1
|
Sun C, Gui J, Sheng Y, Huang L, Zhu X, Huang K. Specific signaling pathways mediated programmed cell death in tumor microenvironment and target therapies. Discov Oncol 2025; 16:776. [PMID: 40377777 PMCID: PMC12084487 DOI: 10.1007/s12672-025-02592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
Increasing evidence has shown that programmed cell death (PCD) plays a crucial role in tumorigenesis and cancer progression. The components of PCD are complex and include various mechanisms such as apoptosis, necroptosis, alkaliptosis, oxeiptosis, and anoikis, all of which are interrelated in their functions and regulatory pathways. Given the significance of these processes, it is essential to conduct a comprehensive study on PCD to elucidate its multifaceted nature. Key signaling pathways, particularly the caspase signaling pathway, the RIPK1/RIPK3/MLKL pathway, and the mTOR signaling pathway, are pivotal in regulating PCD and influencing tumor progression. In this review, we briefly describe the generation mechanisms of different PCD components and focus on the regulatory mechanisms of these three major signaling pathways within the context of global PCD. Furthermore, we discuss various tumor therapeutic compounds that target different signaling axes of these pathways, which may provide novel strategies for effective tumor therapy and help improve patient outcomes in cancer treatment.
Collapse
Affiliation(s)
- Chengpeng Sun
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Jiawei Gui
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Yilei Sheng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang, 330031, China
| | - Le Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China
| | - Xingen Zhu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Kai Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, 330006, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, 330006, Jiangxi, China.
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Kasana S, Kumar S, Patel P, Kurmi BD, Jain S, Sahu S, Vaidya A. Caspase inhibitors: a review on recently patented compounds (2016-2023). Expert Opin Ther Pat 2024; 34:1047-1072. [PMID: 39206873 DOI: 10.1080/13543776.2024.2397732] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Caspases are a family of protease enzymes that play a crucial role in apoptosis. Dysregulation of caspase activity has been implicated in various pathological conditions, making caspases an important focus of research in understanding cell death mechanisms and developing therapeutic strategies for diseases associated with abnormal apoptosis. AREAS COVERED It is a comprehensive review of caspase inhibitors that have been comprising recently granted patents from 2016 to 2023. It includes peptide and non-peptide caspase inhibitors with their application for different diseases. EXPERT OPINION This review categorizes and analyses recently patented caspase inhibitors on various diseases. Diseases linked to caspase dysregulation, including neurodegenerative disorders, and autoimmune conditions, are highlighted to accentuate the therapeutic relevance of the patented caspase inhibitors. This paper serves as a valuable resource for researchers, clinicians, and pharmaceutical developers seeking an up-to-date understanding of recently patented caspase inhibitors. The integration of recent patented compounds, structural insights, and mechanistic details provides a holistic view of the progress in caspase inhibitor research and its potential impact on addressing various diseases.
Collapse
Affiliation(s)
- Shivani Kasana
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Shivam Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Shweta Jain
- Sir Madanlal Institute of Pharmacy, Etawah, India
| | - Sanjeev Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ankur Vaidya
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah, India
| |
Collapse
|
3
|
Li X, Guo Y, Xing Z, Gong T, Yang L, Yang T, Chang B, Wang X, Yu B, Guo R. ABT‑737 increases cisplatin sensitivity through the ROS‑ASK1‑JNK MAPK signaling axis in human ovarian cancer cisplatin‑resistant A2780/DDP cells. Oncol Rep 2024; 52:122. [PMID: 39054955 PMCID: PMC11292299 DOI: 10.3892/or.2024.8781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Ovarian cancer is a gynecological malignant tumor with the highest mortality rate, and chemotherapy resistance seriously affects patient therapeutic outcomes. It has been shown that the high expression of anti‑apoptotic proteins Bcl‑2 and Bcl‑xL is closely related to ovarian cancer chemotherapy resistance. Therefore, reducing Bcl‑2 and Bcl‑xL expression levels may be essential for reversing drug resistance in ovarian cancer. ABT‑737 is a BH3‑only protein mimetic, which can effectively inhibit the expression of the anti‑apoptotic proteins Bcl‑xL and Bcl‑2. Although it has been shown that ABT‑737 can increase the sensitivity of ovarian cancer cells to cisplatin, the specific molecular mechanism remains unclear and requires further investigation. In the present study, the results revealed that ABT‑737 can significantly increase the activation levels of JNK and ASK1 induced by cisplatin in A2780/DDP cells, which are cisplatin‑resistant ovarian cancer cells. Inhibition of the JNK and ASK1 pathway could significantly reduce cisplatin cytotoxicity increased by ABT‑737 in A2780/DDP cells, while inhibiting the ASK1 pathway could reduce JNK activation. In addition, it was further determined that ABT‑737 could increase reactive oxygen species (ROS) levels in A2780/DDP cells induced by cisplatin. Furthermore, the inhibition of ROS could significantly reduce JNK and ASK1 activation and ABT‑737‑mediated increased cisplatin cytotoxicity in A2780/DDP cells. Overall, the current data identified that activation of the ROS‑ASK1‑JNK signaling axis plays an essential role in the ability of ABT‑737 to increase cisplatin sensitivity in A2780/DDP cells. Therefore, upregulation the ROS‑ASK1‑JNK signaling axis is a potentially novel molecular mechanism by which ABT‑737 can enhance cisplatin sensitivity of ovarian cancer cells. In addition, the present research can also provide new therapeutic strategies and new therapeutic targets for patients with cisplatin‑resistant ovarian cancer with high Bcl‑2/Bcl‑xL expression patterns.
