1
|
Davari M, Khansari M, Hosseini S, Morovatshoar R, Azani A, Mirzohreh ST, Mahabadi MA, Ghasemi M, Meigoli MSS, Nematollahi SF, Pourranjbar S, Behfar Q, Baghdadi M, Hosseini AM. The Impact of Opioids on Epigenetic Modulation in Myocardial Ischemia and Reperfusion Injury: Focus on Non-coding RNAs. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10609-y. [PMID: 40198537 DOI: 10.1007/s12265-025-10609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025]
Abstract
Myocardial ischemia-reperfusion injury (IRI) is a major issue in cardiovascular medicine, marked by tissue damage from the restoration of blood flow after ischemia. Opioids, known for their pain-relieving properties, have emerged as potential cardioprotective agents in IRI. Recent research suggests opioids influence epigenetic mechanisms-such as histone modifications and non-coding RNAs (ncRNAs)-which are essential for regulating gene expression and cellular responses during myocardial IRI. This review delves into how opioids like remifentanil affect histone modifications, DNA methylation, and ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Remifentanil postconditioning (RPC) reduces apoptosis in cardiomyocytes through histone deacetylation, specifically downregulating histone deacetylase 3 (HDAC3). Similarly, opioids impact miRNAs such as miR- 206 - 3p and miR- 320 - 3p, and lncRNAs like TINCR and UCA1, which influence apoptosis, inflammation, and oxidative stress. Understanding these interactions highlights the potential for opioid-based therapies in mitigating IRI-induced myocardial damage.
Collapse
Affiliation(s)
- Mohsen Davari
- Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Mahmoud Khansari
- General Surgery Department, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Sahar Hosseini
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Alireza Azani
- Department of Medical Genetic, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Seyedeh Tarlan Mirzohreh
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Mohammadjavad Ashrafi Mahabadi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Moein Ghasemi
- Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Mohammad Saeed Soleimani Meigoli
- School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Sima Foroughi Nematollahi
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Sina Pourranjbar
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran
| | - Qumars Behfar
- National Institute for Health Research, Tehran University of Medical Sciences, Tehran, Iran.
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran.
| | - Mandana Baghdadi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran.
| | - Ahmad Mir Hosseini
- Mashhad University of Medical Sciences, Mashhad, Iran.
- Cardiology Department, Mentoring Program in Medical Sciences, MSA Research Group, Tehran, Iran.
| |
Collapse
|
2
|
Kodama T, Kameshima S, Otani K, Okada M, Yamawaki H. The eukaryotic elongation factor 2 kinase inhibitor, A484954, induces hypoglycaemic and hypotensive effects. Br J Pharmacol 2025; 182:1823-1835. [PMID: 39842419 DOI: 10.1111/bph.17443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 10/22/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND AND PURPOSE Eukaryotic elongation factor 2 kinase (eEF2K) belongs to the Ca2+/calmodulin-dependent protein kinase family. We previously revealed that A484954, a selective eEF2K inhibitor, caused hypotensive and diuretic effects via the production of nitric oxide (NO) in spontaneously hypertensive rats. Otsuka Long-Evans Tokushima Fatty (OLETF) rats are hypertensive because of obesity and type 2 diabetes. Because an NO synthase inhibitor was reported to increase the expression of sodium glucose co-transporter 2 (SGLT2), we hypothesised that A484954 causes not only hypotensive but also hypoglycaemic effects via NO production in OLETF rats. EXPERIMENTAL APPROACH To test the hypothesis, we examined the effects of A484954 administration on hyperglycaemia and hypertension in OLETF rats. OLETF rats were given an intraperitoneal injection of A484954 (2.5 mg kg-1 day-1) for 7 days. Then, we measured blood and urinary glucose level, urine output, systolic blood pressure and ventricular contractility. We also conducted Western blotting and isometric tension measurements. KEY RESULTS A484954 induced a decrease in blood glucose, an increase in urinary glucose excretion, and a decrease in protein expression of kidney SGLT2. In addition, A484954 induced a decrease in systolic blood pressure, an NO-dependent vasorelaxation, and a diuretic effect. Further, A484954 enhanced left ventricular contractility. CONCLUSION AND IMPLICATIONS We, for the first time, revealed that (1) A484954 caused hypoglycaemic effects through increasing urinary glucose excretion via decreasing SGLT2, (2) A484954 improved diabetic complication, including hypertension, through vasorelaxation and diuresis via NO production, and (3) A484954 had a positive inotropic effect.
