseases. In this review, we provide a historical perspective on the discoveries of PEDF interactions and functions, and discuss recent in vitro, in vivo and clinical findings to provide a current summary of the important protective effects following cellular exposure to stress stimuli and future clinical potential of PEDF.
Collapse
Affiliation(s)
- Naomi Brook
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Emily Brook
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Arun Dharmarajan
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia.,Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Arlene Chan
- Curtin Medical School, Curtin University, Bentley, Australia.,Hollywood Private Hospital, Breast Clinical Trials Unit, Breast Cancer Research Centre-Western Australia, Nedlands, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
16
|
Liu X, Liu Z, Chen J, Zhu L, Zhang H, Quan X, Yuan Y, Miao H, Huang B, Dong H, Zhang Z. Pigment Epithelium-Derived Factor Increases Native Collateral Blood Flow to Improve Cardiac Function and Induce Ventricular Remodeling After Acute Myocardial Infarction. J Am Heart Assoc 2019; 8:e013323. [PMID: 31718448 PMCID: PMC6915271 DOI: 10.1161/jaha.119.013323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background We previously found that the structural defects of the coronary collateral microcirculation reserve (CCMR) prevent these preformed collateral vessels from continuously delivering the native collateral blood and supporting the ischemic myocardium in rats. Here, we tested whether these native collaterals can be remodeled by artificially increasing pigment epithelium–derived factor (PEDF) expression and demonstrated the mechanism for this stimulation. Methods and Results We performed intramyocardial gene delivery (PEDF‐lentivirus, 2×107 TU) along the left anterior descending coronary artery to artificially increase the expression of PEDF in the tissue of the region for 2 weeks. By blocking the left anterior descending coronary artery, we examined the effects of PEDF on native collateral blood flow and CCMR. The results of positron emission tomography perfusion imaging showed that PEDF increased the native collateral blood flow and significantly inhibited its decline during acute myocardial infarction. In addition, the number of CCMR vessels decreased and the size increased. Similar results were obtained from in vitro experiments. We tested whether PEDF induces CCMR remodeling in a fluid shear stress–like manner by detecting proteins and signaling pathways that are closely related to fluid shear stress. The nitric oxide pathway and the Notch‐1 pathway participated in the process of CCMR remodeling induced by PEDF. Conclusions PEDF treatment activates the nitric oxide pathway, and the Notch‐1 pathway enabled CCMR remodeling. Increasing the native collateral blood flow can promote the ventricular remodeling process and improve prognosis after acute myocardial infarction.
Collapse
Affiliation(s)
- Xiucheng Liu
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Zhiwei Liu
- Morphological Research Experiment CenterXuzhou Medical UniversityXuzhouChina
| | - Jiali Chen
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Lidong Zhu
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Hao Zhang
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Xiaoyu Quan
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Yanliang Yuan
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Haoran Miao
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Bing Huang
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Hongyan Dong
- Morphological Research Experiment CenterXuzhou Medical UniversityXuzhouChina
| | - Zhongming Zhang
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
17
|
Sheibani N, Wang S, Darjatmoko SR, Fisk DL, Shahi PK, Pattnaik BR, Sorenson CM, Bhowmick R, Volpert OV, Albert DM, Melgar-Asensio I, Henkin J. Novel anti-angiogenic PEDF-derived small peptides mitigate choroidal neovascularization. Exp Eye Res 2019; 188:107798. [PMID: 31520600 PMCID: PMC7032632 DOI: 10.1016/j.exer.2019.107798] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/07/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Abnormal migration and proliferation of endothelial cells (EC) drive neovascular retinopathies. While anti-VEGF treatment slows progression, pathology is often supported by decrease in intraocular pigment epithelium-derived factor (PEDF), an endogenous inhibitor of angiogenesis. A surface helical 34-mer peptide of PEDF, comprising this activity, is efficacious in animal