Collapse
Affiliation(s)
- Xiaoning Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yumeng Guo
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Zihan Xing
- Department of Hematology, Linfen Central Hospital, Linfen, Shanxi 041099, P.R. China
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lijun Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Tao Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Bingmei Chang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaoxia Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Rui Guo
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
4
|
Krasnyi AM, Gadzhieva LT, Kokoeva DN, Kosenko MG, Yarotskaya EL, Pavlovich SV, Ashrafyan LA, Sukhikh GT. Analysis of CDO1, PITX2, and CDH13 Gene Methylation in Early Endometrial Cancer for Prediction of Medical Treatment Outcomes. Int J Mol Sci 2024; 25:4892. [PMID: 38732110 PMCID: PMC11084267 DOI: 10.3390/ijms25094892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
An observational cohort study of patients diagnosed with endometrial cancer (EC) stage IA G1, or atypical endometrial hyperplasia (AEH), undergoing organ-preserving treatment, was conducted. OBJECTIVE OF THE STUDY To determine CDO1, PITX2, and CDH13 gene methylation levels in early endometrial cancer and atypical hyperplasia specimens obtained before organ-preserving treatment in the patients with adequate response and with insufficient response to hormonal treatment. MATERIALS AND METHODS A total of 41 endometrial specimens obtained during diagnostic uterine curettage in women with EC (n = 28) and AEH (n = 13), willing to preserve reproductive function, were studied; 18 specimens of uterine cancer IA stage G1 from peri- and early postmenopausal women (comparison group) were included in the study. The control group included 18 endometrial specimens from healthy women obtained by diagnostic curettage for missed abortion and/or intrauterine adhesions. Methylation levels were analyzed using the modified MS-HRM method. RESULTS All 13 women with AEH had a complete response (CR) to medical treatment. In the group undergoing organ-preserving treatment for uterine cancer IA stage G1 (n = 28), 14 patients had a complete response (EC CR group) and 14 did not (EC non-CR group). It was found that all groups had statistically significant differences in CDO1 gene methylation levels compared to the control group (p < 0.001) except for the EC CR group (p = 0.21). The p-value for the difference between EC CR and EC non-CR groups was <0.001. The differences in PITX2 gene methylation levels between the control and study groups were also significantly different (p < 0.001), except for the AEH group (p = 0.21). For the difference between EC CR and EC non-CR groups, the p-value was 0.43. For CDH13 gene methylation levels, statistically significant differences were found between the control and EC non-CR groups (p < 0.001), and the control and EC comparison groups (p = 0.005). When comparing the EC CR group with EC non-CR group, the p-value for this gene was <0.001. The simultaneous assessment of CDO1 and CDH13 genes methylation allowed for an accurate distinction between EC CR and EC non-CR groups (AUC = 0.96). CONCLUSION The assessment of CDO1 and CDH13 gene methylation in endometrial specimens from patients with endometrial cancer (IA stage G1), scheduled for medical treatment, can predict the treatment outcome.