Collapse
Affiliation(s)
- Tomoko Kodama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Satoshi Kameshima
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kosuke Otani
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
3
|
Jia X, Huang C, Liu F, Dong Z, Liu K. Elongation factor 2 in cancer: a promising therapeutic target in protein translation. Cell Mol Biol Lett 2024; 29:156. [PMID: 39707196 DOI: 10.1186/s11658-024-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
Aberrant elongation of proteins can lead to the activation of oncogenic signaling pathways, resulting in the dysregulation of oncogenic signaling pathways. Eukaryotic elongation factor 2 (eEF2) is an essential regulator of protein synthesis that precisely elongates nascent peptides in the protein elongation process. Although studies have linked aberrant eEF2 expression to various cancers, research has primarily focused on its structure, highlighting a need for deeper exploration into its molecular functions. In this review, recent advancements in the structure, guanosine triphosphatase (GTPase) activity, posttranslational modifications, regulatory factors, and inhibitors of eEF2 are summarized. These findings provide a comprehensive cognition on the critical role of eEF2 and its potential as a therapeutic target in cancer. Furthermore, this review highlights important unanswered questions that warrant investigation in future research.
Collapse
Affiliation(s)
- Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chuntian Huang
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Department of Pathology and Pathophysiology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Fangfang Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, 450001, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450000, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, 450001, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
4
|
Chen Z, Liu T, Yuan H, Sun H, Liu S, Zhang S, Liu L, Jiang S, Tang Y, Liu Z. Bioinformatics integration reveals key genes associated with mitophagy in myocardial ischemia-reperfusion injury. BMC Cardiovasc Disord 2024; 24:183. [PMID: 38539069 PMCID: PMC10967080 DOI: 10.1186/s12872-024-03834-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/09/2024] [Indexed: 11/14/2024] Open
Abstract
BACKGROUND Myocardial ischemia is a prevalent cardiovascular disorder associated with significant morbidity and mortality. While prompt restoration of blood flow is essential for improving patient outcomes, the subsequent reperfusion process can result in myocardial ischemia-reperfusion injury (MIRI). Mitophagy, a specialized autophagic mechanism, has consistently been implicated in various cardiovascular disorders. However, the specific connection between ischemia-reperfusion and mitophagy remains elusive. This study aims to elucidate and validate central mitophagy-related genes associated with MIRI through comprehensive bioinformatics analysis. METHODS We acquired the microarray expression profile dataset (GSE108940) from the Gene Expression Omnibus (GEO) and identified differentially expressed genes (DEGs) using GEO2R. Subsequently, these DEGs were cross-referenced with the mitophagy database, and differential nucleotide sequence analysis was performed through enrichment analysis. Protein-protein interaction (PPI) network analysis was employed to identify hub genes, followed by clustering of these hub genes using cytoHubba and MCODE within Cytoscape software. Gene set enrichment analysis (GSEA) was conducted on central genes. Additionally, Western blotting, immunofluorescence, and quantitative polymerase chain reaction (qPCR) analyses were conducted to validate the expression patterns of pivotal genes in MIRI rat model and H9C2 cardiomyocytes. RESULTS A total of 2719 DEGs and 61 mitophagy-DEGs were identified, followed by enrichment analyses and the construction of a PPI network. HSP90AA1, RPS27A, EEF2, EIF4A1, EIF2S1, HIF-1α, and BNIP3 emerged as the seven hub genes identified by cytoHubba and MCODE of Cytoscape software. Functional clustering analysis of HIF-1α and BNIP3 yielded a score of 9.647, as determined by Cytoscape (MCODE). In our MIRI rat model, Western blot and immunofluorescence analyses confirmed a significant elevation in the expression of HIF-1α and BNIP3, accompanied by a notable increase in the ratio of LC3II to LC3I. Subsequently, qPCR confirmed a significant upregulation of HIF-1α, BNIP3, and LC3 mRNA in the MIRI group. Activation of the HIF-1α/BNIP3 pathway mediates the regulation of the degree of Mitophagy, thereby effectively reducing apoptosis in rat H9C2 cardiomyocytes. CONCLUSIONS This study has identified seven central genes among mitophagy-related DEGs that may play a pivotal role in MIRI, suggesting a correlation between the HIF-1α/BNIP3 pathway of mitophagy and the pathogenesis of MIRI. The findings highlight the potential importance of mitophagy in MIRI and provide valuable insights into underlying mechanisms and potential therapeutic targets for further exploration in future studies.
Collapse
Affiliation(s)
- Zhian Chen
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Tianying Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Hao Yuan
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Han Sun
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Sitong Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Shuai Zhang
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Li Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Shuang Jiang
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China
| | - Yong Tang
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China.
| | - Zhi Liu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Nanguan District, Changchun, 130,117, Jilin Province, China.