models of neovascular retina disease but remains impractically large for therapeutic use. We sought smaller fragments within this sequence that mitigate choroidal neovascularization (CNV). Expecting rapid intravitreal (IVT) clearance, we also developed a method to reversibly attach peptides to nano-carriers for extended delivery. Synthetic fragments of 34-mer yielded smaller anti-angiogenic peptides, and N-terminal capping with dicarboxylic acids did not diminish activity. Charge restoration via substitution of an internal aspartate by asparagine improved potency, achieving low nM apoptotic response in VEGF-activated EC. Two optimized peptides (PEDF 335, 8-mer and PEDF 336, 9-mer) were tested in a mouse model of laser-induced CNV. IVT injection of either peptide, 2-5 days before laser treatment, gave significant CNV decrease at day +14 post laser treatment. The 8-mer also decreased CNV, when administered as eye drops. Also examined was a nanoparticle-conjugate (NPC) prodrug of the 9-mer, having positive zeta potential, expected to display longer intraocular residence. This NPC showed extended efficacy, even when injected 14 days before laser treatment. Neither inflammatory cells nor other histopathologic abnormalities were seen in rabbit eyes harvested 14 days following IVT injection of PEDF 336 (>200 μg). No rabbit or mouse eye irritation was observed over 12-17 days of PEDF 335 eye drops (10 mM). Viability was unaffected in 3 retinal and 2 choroidal cell types by PEDF 335 up to 100 μM, PEDF 336 (100 μM) gave slight growth inhibition only in choroidal EC. A small anti-angiogenic PEDF epitope (G-Y-D-L-Y-R-V) was identified, variants (adipic-Sar-Y-N-L-Y-R-V) mitigate CNV, with clinical potential in treating neovascular retinopathy. Their shared active motif, Y - - - R, is found in laminin (Ln) peptide YIGSR, which binds Ln receptor 67LR, a known high-affinity ligand of PEDF 34-mer.
Collapse
Affiliation(s)
- Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Shoujian Wang
- Department of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Soesiawati R Darjatmoko
- Department of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Debra L Fisk
- Department of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Pawan K Shahi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bikash R Pattnaik
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Reshma Bhowmick
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Olga V Volpert
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel M Albert
- Department of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
18
|
Cui W, Liu CX, Zhang YC, Shen Q, Feng ZH, Wang J, Lu SF, Wu J, Li JX. A novel oleanolic acid derivative HA-19 ameliorates muscle atrophy via promoting protein synthesis and preventing protein degradation. Toxicol Appl Pharmacol 2019; 378:114625. [PMID: 31201822 DOI: 10.1016/j.taap.2019.114625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/18/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Muscle atrophy refers to a decrease in the size of muscles in the body, occurs in certain muscles with inactivity in many diseases and lacks effective therapies up to date. Natural products still play an important role in drug discovery. In the present study, derivatives of a natural product, oleanolic acid, were screened with myoblast differentiation and myotube atrophy assays, respectively. Results revealed that one of the derivatives, HA-19 showed the most potent anti-muscle atrophy activity, and was used for further studies. We demonstrated that HA-19 led to the increase of the protein synthesis by activating mechanistic target of rapamycin complex 1 (mTORC1)/p70 S6K pathways, and also enhanced myoblast proliferation and terminal differentiation via up-regulating of the myogenic transcription factors Pax7, MyoD and Myogenin. The interesting thing was that HA-19 also suppressed protein degradation to prevent myotube atrophy by down-regulating negative growth factors, FoxO1, MuRF1 and Atrogin-1. The results were also supported by puromycin labelling and protein ubiquitination assays. These data revealed that HA-19 possessed a "dual effect" on inhibition of muscle atrophy. In disuse-induced muscle atrophy mice model, HA-19 treatment significantly increased the weights of bilateral tibialis anterior (TA), gastrocnemius (Gastroc.), quadriceps (Quad.), suggesting the effectiveness of HA-19 to remit disuse-induced muscle atrophy. Our finding demonstrated that HA-19 has a great potential as an inhibitor or lead compound for the anti-muscle atrophy drug discovery.