Collapse
Affiliation(s)
- Aleksey M. Krasnyi
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Lyubov T. Gadzhieva
- Moscow Multidisciplinary Clinical Center “Kommunarka”, 108814 Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Diana N. Kokoeva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Mark G. Kosenko
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Ekaterina L. Yarotskaya
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Stanislav V. Pavlovich
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Levon A. Ashrafyan
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Gennady T. Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Hacıseyitoğlu AÖ, Doğan TÇ, Dilsiz SA, Canpınar H, Eken A, Bucurgat ÜÜ. Pitavastatin induces caspase-mediated apoptotic death through oxidative stress and DNA damage in combined with cisplatin in human cervical cancer cell line. J Appl Toxicol 2024; 44:623-640. [PMID: 38053498 DOI: 10.1002/jat.4565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Pitavastatin (PITA) is a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitor to treat hypercholesterolemia and in recent studies is focused that its potential anti-cancer effect. This study was aimed to elucidate the effect of PITA alone and in combination with cisplatin on cervical cancer cells (HeLa) in vitro. Cytotoxicity of PITA (5-200 μM) was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red uptake (NRU) assays for 24, 48, and 72 h. Cell apoptosis and cell cycle analyses were performed in flow cytometry (0.1-100 μM). The evaluation of genotoxic effects and oxidative DNA damage of PITA (2-200 μM) were performed with standard comet assay, formamidopyrimidine glycosylase (fpg)-modified comet assay, and reactive oxygen species (ROS) activation in HeLa cells. PITA alone reduced cell viability in a dose-dependent manner (20-200, 20-200, and 5-200 μM for 24, 48, and 72 h, respectively, in MTT). The combined treatment of PITA with cisplatin resulted in significantly greater inhibition of cell viability. ROS and DNA damage increased significantly at 100 μM for 4 h and 20 μM for 24 h, respectively. PITA-induced apoptosis, an increased proportion of sub G1 cells, was monitored, and also, it increased the expression of active caspase-9 and caspase-3 and upregulated cleaved poly adenosine diphosphate ribose polymerase (PARP) by western blotting and caspase 3/8/9 multiple assay kit. We conclude that PITA can be used to efficiently cervical cancer studies, and promising findings have been obtained for further studies.
Collapse
Affiliation(s)
- Aysun Ökçesiz Hacıseyitoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Tuğbagül Çal Doğan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sevtap Aydın Dilsiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hande Canpınar
- Department of Basic Oncology, Institute of Cancer, Hacettepe University, Ankara, Turkey
| | - Ayşe Eken
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ülkü Ündeğer Bucurgat
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Huang S, Sun M, Ren Y, Luo T, Wang X, Weng G, Cen D. Solamargine induces apoptosis of human renal carcinoma cells via downregulating phosphorylated STAT3 expression. Oncol Lett 2023; 26:493. [PMID: 37854861 PMCID: PMC10579987 DOI: 10.3892/ol.2023.14080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/01/2023] [Indexed: 10/20/2023] Open
Abstract
Solamargine (SM), an active compound derived from Solanum nigrum, triggers apoptosis and inhibits the metastatic and oxidative activities of various types of tumor cells. However, the effect of SM on human renal carcinoma cells remains unknown. In the present study, the molecular mechanisms underlying the antitumor effects of SM on ACHN and 786-O cells were elucidated. Specifically, MTT and colony formation assays were conducted to evaluate the impact of SM treatment on the proliferation of ACHN and 786-O cells, and flow cytometry was conducted to determine the influence of SM on the apoptosis rates of these cells. In addition, the expression of target proteins was determined by western blotting. The results revealed that SM not only inhibited cell viability but also promoted the apoptosis of ACHN and 786-O cells in a time- and dose-dependent manner. Moreover, treatment of ACHN and 786-O cells with SM significantly enhanced the caspase-3, caspase-8 and caspase-9 activities. Furthermore, SM downregulated the expression of phosphorylated signal transducer and activator of transcription-3 (p-STAT3) and Bcl-2 but increased the expression of cleaved caspase-3, -8, -9 and Bax. BAY2353, a p-STAT3 inhibitor, inhibited the viability of ACHN and 786-O cells, increased the expression of cleaved caspase-9 and Bax and decreased the expression of p-STAT3 and Bcl-2. Further experiments demonstrated that SM inhibited tumor growth in xenograft nude mice without causing specific toxicity to the major organs. Collectively, these findings indicated that SM not only inhibited the viability but also promoted the apoptosis of ACHN and 786-O cells, through a mechanism involving downregulation of p-STAT3 expression.