| |
Collapse
|
5
|
Liu D, Han X, Zhang Z, Tse G, Shao Q, Liu T. Role of Heat Shock Proteins in Atrial Fibrillation: From Molecular Mechanisms to Diagnostic and Therapeutic Opportunities. Cells 2022; 12:151. [PMID: 36611952 PMCID: PMC9818491 DOI: 10.3390/cells12010151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Heat shock proteins (HSPs) are endogenous protective proteins and biomarkers of cell stress response, of which examples are HSP70, HSP60, HSP90, and small HSPs (HSPB). HSPs protect cells and organs, especially the cardiovascular system, against harmful and cytotoxic conditions. More recent attention has focused on the roles of HSPs in the irreversible remodeling of atrial fibrillation (AF), which is the most common arrhythmia in clinical practice and a significant contributor to mortality. In this review, we investigated the relationship between HSPs and atrial remodeling mechanisms in AF. PubMed was searched for studies using the terms "Heat Shock Proteins" and "Atrial Fibrillation" and their relevant abbreviations up to 10 July 2022. The results showed that HSPs have cytoprotective roles in atrial cardiomyocytes during AF by promoting reverse electrical and structural remodeling. Heat shock response (HSR) exhaustion, followed by low levels of HSPs, causes proteostasis derailment in cardiomyocytes, which is the basis of AF. Furthermore, potential implications of HSPs in the management of AF are discussed in detail. HSPs represent reliable biomarkers for predicting and staging AF. HSP inducers may serve as novel therapeutic modalities in postoperative AF. HSP induction, either by geranylgeranylacetone (GGA) or by other compounds presently in development, may therefore be an interesting new approach for upstream therapy for AF, a strategy that aims to prevent AF whilst minimizing the ventricular proarrhythmic risks of traditional anti-arrhythmic agents.
Collapse
Affiliation(s)
- Daiqi Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xuyao Han
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, Hong Kong, China
- Kent and Medway Medical School, Canterbury CT2 7NZ, UK
| | - Qingmiao Shao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
6
|
Song C, Zhang Y, Pei Q, Zheng L, Wang M, Shi Y, Wu S, Ni W, Fu X, Peng Y, Zhang W, Yao M. HSP70 alleviates sepsis-induced cardiomyopathy by attenuating mitochondrial dysfunction-initiated NLRP3 inflammasome-mediated pyroptosis in cardiomyocytes. BURNS & TRAUMA 2022; 10:tkac043. [PMID: 36439706 PMCID: PMC9684341 DOI: 10.1093/burnst/tkac043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SIC) is an identified serious complication of sepsis that is associated with adverse outcomes and high mortality. Heat shock proteins (HSPs) have been implicated in suppressing septic inflammation. The aim of this study was to investigate whether HSP70 can attenuate cellular mitochondrial dysfunction, exuberated inflammation and inflammasome-mediated pyroptosis for SIC intervention. METHODS Mice with cecal ligation plus perforation (CLP) and lipopolysaccharide (LPS)-treated H9C2 cardiomyocytes were used as models of SIC. The mouse survival rate, gross profile, cardiac function, pathological changes and mitochondrial function were observed by photography, echocardiography, hematoxylin-eosin staining and transmission electron microscopy. In addition, cell proliferation and the levels of cardiac troponin I (cTnI), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were determined by Cell Counting Kit-8, crystal violet staining and enzyme-linked immunosorbent assay. Moreover, mitochondrial membrane potential was assessed by immunofluorescence staining, and dynamin-related protein 1 and pyroptosis-related molecules [nucleotide-binding domain, leucine-rich-repeat containing family pyrin domain-containing 3 (NLRP3), caspase-1, gasdermin-D (GSDMD), gasdermin-D N-terminal (GSDMD-N)] were measured by western blotting, immunoprecipitation and immunoblotting. Finally, hsp70.1 knockout mice with CLP were used to verify the effects of HSP70 on SIC and the underlying mechanism. RESULTS Models of SIC were successfully established, as reduced consciousness and activity with liparotrichia in CLP mice were observed, and the survival rate and cardiac ejection fraction (EF) were decreased; conversely, the levels of cTnI, TNF-α and IL-1β and myocardial tissue damage were increased in CLP mice. In addition, LPS stimulation resulted in a reduction in cell viability, mitochondrial destabilization and activation of NLRP3-mediated pyroptosis molecules in vitro. HSP70 treatment improved myocardial tissue damage, survival rate and cardiac dysfunction caused by CLP. Additionally, HSP70 intervention reversed LPS-induced mitochondrial destabilization, inhibited activation of the NLRP3 inflammasome, caspase-1, GSDMD and GSDMD-N, and decreased pyroptosis. Finally, knockout of hsp70.1 mice with CLP aggravated cardiac dysfunction and upregulated NLRP3 inflammasome activity, and exogenous HSP70 significantly rescued these changes. It was further confirmed that HSP70 plays a protective role in SIC by attenuating mitochondrial dysfunction and inactivating pyroptotic molecules. CONCLUSIONS Our study demonstrated that mitochondrial destabilization and NLRP3 inflammasome activation-mediated pyroptosis are attributed to SIC. Interestingly, HSP70 ameliorates sepsis-induced myocardial dysfunction by improving mitochondrial dysfunction and inhibiting the activation of NLRP3 inflammasome-mediated pyroptosis, and such a result may provide approaches for novel therapies for SIC.