Collapse
Affiliation(s)
- Wei Cui
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen-Xi Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Chao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen-Hua Feng
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing 210008, China
| | - Jie Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jian-Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
19
|
Chen T, Li T, Wang J. p53 mediates PEDF‑induced autophagy in human umbilical vein endothelial cells through sestrin2 signaling. Mol Med Rep 2019; 20:1443-1450. [PMID: 31173218 PMCID: PMC6625384 DOI: 10.3892/mmr.2019.10319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/20/2019] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a conserved catabolic process by which cytoplasmic components are delivered into lysosomes for degradation. Pigment epithelium‑derived factor (PEDF) has been reported to be associated with autophagy and can induce p53 expression; however, the mechanism relating PEDF with autophagy in endothelial cells remains poorly understood. The present study aimed to investigate the association between the PEDF‑p53‑sestrin pathway and autophagy in human umbilical vein endothelial cells (HUVECs). PEDF‑induced autophagy was examined by fluorescence microscopy and western blot analysis. p53 small interfering (si)RNA and sestrin2 siRNA were constructed and transfected into HUVECs prior to PEDF treatment. The protein expression levels of microtubule‑associated protein light chain 3 (LC3) I, LC3 II and p62 were evaluated by western blot analysis, and the mRNA expression levels of p53 and sestrin2 were determined using reverse transcription‑quantitative polymerase chain reaction analysis. The regulation of mechanistic target of rapamycin (mTOR) was reflected by p70S6 kinase (p70S6K) and eukaryotic translation initiation factor 4E‑binding protein 1 (4E‑BP1) protein expression levels, as determined by western blot analysis. PEDF could induce HUVEC autophagy by sequentially inducing p53 and sestrin2 expression, as observed by fluorescence microscopy and western blot analysis. Conversely, the induction of sestrin2 by PEDF was eliminated by p53 siRNA. In addition, p53 siRNA and sestrin2 siRNA could attenuate PEDF‑induced HUVEC autophagy. Inhibition of mTOR may be the mechanism responsible for PEDF‑induced autophagy; as p70S6K and 4E‑BP1 phosphorylation levels were significantly upregulated in p53 siRNA‑treated and sestrin2 siRNA‑treated groups. The findings of the present study indicated that PEDF may trigger autophagy in HUVECs by inducing p53 and sestrin2 expression, and inhibiting mTOR expression; these findings may contribute to the improved understanding of diseases, including cancer and atherosclerosis.
Collapse
Affiliation(s)
- Tiangui Chen
- Orthopedics Surgery Department, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Tianbo Li
- Orthopedics Surgery Department, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Jiangning Wang
- Orthopedics Surgery Department, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
20
|
Tian X, Wang T, Zhang S, Wang Q, Hu X, Ge C, Xie L, Zhou Q. PEDF Reduces the Severity of Herpetic Simplex Keratitis in Mice. Invest Ophthalmol Vis Sci 2019; 59:2923-2931. [PMID: 30025136 DOI: 10.1167/iovs.18-23942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to explore the effects of pigment epithelium derived factor (PEDF) and PEDF-derived peptides Mer44 and Mer34 on the severity of herpetic simplex keratitis (HSK) in mice. Methods Adult C57BL/6 mice were infected ocularly with the herpes simplex virus type 1 (HSV-1, McKrae strain) and injected subconjunctivally with PEDF, Mer44, or Mer34. Corneal nerve degeneration, neovascularization, sensitivity, neutrophils, macrophages and CD4+ T-cell infiltration, virus contents, and expressions of VEGF, PEDF, and proinflammatory factors were evaluated during acute period. The direct inhibitory effect of PEDF on HSV-1 replication was further evaluated in cultured monkey Vero cells. Results Following HSV-1 infection, corneal PEDF expression decreased at 3 and 7 days postinfection (dpi) but increased at 15 dpi, and returned to the similar level of normal mice at 45 dpi, which was accompanied with the progress of corneal nerve degeneration and neovascularization. Exogenous PEDF application attenuated corneal nerve degeneration and neovascularization and improved the impaired corneal sensitivity. Moreover, PEDF attenuated the neutrophils, but not macrophage or CD4+ T-cell infiltration, with the reduced expressions of IL-1β, IL-6, TNF-α, and VEGF. In addition, PEDF inhibited the replication of HSV-1 both in vitro and in mice. Mer44 attenuated corneal nerve degeneration more significantly than Mer34, whereas Mer34 inhibited corneal neovascularization. Conclusions PEDF and its derived peptides reduce the severity of herpetic simplex keratitis in mice, representing the potential therapeutic approach to control HSK lesions.