Collapse
Affiliation(s)
- Shuaishuai Huang
- Laboratory of Renal Carcinoma, Ningbo Yinzhou No. 2 Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Minyi Sun
- Laboratory of Renal Carcinoma, Ningbo Yinzhou No. 2 Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Yu Ren
- Laboratory of Renal Carcinoma, Ningbo Yinzhou No. 2 Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Ting Luo
- Department of Medical Laboratory, Ningbo Yinzhou No. 2 Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Xue Wang
- Laboratory of Renal Carcinoma, Ningbo Yinzhou No. 2 Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Guobin Weng
- Laboratory of Renal Carcinoma, Ningbo Yinzhou No. 2 Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Dong Cen
- Department of Medical Laboratory, Ningbo Yinzhou No. 2 Hospital, Urology and Nephrology Institute of Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| |
Collapse
|
7
|
Avramenko AS, Flanagan JM. An epigenetic hypothesis for ovarian cancer prevention by oral contraceptive pill use. Clin Epigenetics 2023; 15:165. [PMID: 37853473 PMCID: PMC10585871 DOI: 10.1186/s13148-023-01584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Ovarian cancer is the second most common gynecological cancer type after uterine cancers. In 2020, according to worldwide statistics, there were more than 313,000 new cases of ovarian cancer. Most concerning with ovarian cancer is the poor overall survival, with only 30% of patients surviving for longer than 5 years after diagnosis. The reason for this poor outcome includes late diagnosis due to non-specific symptoms and a lack of any highly effective biomarkers of the early stages of ovarian carcinogenesis. However, it is important to note that some modifiable lifestyle factors can be preventative [pregnancy, breastfeeding and combined oral contraceptives pill (COCP) use]. RESULTS There is now increasing data reporting the role of epigenetic changes, which are detectable in ovarian cancer tumors, suggesting the possibility that epigenetics may also play a key role in the mechanism of long-term effective prevention of ovarian cancer. To our knowledge, there is a lack of high-quality data on the molecular mechanisms of ovarian cancer prevention, although several hypotheses have been proposed. CONCLUSIONS This review focusses on the evidence for a proposed novel hypothesis-that COCPs act as a chemoprevention through the impact on the epigenome of the cells of origin of ovarian cancer-fallopian tubes epithelium.
Collapse
Affiliation(s)
- Anna S Avramenko
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - James M Flanagan
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
8
|
Li L, Li M, Zheng J, Li Z, Chen X. Knocking down NSUN5 inhibits the development of clear cell renal cell carcinoma by inhibiting the p53 pathway. Aging (Albany NY) 2023; 15:204761. [PMID: 37263638 DOI: 10.18632/aging.204761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common solid renal tumor. NSUN5, a gene encoding cytosine-5 RNA methyltransferase, has rarely been reported associated with cancer. A bioinformatics analysis revealed that NSUN5 was overexpressed in ccRCC. Gene Ontology and gene set variation analyses showed that NSUN5 was associated with tumor immunity in ccRCC. The effect of immunosuppressive treatment was superior in the low-risk group compared to the high-risk group, and higher stromal score in the high-risk group relative to the low-risk group. A drug sensitivity analysis revealed that the high-risk group was more sensitive to 5-fluorouracil, mitomycin C, methotrexate, and 17-AAG, whereas the low-risk group was more sensitive to crizotinib, sorafenib, foretinib, and ivozanib. NSUN5 knockout decreased ccRCC cell proliferation. The migration speed and number of invasive cells further decreased. The percentage of apoptotic cells increased. In NSUN5-knockout cells, the levels of BAX, caspase-8, caspase-9, and p53 increased significantly, whereas those of Bcl2, CCND1, CCND3, and MMP9 decreased significantly. NSUN5 is highly expressed in ccRCC and inhibits cancer cell invasion, proliferation, and migration while promoting apoptosis by activating the p53 signaling pathway. This study provides insights into the mechanisms of action of NSUN5 in urological tumors and may contribute to improving ccRCC treatment options.
Collapse
Affiliation(s)
- Lei Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, People’s Republic of China
| | - Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, People’s Republic of China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, People’s Republic of China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, People’s Republic of China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, People’s Republic of China
| |
Collapse
|
9
|
Starska-Kowarska K. Role of Vitamin D in Head and Neck Cancer-Immune Function, Anti-Tumour Effect, and Its Impact on Patient Prognosis. Nutrients 2023; 15:nu15112592. [PMID: 37299554 DOI: 10.3390/nu15112592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) describes a heterogeneous group of human neoplasms of the head and neck with high rates of morbidity and mortality, constituting about 3% of all cancers and ~1.5% of all cancer deaths. HNSCC constituted the seventh most prevalent human malignancy and the most common human cancer in the world in 2020, according to multi-population observations conducted by the GLOBOCAN group. Since approximately 60-70% of patients present with stage III/IV neoplastic disease, HNSCC is still one of the leading causes of death in cancer patients worldwide, with an overall survival rate that is too low, not exceeding 