Collapse
Affiliation(s)
| | | | - Qing Pei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Li Zheng
- Department of Ultrasound, Baoshan Integrated Traditional Chinese and Western Medicine Hospital, 28 Tuanjie Road, Shanghai, 201999, China
| | - Meiyu Wang
- Department of Ultrasound, Baoshan Integrated Traditional Chinese and Western Medicine Hospital, 28 Tuanjie Road, Shanghai, 201999, China
| | - Youzhen Shi
- Department of Ultrasound, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Shan Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wei Ni
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu road, Wuhan, 430000, China
| | - Xiujun Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yinbo Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wen Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | | |
Collapse
|
7
|
Prokic VZ, Rankovic MR, Draginic ND, Andjic MM, Sretenovic JZ, Zivkovic VI, Jeremic JN, Milinkovic MV, Bolevich S, Jakovljevic VLJ, Pantovic SB. Guanidinoacetic acid provides superior cardioprotection to its combined use with betaine and (or) creatine in HIIT-trained rats. Can J Physiol Pharmacol 2022; 100:772-786. [PMID: 35894232 DOI: 10.1139/cjpp-2021-0801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to determine how guanidinoacetic acid (GAA) or its combined administration with betaine (B) or creatine (C) influences the cardiac function, morphometric parameters, and redox status of rats subjected to high-intensity interval training (HIIT). This research was conducted on male Wistar albino rats exposed to HIIT for 4 weeks. The animals were randomly divided into five groups: HIIT, HIIT + GAA, HIIT + GAA + C, HIIT + GAA + B, and HIIT + GAA + C + B. After completing the training protocol, GAA (300 mg/kg), C (280 mg/kg), and B (300 mg/kg) were applied daily per os for 4 weeks. GAA supplementation in combination with HIIT significantly decreased the level of both systemic and cardiac prooxidants ( O 2 - , H2O2, NO 2 - , and thiobarbituric acid reactive substances) compared with nontreated HIIT (p < 0.05). Also, GAA treatment led to an increase in glutathione and superoxide dismutase levels. None of the treatment regimens altered cardiac function. A larger degree of cardiomyocyte hypertrophy was observed in the HIIT + GAA group, which was reflected through an increase of the cross-sectional area of 27% (p < 0.05) and that of the left ventricle wall thickness of 27% (p < 0.05). Since we showed that GAA in combination with HIIT may ameliorate oxidative stress and does not alter cardiac function, the present study is a basis for future research exploring the mechanisms of cardioprotection induced by this supplement in an HIIT scenario.
Collapse
Affiliation(s)
- Veljko Z Prokic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina R Rankovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena D Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marijana M Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jasmina Z Sretenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir I Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana N Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milica V Milinkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir L J Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Suzana B Pantovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
8
|
Abd El-Baset SA, Abd El-Haleem MR, Abdul-Maksoud RS, Kattaia AAA. Mesna ameliorates acute lung injury induced by intestinal ischemia-reperfusion in rats. Sci Rep 2021; 11:13356. [PMID: 34172794 PMCID: PMC8233331 DOI: 10.1038/s41598-021-92653-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
The lung is severely affected by intestinal ischemia-reperfusion (I-R) injury. Mesna, a thiol compound, possess anti-inflammatory and antioxidant properties. We aimed in the present work to explore the potential beneficial effects of Mesna on the acute lung damage mediated by intestinal I-R in a rat model. Forty male adult albino rats were randomly separated into; control, intestinal I-R, Mesna I and Mesna II groups. Mesna was administered by intraperitoneal injection at a dose of 100 mg/kg, 60 min before ischemia (Mesna I) and after reperfusion (Mesna II). Arterial blood gases and total proteins in bronchoalveolar lavage (BAL) were measured. Lung tissue homogenates were utilized for biochemical assays of proinflammatory cytokines and oxidative stress markers. Lung specimens were managed for examination by light and electron microscopy. Our results revealed that Mesna attenuated the histopathological changes and apoptosis of the lung following intestinal I-R. Mesna also recovered systemic oxygenation. Mesna suppressed neutrophil infiltration (as endorsed by the reduction in MPO level), reduced ICAM-1 mRNA expression, inhibited NF-κB pathway and reduced the proinflammatory cytokines (TNF-α, IL-1β and IL-6) in the lung tissues. Mesna maintained the antioxidant profile as evidenced by the elevation of the tissue GPx and SOD and down-regulation of HSP70 immune-expressions. Accordingly, Mesna treatment can be a promising way to counteract remote injury of the lung resulted from intestinal I-R.