Collapse
Affiliation(s)
- Xiao Tian
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Tongsong Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Songmei Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qian Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaoli Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Cheng Ge
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
21
|
Yue M, Zeng N, Xia Y, Wei Z, Dai Y. Morin Exerts Anti-Arthritic Effects by Attenuating Synovial Angiogenesis via Activation of Peroxisome Proliferator Activated Receptor-γ. Mol Nutr Food Res 2018; 62:e1800202. [DOI: 10.1002/mnfr.201800202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/27/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Mengfan Yue
- Department of Pharmacology of Chinese Materia Medica; School of Traditional Chinese Pharmacy; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| | - Ni Zeng
- Department of Pharmacology of Chinese Materia Medica; School of Traditional Chinese Pharmacy; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica; School of Traditional Chinese Pharmacy; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica; School of Traditional Chinese Pharmacy; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica; School of Traditional Chinese Pharmacy; China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| |
Collapse
|
22
|
Lu Y, Sun Y, Zhu J, Yu L, Jiang X, Zhang J, Dong X, Ma B, Zhang Q. Oridonin exerts anticancer effect on osteosarcoma by activating PPAR-γ and inhibiting Nrf2 pathway. Cell Death Dis 2018; 9:15. [PMID: 29323103 PMCID: PMC5849031 DOI: 10.1038/s41419-017-0031-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is the most common high-grade human primary malignant bone sarcoma with lower survival in the past decades. Oridonin, a bioactive diterpenoid isolated from Rabdosia rubescens, has been proved to possess potent anti-cancer effects. However, its potential mechanism still remains not fully clear nowadays. In this study, we investigated the anticancer effect of oridonin on human osteosarcoma and illuminated the underlying mechanisms. In vitro, oridonin inhibited the cell viability of various osteosarcoma cells. We demonstrated that oridonin induced mitochondrial-mediated apoptosis by increasing Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (MMP), triggering reactive oxygen species (ROS) generation and activating caspase-3 and caspase-9 cleavage in MG-63 and HOS cells. Moreover, we found that oridonin triggered ROS by inhibiting NF-E2-related factor 2 (Nrf2) pathway and induced mitochondrial apoptosis via inhibiting nuclear factor-κB (NF-κB) activation by activating Peroxisome Proliferator-Activated Receptor γ (PPAR-γ) in MG-63 and HOS cells. We further confirmed the results by PPAR-γ inhibitor GW9662, PPAR-γ siRNA as well as overexpression of PPAR-γ and Nrf2 in vitro. Furthermore, our in vivo study showed that oridonin inhibited tumor growth with high safety via inducing apoptosis through activating PPAR-γ and inhibiting Nrf2 activation in xenograft model inoculated HOS tumor. Taken together, oridonin exerted a dramatic pro-apoptotic effect by activating PPAR-γ and inhibiting Nrf2 pathway in vitro and in vivo. Therefore, oridonin may be a promising and effective agent for human osteosarcoma in the future clinical applications.
Collapse
Affiliation(s)
- Ying Lu
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China.
| | - Jianwei Zhu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China
| | - Lisha Yu
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China
| | - Xiubo Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China.
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China.
| |
Collapse
|
23
|
Penas FN, Carta D, Dmytrenko G, Mirkin GA, Modenutti CP, Cevey ÁC, Rada MJ, Ferlin MG, Sales ME, Goren NB. Treatment with a New Peroxisome Proliferator-Activated Receptor Gamma Agonist, Pyridinecarboxylic Acid Derivative, Increases Angiogenesis and Reduces Inflammatory Mediators in the Heart of Trypanosoma cruzi-Infected Mice. Front Immunol 2017; 8:1738. [PMID: 29312293 PMCID: PMC5732351 DOI: 10.3389/fimmu.2017.01738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/23/2017] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi infection induces an intense inflammatory response in diverse host tissues. The immune response and the microvascular abnormalities associated with infection are crucial aspects in the generation of heart damage in Chagas disease. Upon parasite uptake, macrophages, which are involved in the clearance of infection, increase inflammatory mediators, leading to parasite killing. The exacerbation of the inflammatory response may lead to tissue damage. Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent nuclear transcription factor that exerts important anti-inflammatory effects and is involved in improving endothelial functions and proangiogenic capacities. In this study, we evaluated the intermolecular interaction between PPARγ and a new synthetic PPARγ ligand, HP24, using virtual docking. Also, we showed that early treatment with HP24, decreases the expression of NOS2, a pro-inflammatory mediator, and stimulates proangiogenic mediators (vascular endothelial growth factor A, CD31, and Arginase I) both in macrophages and in the heart of T. cruzi-infected mice. Moreover, HP24 reduces the inflammatory response, cardiac fibrosis and the levels of inflammatory cytokines (TNF-α, interleukin 6) released by macrophages of T. cruzi-infected mice. We consider that PPARγ agonists might be useful as coadjuvants of the antiparasitic treatment of Chagas disease, to delay, reverse, or preclude the onset of heart damage.