40-60% of these patients. Despite the application of newer surgical techniques and the implementation of modern combined oncological treatment, the disease often follows a fatal course due to frequent nodal metastases and local neoplastic recurrences. The role of micronutrients in the initiation, development, and progression of HNSCC has been the subject of considerable research. Of particular interest has been vitamin D, the pleiotropic biologically active fat-soluble family of secosteroids (vitamin-D-like steroids), which constitutes a key regulator of bone, calcium, and phosphate homeostasis, as well as carcinogenesis and the further development of various neoplasms. Considerable evidence suggests that vitamin D plays a key role in cellular proliferation, angiogenesis, immunity, and cellular metabolism. A number of basic science, clinical, and epidemiological studies indicate that vitamin D has multidirectional biological effects and influences anti-cancer intracellular mechanisms and cancer risk, and that vitamin D dietary supplements have various prophylactic benefits. In the 20th century, it was reported that vitamin D may play various roles in the protection and regulation of normal cellular phenotypes and in cancer prevention and adjunctive therapy in various human neoplasms, including HNSCC, by regulating a number of intracellular mechanisms, including control of tumour cell expansion and differentiation, apoptosis, intercellular interactions, angio- and lymphogenesis, immune function, and tumour invasion. These regulatory properties mainly occur indirectly via epigenetic and transcriptional changes regulating the function of transcription factors, chromatin modifiers, non-coding RNA (ncRNAs), and microRNAs (miRs) through protein-protein interactions and signalling pathways. In this way, calcitriol enhances intercellular communication in cancer biology, restores the connection with the extracellular matrix, and promotes the epithelial phenotype; it thus counteracts the tumour-associated detachment from the extracellular matrix and inhibits the formation of metastases. Furthermore, the confirmation that the vitamin D receptor (VDR) is present in many human tissues confirmed the physiopathological significance of vitamin D in various human tumours. Recent studies indicate quantitative associations between exposure to vitamin D and the incidence of HNC, i.e., cancer risk assessment included circulating calcidiol plasma/serum concentrations, vitamin D intake, the presence of the VDR gene polymorphism, and genes involved in the vitamin D metabolism pathway. Moreover, the chemopreventive efficacy of vitamin D in precancerous lesions of the head and neck and their role as predictors of mortality, survival, and recurrence of head and neck cancer are also widely discussed. As such, it may be considered a promising potential anti-cancer agent for developing innovative methods of targeted therapy. The proposed review discusses in detail the mechanisms regulating the relationship between vitamin D and HNSCC. It also provides an overview of the current literature, including key opinion-forming systematic reviews as well as epidemiological, prospective, longitudinal, cross-sectional, and interventional studies based on in vitro and animal models of HNSCC, all of which are accessible via the PubMed/Medline/EMBASE/Cochrane Library databases. This article presents the data in line with increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
10
|
Jiang X, Li G, Zhu B, Zang J, Lan T, Jiang R, Wang B. p20BAP31 induces cell apoptosis via both AIF caspase-independent and the ROS/JNK mitochondrial pathway in colorectal cancer. Cell Mol Biol Lett 2023; 28:25. [PMID: 36977989 PMCID: PMC10052827 DOI: 10.1186/s11658-023-00434-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
During cell apoptosis, the C-terminus of BAP31 is cleaved by caspase-8 and generates p20BAP31, which has been shown to induce an apoptotic pathway between the endoplasmic reticulum (ER) and mitochondria. However, the underlying mechanisms of p20BAP31 in cell apoptosis remains unclear.
Methods
We compared the effects of p20BAP31 on cell apoptosis in six cell lines and selected the most sensitive cells. Functional experiments were conducted, including Cell Counting Kit 8 (CCK-8), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) assay. Then, cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. Next, NOX inhibitors (ML171 and apocynin), ROS scavenger (NAC), JNK inhibitor (SP600125), and caspase inhibitor (Z-VAD-FMK) were used to further investigate the underlying mechanisms of p20BAP31 on cell apoptosis. Finally, apoptosis-inducing factor (AIF) translocation from the mitochondria to the nuclei was verified by immunoblotting and immunofluorescence assay.
Results
We found that overexpression of p20BAP31 indeed induced apoptosis and had a much greater sensitivity in HCT116 cells. Furthermore, the overexpression of p20BAP31 inhibited cell proliferation by causing S phase arrest. Further study revealed that p20BAP31 reduced MMP, with a significant increase in ROS levels, accompanied by the activation of the MAPK signaling pathway. Importantly, the mechanistic investigation indicated that p20BAP31 induces mitochondrial-dependent apoptosis by activating the ROS/JNK signaling pathway and induces caspase-independent apoptosis by promoting the nuclear translocation of AIF.
Conclusions
p20BAP31 induced cell apoptosis via both the ROS/JNK mitochondrial pathway and AIF caspase-independent pathway. Compared with antitumor drugs that are susceptible to drug resistance, p20BAP31 has unique advantages for tumor therapy.