Collapse
Affiliation(s)
- Samia Adel Abd El-Baset
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Asharquia, Egypt.
| | - Manal R Abd El-Haleem
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Asharquia, Egypt.,Faculty of Dentistry, Egyptian Russian University, Badr City, Egypt
| | | | - Asmaa A A Kattaia
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Asharquia, Egypt
| |
Collapse
|
9
|
Hsiao CC, Lee CH, Yang RC, Chen JY, Su TC, Chang YJ, Lin CY, Tsai YG. Heat Shock Protein-70 Levels Are Associated With a State of Oxidative Damage in the Development of Bronchopulmonary Dysplasia. Front Pediatr 2021; 9:616452. [PMID: 34123957 PMCID: PMC8187579 DOI: 10.3389/fped.2021.616452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Heat shock protein-70 (Hsp-70) exhibits cytoprotective effects against oxidative stress-induced airway injury. This study aimed to examine Hsp-70 and 8-hydroxy-2'-deoxyguanosine (8-OHdG) from tracheal aspirates (TA) in very low-birth weight (VLBW) preterm infants to predict the development of bronchopulmonary dysplasia (BPD). Methods: This birth cohort study enrolled 109 VLBW preterm infants, including 32 infants who developed BPD. Hsp-70 and 8-OHdG concentrations from TA were measured by immunoassay. The apoptosis of TA epithelial cells obtained on Day 28 after birth was measured using annexin-V staining assay. Results: Hsp-70 and 8-OHdG levels in TA fluid were persistently increased from Day 1 to Day 28 of life in the BPD group. Multiple linear regression analysis demonstrated that BPD was significantly associated with gestational age, respiratory distress syndrome, and TA Hsp-70 and 8-OHdG levels on post-natal Day 28. The TA Hsp-70 level positively correlated with TA 8-OHdG level on the Day 1 (r = 0.47) and Day 28 of life (r = 0.68). Incubation of recombinant Hsp-70 with primary epithelial cells derived from TA of patients decreased hydrogen peroxide-induced epithelial cell death. Conclusions: Hsp-70 levels are associated with a state of oxidative injury in the development of BPD.
Collapse
Affiliation(s)
- Chien-Chou Hsiao
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Han Lee
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Rei-Cheng Yang
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jia-Yuh Chen
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Tzu-Cheng Su
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Jun Chang
- Epidemiology and Biostatistics and Big Data Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Yuang Lin
- Division of Pediatric Nephrology, Children's Hospital, China Medical University, Taichung, Taiwan
| | - Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Ellis BW, Traktuev DO, Merfeld-Clauss S, Can UI, Wang M, Bergeron R, Zorlutuna P, March KL. Adipose stem cell secretome markedly improves rodent heart and human induced pluripotent stem cell-derived cardiomyocyte recovery from cardioplegic transport solution exposure. STEM CELLS (DAYTON, OHIO) 2020; 39:170-182. [PMID: 33159685 DOI: 10.1002/stem.3296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
Heart transplantation is a life-saving therapy for end-stage organ failure. Organ deterioration during transportation limits storage to 4 hours, limiting hearts available. Approaches ameliorating organ damage could increase the number of hearts acceptable for transplantation. Prior studies show that adipose-derived stem/stromal cell secretome (ASC-S) rescues tissues from postischemic damage in vivo. This study tested whether ASC-S preserved the function of mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes (iCM) exposed to organ transportation and transplantation conditions. Hearts were subjected to cold University of Wisconsin (UW) cardioplegic solution ± ASC-S for 6 hours followed by analysis using the Langendorff technique. In parallel, the effects of ASC-S on the recovery of iCM from UW solution were examined when provided either during or after cold cardioplegia. Exposure of hearts and iCM to UW deteriorated contractile activity and caused cell apoptosis, worsening in iCM as a function of exposure time; these were ameliorated by augmenting with ASC-S. Silencing of superoxide dismutase 3 and catalase expression prior to secretome generation compromised the ASC-S cardiomyocyte-protective effects. In this study, a novel in vitro iCM model was developed to complement a rodent heart model in assessing efficacy of approaches to improve cardiac preservation. ASC-S displays strong cardioprotective activity on iCM either with or following cold cardioplegia. This effect is associated with ASC-S-mediated cellular clearance of reactive oxygen species. The effect of ASC-S on the temporal recovery of iCM function supports the possibility of lengthening heart storage by augmenting cardioplegic transport solution with ASC-S, expanding the pool of hearts for transplantation.