Collapse
Affiliation(s)
- Federico Nicolás Penas
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina
| | - Davide Carta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Ganna Dmytrenko
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO)-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerado A Mirkin
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina
| | - Carlos Pablo Modenutti
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ágata Carolina Cevey
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina
| | - Maria Jimena Rada
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina
| | - Maria Grazia Ferlin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - María Elena Sales
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO)-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora Beatriz Goren
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
24
|
Falero-Perez J, Park S, Sorenson CM, Sheibani N. PEDF expression affects retinal endothelial cell proangiogenic properties through alterations in cell adhesive mechanisms. Am J Physiol Cell Physiol 2017; 313:C405-C420. [PMID: 28747334 PMCID: PMC5668572 DOI: 10.1152/ajpcell.00004.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is an endogenous inhibitor of angiogenesis. Although various ocular cell types including retinal endothelial cells (EC) produce PEDF, we know very little about cell autonomous effects of PEDF in these cell types. Here we determined how PEDF expression affects retinal EC proangiogenic properties. Retinal EC were prepared from wild-type (PEDF+/+) and PEDF-deficient (PEDF-/-) mice. The identity of EC was confirmed by staining for specific markers including vascular endothelial cadherin, CD31, and B4-lectin. Retinal EC also expressed VEGF receptor 1 and endoglin, as well as ICAM-1, ICAM-2, and VCAM-1. PEDF-/- retinal EC were more proliferative, less apoptotic when challenged with H2O2, less migratory, and less adherent compared with PEDF+/+ EC. These changes could be associated, at least in part, with increased levels of tenascin-C, fibronectin, thrombospondin-1 and collagen IV, and lower amounts of osteopontin. PEDF-/- EC also exhibited alterations in expression of a number of integrins including α2, αv, β1, β8, and αvβ3, and cell-cell adhesion molecules including CD31, zonula occluden-1, and occludin. These observations correlated with attenuation of capillary morphogenesis and increased levels of oxidative stress in PEDF-/- EC. PEDF-/- EC also produced lower levels of VEGF compared with PEDF+/+ cells. Thus, PEDF deficiency has a significant impact on retinal EC adhesion and migration, perhaps through altered production of extracellular matrix and junctional proteins in response to increased oxidative stress affecting their proangiogenic activity.
Collapse
Affiliation(s)
- Juliana Falero-Perez
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - SunYoung Park
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin;
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; and
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
25
|
Zhang J, Peng X, Yuan A, Xie Y, Yang Q, Xue L. Peroxisome proliferator‑activated receptor γ mediates porcine placental angiogenesis through hypoxia inducible factor‑, vascular endothelial growth factor‑ and angiopoietin‑mediated signaling. Mol Med Rep 2017; 16:2636-2644. [PMID: 28677792 PMCID: PMC5548051 DOI: 10.3892/mmr.2017.6903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 04/27/2017] [Indexed: 12/24/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) γ has been reported to be implicated in placentation in mice. Previous studies have demonstrated that PPARγ is also expressed in porcine placenta, primarily localized in vascular endothelial cells (VECs). The present study aimed to investigate the roles of PPARγ during porcine placental angiogenesis and examine the molecular mechanisms involved in its actions. VECs were incubated with the PPARγ agonist rosiglitazone and the antagonist T0070907, and their angiogenic potential was evaluated using cellular impedance, wound healing and tube formation assays. Reverse transcription-quantitative polymerase chain reaction was used to assess the mRNA expression levels of angiogenic factors, including hypoxia-inducible factors (HIFs), vascular endothelial growth factor (VEGF) isoforms, VEGF receptors (VEGFRs) and angiopoietins (Angs). The results demonstrated that the adhesive, proliferative and migratory capabilities of VECs were potentiated by rosiglitazone and suppressed by T0070907. Notably, tube formation was invariably promoted during PPARγ activation and blockade. The mRNA expression levels of HIF1α, HIF2α, VEGFR2, VEGF188 and Ang-1 were revealed to be upregulated following treatment of VECs with rosiglitazone, whereas they were downregulated following treatment with T0070907. However, the mRNA expression levels of placental growth factor and VEGF120 were consistently downregulated following PPARγ activation and blockade, whereas VEGF164 mRNA levels remained unaltered. The results of the present study suggested that PPARγ may mediate porcine placental angiogenesis, by interfering with HIF-, VEGF- and angiopoietin-mediated signaling pathways.