Collapse
|
11
|
Zare A, Afshar A, Khoradmehr A, Baghban N, Mohebbi G, Barmak A, Daneshi A, Bargahi A, Nabipour I, Almasi-Turk S, Arandian A, Zibaii MI, Latifi H, Tamadon A. Chemical Compositions and Experimental and Computational Modeling of the Anticancer Effects of Cnidocyte Venoms of Jellyfish Cassiopea andromeda and Catostylus mosaicus on Human Adenocarcinoma A549 Cells. Mar Drugs 2023; 21:md21030168. [PMID: 36976217 PMCID: PMC10057638 DOI: 10.3390/md21030168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 03/09/2023] Open
Abstract
Nowadays, major attention is being paid to curing different types of cancers and is focused on natural resources, including oceans and marine environments. Jellyfish are marine animals with the ability to utilize their venom in order to both feed and defend. Prior studies have displayed the anticancer capabilities of various jellyfish. Hence, we examined the anticancer features of the venom of Cassiopea andromeda and Catostylus mosaicus in an in vitro situation against the human pulmonary adenocarcinoma (A549) cancer cell line. The MTT assay demonstrated that both mentioned venoms have anti-tumoral ability in a dose-dependent manner. Western blot analysis proved that both venoms can increase some pro-apoptotic factors and reduce some anti-apoptotic molecules that lead to the inducing of apoptosis in A549 cells. GC/MS analysis demonstrated some compounds with biological effects, including anti-inflammatory, antioxidant and anti-cancer activities. Molecular docking and molecular dynamic showed the best position of each biologically active component on the different death receptors, which are involved in the process of apoptosis in A549 cells. Ultimately, this study has proven that both venoms of C. andromeda and C. mosaicus have the capability to suppress A549 cells in an in vitro condition and they might be utilized in order to design and develop brand new anticancer agents in the near future.
Collapse
Affiliation(s)
- Afshin Zare
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr 75, Iran
| | - Alireza Afshar
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr 75, Iran
- PerciaVista R&D Co., Shiraz 73, Iran
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Gholamhossein Mohebbi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Alireza Barmak
- Food Lab, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Adel Daneshi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Afshar Bargahi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 73, Iran
| | - Sahar Almasi-Turk
- Department of Anatomical Sciences, School of Medicine, Bushehr University of Medical Sciences, Bushehr 73, Iran
- Correspondence: (S.A.-T.); (A.T.); Tel.: +98-77-3332-0657 (S.A.-T.); +98-21-2842-6122 (A.T.)
| | - Alireza Arandian
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 11, Iran
| | | | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 11, Iran
- Department of Physics, Shahid Beheshti University, Tehran 11, Iran
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz 73, Iran
- Correspondence: (S.A.-T.); (A.T.); Tel.: +98-77-3332-0657 (S.A.-T.); +98-21-2842-6122 (A.T.)
| |
Collapse
|
12
|
Rangsrikitphoti P, Marquez-Garban DC, Pietras RJ, McGowan E, Boonyaratanakornkit V. Sex steroid hormones and DNA repair regulation: Implications on cancer treatment responses. J Steroid Biochem Mol Biol 2023; 227:106230. [PMID: 36450315 DOI: 10.1016/j.jsbmb.2022.106230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The role of sex steroid hormones (SSHs) has been shown to modulate cancer cytotoxic treatment sensitivity. Dysregulation of DNA repair associated with genomic instability, abnormal cell survival and not only promotes cancer progression but also resistance to cancer treatment. The three major SSHs, androgen, estrogen, and progesterone, have been shown to interact with several essential DNA repair components. The presence of androgens directly regulates key molecules in DNA double-strand break (DSB) repair. Estrogen can promote cell proliferation and DNA repair, allowing cancer cells to tolerate chemotherapy and radiotherapy. Information on the role of progesterone in DNA repair is limited: progesterone interaction with some DNA repair components has been identified, but the biological significance is still unknown. Here, we review the roles of how each SSH affects DNA repair regulation and modulates response to genotoxic therapies and discuss future research that can be beneficial when combining SSHs with cancer therapy. We also provide preliminary analysis from publicly available databases defining the link between progesterone/PR and DDRs & DNA repair regulation that plausibly contribute to chemotherapy response and breast cancer patient survival.