Collapse
Affiliation(s)
- Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA
| | - Dmitry O Traktuev
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA.,Malcom Randall Veterans' Affairs Medical Center, Gainesville, Florida, USA
| | - Stephanie Merfeld-Clauss
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA.,Malcom Randall Veterans' Affairs Medical Center, Gainesville, Florida, USA
| | - Uryan Isik Can
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Meijing Wang
- The Division of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ray Bergeron
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Keith L March
- Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida, Gainesville, Florida, USA.,Malcom Randall Veterans' Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
11
|
Wu J, Chen S, Liu Y, Liu Z, Wang D, Cheng Y. Therapeutic perspectives of heat shock proteins and their protein-protein interactions in myocardial infarction. Pharmacol Res 2020; 160:105162. [DOI: 10.1016/j.phrs.2020.105162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022]
|
12
|
Chen J, Bian X, Li Y, Xiao X, Yin Y, Du X, Wang C, Li L, Bai Y, Liu X. Moderate hypothermia induces protection against hypoxia/reoxygenation injury by enhancing SUMOylation in cardiomyocytes. Mol Med Rep 2020; 22:2617-2626. [PMID: 32945433 PMCID: PMC7453665 DOI: 10.3892/mmr.2020.11374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/04/2020] [Indexed: 02/05/2023] Open
Abstract
Moderate hypothermia plays a major role in myocardial cell death as a result of hypoxia/reoxygenation (H/R) injury. However, few studies have investigated the molecular mechanisms of hypothermic cardioprotection. Several responses to stress and other cell functions are regulated by post‑translational protein modifications controlled by small ubiquitin‑like modifier (SUMO). Previous studies have established that high SUMOylation of proteins potentiates the ability of cells to withstand hypoxic‑ischemic stress. The level to which moderate hypothermia affects SUMOylation is not fully understood, as the functions of SUMOylation in the heart have not been studied in depth. The aim of the present study was to investigate the effect of moderate hypothermia (33˚C) on the protective functions of SUMOylation on myocardial cells. HL‑1 and H9c2 cells were treated with the hypoxia‑mimetic chemical CoCl2 and complete medium to simulate H/R injury. Hypothermia intervention was then administered. A Cell Counting kit‑8 assay was used to analyze cell viability. Mitochondrial membrane potential and the generation of reactive oxygen species (ROS) were used as functional indexes of mitochondria dysfunction. Bcl‑2 and caspase‑3 expression levels were analyzed by western blotting. The present results suggested that moderate hypothermia significantly increased SUMO1 and Bcl‑2 expression levels, as well as the mitochondrial membrane potential, but significantly decreased the expression levels of caspase‑3 and mitochondrial ROS. Thus, moderate hypothermia may enhance SUMOylation and attenuate myocardial H/R injury. Moreover, a combination of SUMOylation and moderate hypothermia may be a potential cardiovascular intervention.
Collapse
Affiliation(s)
- Jinsheng Chen
- North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
- Department of Anesthesiology, Tangshan Maternity and Child Health Care Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yanxia Li
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaolin Xiao
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yanying Yin
- Department of Neurology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xinping Du
- Department of Cardiology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Cuancuan Wang
- Department of Cardiology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Lili Li
- Department of Bone and Soft Tissue Tumors, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Yaowu Bai
- North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
- Department of Anesthesiology, Tangshan Maternity and Child Health Care Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| |
Collapse
|
13
|
Heat Shock Protein 70 Protects the Heart from Ischemia/Reperfusion Injury through Inhibition of p38 MAPK Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3908641. [PMID: 32308802 PMCID: PMC7142395 DOI: 10.1155/2020/3908641] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Background Heat shock protein 70 (Hsp70) has been shown to exert cardioprotection. Intracellular calcium ([Ca2+]i) overload induced by p38 mitogen-activated protein kinase (p38 MAPK) activation contributes to cardiac ischemia/reperfusion (I/R) injury. However, whether Hsp70 interacts with p38 MAPK signaling is unclear. Therefore, this study investigated the regulation of p38 MAPK by Hsp70 in I/R-induced cardiac injury. Methods Neonatal rat cardiomyocytes were subjected to oxygen-glucose deprivation for 6 h followed by 2 h reoxygenation (OGD/R), and rats underwent left anterior artery ligation for 30 min followed by 30 min of reperfusion. The p38 MAPK inhibitor (SB203580), Hsp70 inhibitor (Quercetin), and Hsp70 short hairpin RNA (shRNA) were used prior to OGD/R or I/R. Cell viability, lactate dehydrogenase (LDH) release, serum cardiac troponin I (cTnI), [Ca2+]i levels, cell apoptosis, myocardial infarct size, mRNA level of IL-1β and IL-6, and protein expression of Hsp70, phosphorylated p38 MAPK (p-p38 MAPK), sarcoplasmic/endoplasmic reticulum Ca2+-ATPase2 (SERCA2), phosphorylated signal transducer and activator of transcription3 (p-STAT3), and cleaved caspase3 were assessed. Results Pretreatment with a p38 MAPK inhibitor, SB203580, significantly attenuated OGD/R-induced cell injury or I/R-induced myocardial injury, as evidenced by improved cell viability and lower LDH release, resulted in lower serum cTnI and myocardial infarct size, alleviation of [Ca2+]i overload and cell apoptosis, inhibition of IL-1β and IL-6, and modulation of protein expressions of p-p38 MAPK, SERCA2, p-STAT3, and cleaved-caspase3. Knockdown of Hsp70 by shRNA exacerbated OGD/R-induced cell injury, which was effectively abolished by SB203580. Moreover, inhibition of Hsp70 by quercetin enhanced I/R-induced myocardial injury, while SB203580 pretreatment reversed the harmful effects caused by quercetin. Conclusions Inhibition of Hsp70 aggravates [Ca2+]i overload, inflammation, and apoptosis through regulating p38 MAPK signaling during cardiac I/R injury, which may help provide novel insight into cardioprotective strategies.