Collapse
Affiliation(s)
- Juzuo Zhang
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Xuan Peng
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Anwen Yuan
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Yang Xie
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Qing Yang
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Liqun Xue
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| |
Collapse
|
26
|
A novel modified physiologically relevant model for cardiac angiogenesis. Microvasc Res 2017; 114:84-91. [PMID: 28666802 DOI: 10.1016/j.mvr.2017.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 01/15/2023]
Abstract
Angiogenesis assays are important tools for studying both the mechanisms of cardiac angiogenesis and the potential development of therapeutic strategies to ischemic heart diseases. Currently, various assays have been used to quantitate cardiac tubule formation, yet no consensus has been reached regarding a suitable assay for evaluating the efficacy of angiogenic stimulants or inhibitors. Most in vivo angiogenesis assays are complex and difficult to interpret, whereas traditional in vitro angiogenesis models measure only one aspect of this process. To bridge the gap between in vivo and in vitro angiogenesis assays, here, we have developed a novel modified cardiac explants matrigel assay. We observed the morphology of vascular sprouts formed in three forms of cardiac angiogenesis assays then used quantitative image analyses to further compare the morphological features of vascular sprouts formed in two cardiac explants angiogenesis assays. Vascular sprouts formed in the fibronectin group were less and short, whereas those formed in the matrigel group were significantly longer, consisting of more area and branch points. Moreover, we found the benefits of this matrigel model by observing the ability of cardiac explants to form vascular sprouts under normoxia or hypoxia condition in the presence of angiogenic stimulant and inhibitor, VEGF and PEDF. In summary, the above analyses revealed that the morphology of vascular sprouts formed in this model appears more representative of myocardial capillary formation in vivo, and this accessible, reliable angiogenic assay is a more physiologically relevant assay which allows further assessment of pharmacologic compounds on cardiac angiogenesis.
Collapse
|
27
|
Zhou H, Zhang W, Bi M, Wu J. The molecular mechanisms of action of PPAR-γ agonists in the treatment of corneal alkali burns (Review). Int J Mol Med 2016; 38:1003-11. [PMID: 27499172 PMCID: PMC5029963 DOI: 10.3892/ijmm.2016.2699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022] Open
Abstract
Corneal alkali burns (CAB) are characterized by injury-induced inflammation, fibrosis and neovascularization (NV), and may lead to blindness. This review evaluates the current knowledge of the molecular mechanisms responsible for CAB. The processes of cytokine production, chemotaxis, inflammatory responses, immune response, cell signal transduction, matrix metalloproteinase production and vascular factors in CAB are discussed. Previous evidence indicates that peroxisome proliferator-activated receptor γ (PPAR-γ) agonists suppress immune responses, inflammation, corneal fibrosis and NV. This review also discusses the role of PPAR-γ as an anti-inflammatory, anti-fibrotic and anti-angiogenic agent in the treatment of CAB, as well as the potential role of PPAR-γ in the pathological process of CAB. There have been numerous studies evaluating the clinical profiles of CAB, and the aim of this systematic review was to summarize the evidence regarding the treatment of CAB with PPAR-γ agonists.
Collapse
Affiliation(s)
- Hongyan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033
| | - Wensong Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Miaomiao Bi
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033
| | - Jie Wu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033
| |
Collapse
|
28
|
Peroxisome Proliferator-Activated Receptor-γ Is Critical to Cardiac Fibrosis. PPAR Res 2016; 2016:2198645. [PMID: 27293418 PMCID: PMC4880703 DOI: 10.1155/2016/2198645] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/16/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-activated transcription factor belonging to the nuclear receptor superfamily, which plays a central role in regulating lipid and glucose metabolism. However, accumulating evidence demonstrates that PPARγ agonists have potential to reduce inflammation, influence the balance of immune cells, suppress oxidative stress, and improve endothelial function, which are all involved in the cellular and molecular mechanisms of cardiac fibrosis. Thus, in this review we discuss the role of PPARγ in various cardiovascular conditions associated with cardiac fibrosis, including diabetes mellitus, hypertension, myocardial infarction, heart failure, ischemia/reperfusion injury, atrial fibrillation, and several other cardiovascular disease (CVD) conditions, and summarize the developmental status of PPARγ agonists for the clinical management of CVD.
Collapse
|