Collapse
Affiliation(s)
- Pattarasiri Rangsrikitphoti
- Graduate Program in Clinical Biochemistry and Molecular Medicine and Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Diana C Marquez-Garban
- UCLA Jonsson Comprehensive Cancer and Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Richard J Pietras
- UCLA Jonsson Comprehensive Cancer and Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Viroj Boonyaratanakornkit
- Graduate Program in Clinical Biochemistry and Molecular Medicine and Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
13
|
PW06 Triggered Fas-FADD to Induce Apoptotic Cell Death In Human Pancreatic Carcinoma MIA PaCa-2 Cells through the Activation of the Caspase-Mediated Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3479688. [PMID: 36820406 PMCID: PMC9938777 DOI: 10.1155/2023/3479688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 02/13/2023]
Abstract
Pancreatic cancer has higher incidence and mortality rates worldwide. PW06 [(E)-3-(9-ethyl-9H-carbazol-3-yl)-1-(2,5-dimethoxyphenyl) prop-2-en-1-one] is a carbazole derivative containing chalcone moiety which was designed for inhibiting tumorigenesis in human pancreatic cancer. This study is aimed at investigating PW06-induced anticancer effects in human pancreatic cancer MIA PaCa-2 cells in vitro. The results showed PW06 potent antiproliferative/cytotoxic activities and induced cell morphological changes in a human pancreatic cancer cell line (MIA PaCa-2), and these effects are concentration-dependent (IC50 is 0.43 μM). Annexin V and DAPI staining assays indicated that PW06 induced apoptotic cell death and DNA condensation. Western blotting indicated that PW06 increased the proapoptotic proteins such as Bak and Bad but decreased the antiapoptotic protein such as Bcl-2 and Bcl-xL. Moreover, PW06 increased the active form of caspase-8, caspase-9, and caspase-3, PARP, releasing cytochrome c, AIF, and Endo G from mitochondria in MIA PaCa-2 cells. Confocal laser microscopy assay also confirmed that PW06 increased Bak and decreased Bcl-xL. Also, the cells were pretreated with inhibitors of caspase-3, caspase-8, and caspase-9 and then were treated with PW06, resulting in increased viable cell number compared to PW06 treated only. Furthermore, PW06 showed a potent binding ability with hydrophobic interactions in the core site of the Fas-Fas death domains (FADD). In conclusion, PW06 can potent binding ability to the Fas-FADD which led to antiproliferative, cytotoxic activities, and apoptosis induction accompanied by the caspase-dependent and mitochondria-dependent pathways in human pancreatic cancer MIA PaCa-2 cells.
Collapse
|
14
|
Zhou Y, Xiao X, Peng C, Song D, Ouyang F, Wang L. Progesterone induces glioblastoma cell apoptosis by coactivating extrinsic and intrinsic apoptotic pathways. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-022-00327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Lesko P, Vlkova B, Kalavska K, De Angelis V, Novotna V, Obertova J, Orszaghova Z, Palacka P, Rejlekova K, Sycova-Mila Z, Kollarik B, Aziri R, Pindak D, Mardiak J, Chovanec M, Celec P, Mego M. Prognostic role of plasma vitamin D and its association with disease characteristics in germ cell tumours. Front Oncol 2023; 13:1149432. [PMID: 37114140 PMCID: PMC10126247 DOI: 10.3389/fonc.2023.1149432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Background Testicular cancer is the most common malignancy among young men. Vitamin D has pluripotent effects on cancer pathogenesis and plays a role in the metastatic cascade. The aim of this study is to analyze plasma vitamin D in association with clinico-pathological findings and prognosis in patients with germ-cell tumors (GCTs). Methods This study included 120 newly diagnosed and/or relapsed GCT patients treated from April 2013 to July 2020, for whom plasma was available in the biobank. Blood samples were drawn the 1st chemotherapy cycle as well as before the 2nd cycle. Plasma vitamin D was measured using ELISA and correlated with disease characteristics and the outcome. For survival analysis, the cohort was dichotomized into "low" and "high" based on median vitamin D. Results There was no significant difference in vitamin D plasma levels between healthy donors and GCT patients (p = 0.71). Vitamin D level was not associated with disease characteristics except for brain metastases, where patients with brain metastases had a vitamin D level that was 32% lower compared to patients without brain metastases, p = 0.03. Vitamin D was also associated with response to chemotherapy, with an approximately 32% lower value in patients with an unfavorable response compared to a favorable response, p = 0.02. Moreover, low plasma levels of vitamin D were significantly associated with disease recurrence and inferior progression-free survival (PFS), but not with overall survival (OS) (HR = 3.02, 95% CI 1.36-6.71, p = 0.01 for PFS and HR = 2.06, 95% CI 0.84-5.06, p = 0.14 for OS, respectively). Conclusion Our study suggests the prognostic value of pretreatment vitamin D concentrations in GCT patients. Low plasma vitamin D was associated with an unfavorable response to therapy and disease recurrence. However, it remains to be determined whether the biology of the disease confirms a causative role for low vitamin D and whether its supplementation affects the outcome.