Collapse
|
14
|
Su Q, Liu Y, Lv XW, Dai RX, Yang XH, Kong BH. LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. Am J Physiol Heart Circ Physiol 2020; 318:H332-H344. [PMID: 31858814 DOI: 10.1152/ajpheart.00444.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Increased production of reactive oxygen species (ROS) significantly contributed to the pathogenesis of acute myocardial infarction (AMI). Recent studies suggest that hypoxia upregulated the long noncoding RNA taurine upregulated gene 1 (TUG1). In this study, we explored the functional significance and molecular mechanisms of TUG1/miR-132-3p axis in ischemia-challenged cardiomyocytes. In primary cardiomyocytes challenged with H2O2, expressions of miR-132-3p, TUG1, and other target proteins were measured by RT quantitative PCR or Western blot analysis; cell viability by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay; apoptosis by annexin V and propidium iodide staining; the abundance of acetylated H3K9 or histone deacetylase 3 (HDAC3) within the promoter of target genes by chromatin immunoprecipitation; the direct interaction between miR-132-3p and HDAC3 or TUG1 by luciferase reporter assay. The biological significance of miR-132-3p, TUG1, and HDAC3 was assessed using miR-132-3p mimic, siRNA-targeting TUG1 and HDAC3 inhibitor RGF966, respectively, in H2O2-challenged cells in vitro or ischemia-reperfusion (I/R)-induced AMI in vivo. miR-132-3p was downregulated, whereas TUG1 upregulated in H2O2-challenged cardiomyocytes. Overexpressing miR-132-3p or knocking down TUG1 significantly improved viability, inhibited apoptosis, and reduced ROS production in H2O2-stressed cardiomyocytes in vitro and alleviated I/R-induced AMI in vivo. Mechanistically, TUG1 sponged miR-132-3p and upregulated HDAC3, which reduced the acetylation of H3K9 and epigenetically inhibited expressions of antioxidative genes, including Bcl-xL, Prdx2, and Hsp70. The TUG1/miR-132-3p/HDAC3 axis critically regulates ROS production and the pathogenic development of AMI. Targeting TUG1, upregulating miR-132-3p, or inhibiting HDAC3 may benefit AMI treatment.NEW & NOTEWORTHY Increased production of reactive oxygen species (ROS) significantly contributed to the pathogenesis of acute myocardial infarction (AMI). Recent studies suggest that hypoxia upregulated the long noncoding RNA taurine upregulated gene 1 (TUG1). However, the underlying mechanisms remain elusive. In the present study, we reported for the first time that H2O2 or ischemia-reperfusion-induced TUG1, by sponging microRNA 132-3p, activated histone deacetylase 3, which in turn targeted multiple protective genes, stimulated intracellular ROS accumulation, and aggravated the injury of AMI. Our findings might provide some insight to seek new targets for AMI treatment.
Collapse
Affiliation(s)
- Qiang Su
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Yang Liu
- Department of Cardiology, The Second People's Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xiang-Wei Lv
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Ri-Xin Dai
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Xi-Heng Yang
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Bing-Hui Kong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|
15
|
Matrine Protects Cardiomyocytes From Ischemia/Reperfusion Injury by Regulating HSP70 Expression Via Activation of the JAK2/STAT3 Pathway. Shock 2019; 50:664-670. [PMID: 29394239 DOI: 10.1097/shk.0000000000001108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies have shown that matrine showed cardiovascular protective effects; however, its role and mechanism in myocardial ischemia/reperfusion (I/R) injury remain unknown. The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway activation and elevated heat shock protein (HSP) 70 are closely related to the prevention of myocardial I/R injury. The cardioprotective effects of matrine were determined in hypoxia/reoxygenation (H/R)-treated primary rat cardiomyocytes and left anterior descending coronary artery ligation and reperfusion animal models. The molecular mechanisms of matrine in myocardial I/R injury were focused on JAK2/STAT3 pathway activation and HSP70 expression. We found that matrine significantly increased H/R-induced the suppression of cell viability, decreased lactate dehydrogenase release, creatine kinase activity, and cardiomyocytes apoptosis in vitro. Moreover, matrine notably reduced the serum levels of creatine kinase-myocardial band (CK-MB) and cardiac troponin I, lessened the infarcted area of the heart, and decreased the apoptotic index of cardiomyocytes induced by I/R in vivo. Matrine activated the JAK2/STAT3 signaling, upregulated HSP70 expression both in vitro and in vivo. The cardioprotective effects of matrine were abrogated by AG490, a JAK2 inhibitor, and HSP70 siRNA. In addition, AG490 reduced HSP70 expression increased by matrine. In conclusion, matrine attenuates myocardial I/R injury by upregulating HSP70 expression via the activation of the JAK2/STAT3 pathway.
Collapse
|
16
|
Chen J, Luo Y, Wang S, Zhu H, Li D. Roles and mechanisms of SUMOylation on key proteins in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 2019; 134:154-164. [PMID: 31344368 DOI: 10.1016/j.yjmcc.2019.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/19/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury has a great influence on the prognosis of patients with acute coronary occlusion. The underlying mechanisms of MI/R injury are complex. While the incidence of MI/R injury is increasing every year, the existing therapies are not satisfactory. Recently, small ubiquitin-related modifier (SUMO), which is a post-translational modification and involved in many cell processes, was found to play remarkable roles in MI/R injury. Several proteins that can be SUMOylated were found to interfere with different mechanisms of MI/R injury. Sarcoplasmic reticulum Ca2+ ATPase pump SUMOylation alleviated calcium overload. Among the histone deacetylase (HDAC) members, SUMOylation of HDAC4 reduced reactive oxygen species generation, whereas Sirt1 played protective roles in the SUMOylated form. Dynamic-related protein 1 modified by different SUMO proteins exerted opposite effects on the function of mitochondria. SUMOylation of hypoxia-inducible factors was fundamental in oxygen homeostasis, while eukaryotic elongation factor 2 SUMOylation induced cardiomyocyte apoptosis. The impact of other SUMOylation substrates in MI/R injury remains unclear. Here we reviewed how these SUMOylated proteins alleviated or exacerbated myocardial impairments by effecting the MI/R injury mechanisms. This may suggest methods for relieving MI/R injury in clinical practice and provide a reference for further study of SUMOylation in MI/R injury.
Collapse
Affiliation(s)
- Jingwen Chen
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yuanyuan Luo
- Xuzhou Medical University Affiliated Hospital, Xuzhou, Jiangsu, PR China
| | - Shuai Wang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Hong Zhu
- Xuzhou Medical University Affiliated Hospital, Xuzhou, Jiangsu, PR China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Xuzhou Medical University Affiliated Hospital, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
17
|
Aceros H, Der Sarkissian S, Borie M, Stevens LM, Mansour S, Noiseux N. Celastrol-type HSP90 modulators allow for potent cardioprotective effects. Life Sci 2019; 227:8-19. [PMID: 30986447 DOI: 10.1016/j.lfs.2019.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022]
Abstract
AIMS Cardiac ischemic conditioning has been shown to decrease ischemic injury in experimental models and clinically. Activation of survival pathways leading to heat shock proteins (HSP) modulation is an important contributor to this effect. We have previously shown that celastrol, an HSP90 modulator, achieves cardioprotection through activation of cytoprotective HSP's and heme-oxygenase-1 (HO-1). This is the first comparative evaluation of several modulators of HSP90 activity for cardioprotection. Furthermore, basic celastrol structure-activity relationship was characterized in order to develop novel potent infarct sparing agents suitable for clinical development. MAIN METHODS Combining in vitro cell culture using rat myocardial cell line exposed to ischemic and ischemia/reperfusion (I/R) stresses, and ex vivo Langendorff rat heart perfusion I/R model, we evaluated cardioprotective effects of various compounds. Selected signalling pathways were evaluated by western blot and reporter gene activation. KEY FINDINGS From a variety of HSP90 modulator chemotypes, the celastrol family was most efficient in inducing cytoprotective HSP70 and HO-1 protein overexpression and cell survival in vitro. Celastrol and two synthetic analogs were protective against ischemia and prevented ischemia/reperfusion (I/R) injury when given as pre-treatment or at time of reperfusion, increasing viability and reducing mitochondrial permeability transition pore opening. Ex vivo experiments demonstrated that the two synthetic analogs show cardioprotective activity at lower concentrations compared to celastrol, with activation of multiple survival pathways. SIGNIFICANCE Celastrol backbone is essential for cardioprotection through HSP90 activity modulation. These compounds hold promise as novel adjunct treatment to improve outcome in the clinical management of I/R injury.
Collapse
Affiliation(s)
- Henry Aceros
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Shant Der Sarkissian
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Mélanie Borie
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Louis-Mathieu Stevens
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Samer Mansour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Noiseux
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Song Y, Zhong C, Wang X. Heat shock protein 70: A promising therapeutic target for myocardial ischemia–reperfusion injury. J Cell Physiol 2018; 234:1190-1207. [DOI: 10.1002/jcp.27110] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/29/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Yan‐Jun Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
- School of Laboratory Medicine and Biotechnology Southern Medical University Guangzhou China
| | - Chong‐Bin Zhong
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
| | - Xian‐Bao Wang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
19
|
Liao Z, He H, Zeng G, Liu D, Tang L, Yin D, Chen D, He M. Delayed protection of Ferulic acid in isolated hearts and cardiomyocytes: Upregulation of heat-shock protein 70 via NO-ERK1/2 pathway. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|