Collapse
Affiliation(s)
- Peter Lesko
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
- *Correspondence: Peter Lesko,
| | - Barbora Vlkova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Katarina Kalavska
- Translation Research Unit, Comenius University, National Cancer Institute, Bratislava, Slovakia
| | - Valentina De Angelis
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Vera Novotna
- 1st Department of Oncology, Faculty of Medicine Comenius University (FMCU) and St. Elizabeth Cancer Institute, Bratislava, Slovakia
| | - Jana Obertova
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Zuzana Orszaghova
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Patrik Palacka
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Katarina Rejlekova
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Zuzana Sycova-Mila
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Boris Kollarik
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Ramadan Aziri
- Department of Surgical Oncology, National Institute for Oncology, Bratislava, Slovakia
| | - Daniel Pindak
- Department of Surgical Oncology, National Institute for Oncology, Bratislava, Slovakia
| | - Jozef Mardiak
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Mego
- Translation Research Unit, Comenius University, National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
16
|
Lv M, Chen P, Bai M, Huang Y, Li L, Feng Y, Liao H, Zheng W, Chen X, Zhang Z. Progestin Resistance and Corresponding Management of Abnormal Endometrial Hyperplasia and Endometrial Carcinoma. Cancers (Basel) 2022; 14:cancers14246210. [PMID: 36551694 PMCID: PMC9776943 DOI: 10.3390/cancers14246210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
With a younger tendency in morbidity age, endometrial cancer (EC) incidence has grown year after year. Worse, even more commonly occurring is endometrial hyperplasia (EH), which is a precancerous endometrial proliferation. For young women with early EC and EH who want to preserve fertility, progestin therapy has been utilized as a routine fertility-preserving treatment approach. Nevertheless, progestin medication failure in some patients is mostly due to progestin resistance and side effects. In order to further analyze the potential mechanisms of progestin resistance in EH and EC, to provide theoretical support for effective therapeutic strategies, and to lay the groundwork for searching novel treatment approaches, this article reviews the current therapeutic effects of progestin in EH and EC, as well as the mechanisms and molecular biomarkers of progestin resistance, and systematically expounds on the potential therapeutic methods to overcome progestin resistance.
Collapse
Affiliation(s)
- Mu Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Peiqin Chen
- Department of Obstetrics and Gynecology, The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Mingzhu Bai
- Reproductive Medicine Center, Maternal and Child Health Hospital in Xuzhou, Xuzhou 215002, China
| | - Yan Huang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai 200032, China
| | - Linxia Li
- Department of Obstetrics and Gynecology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Shanghai 200137, China
| | - Youji Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong Liao
- Department of Clinical Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China
- Correspondence: (X.C.); (Z.Z.)
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Correspondence: (X.C.); (Z.Z.)
| |
Collapse
|
17
|
Li M, Wu L, Chen M, Dong Y, Zheng L, Chen D, Qiao Y, Ke Z, Shi X. Co-activation of Caspase-1 and Caspase-8 in CMV-induced SGN death by inflammasome-associated pyroptosis and apoptosis. Int Immunopharmacol 2022; 113:109305. [PMID: 36244217 DOI: 10.1016/j.intimp.2022.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
|
18
|
Yu WF, Wang XQ, Zhao LP, Zhou JY, Feng JH. Down-regulation of IL-32γ expression reduces killing effect of natural killer cells on esophageal carcinoma cells. Shijie Huaren Xiaohua Zazhi 2022; 30:990-996. [DOI: 10.11569/wcjd.v30.i22.990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Interleukin (IL)-32γ is highly expressed in activated natural killer (NK) cells in esophageal cancer. However, it is not clear whether the expression level of IL-32γ in NK cells affects their killing effect on esophageal cancer cells.
AIM To investigate the role of IL-32γ in the anti-tumor effect of NK cells in esophageal cancer.
METHODS After transfecting NK-92 cells with shRNA targeting IL-32γ (shIL-32γ), the NK-92 cells were co-cultured with esophageal cancer cells EC9706 and TE-1, respectively. EC9706 and TE-1 cells were then collected; cell viability was measured by cell counting kit-8 (CCK-8) assay, cell proliferation was detected by 5-ethynyl-2'-deoxyuridine (EDU) assay, cell apoptosis was detected by flow cytometry, and the expression of apoptosis-related proteins B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), cleaved cysteine-containing aspartate-specific proteases 3 (caspase 3), tumor necrosis factor receptor superfamily member 6 (FAS), death receptor 3 (DR3), and tumor necrosis factor receptor 2 (TNFR2) was detected by Western blot.
RESULTS After IL-32γ deletion in NK-92 cells, the cell viability and the EDU positive cells in EC9706 and TE-1 cells in the co-culture system were increased (P < 0.01), the expression level of Bcl-2 was increased (P < 0.01), and the expression levels of Bax, cleaved-caspase 3, FAS, DR3, and TNFR2 were all decreased (P < 0.01).
CONCLUSION Knockdown of IL-32γ attenuates the anti-tumor effect of NK-92 cells, which may be related to the inhibition of death receptor expression and caspase-3 activation in esophageal cancer cells.
Collapse
Affiliation(s)
- Wei-Fei Yu
- Graduate School, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China,Department of Tumor Chemoradiotherapy, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Xiao-Qiu Wang
- Graduate School, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Li-Ping Zhao
- Graduate School, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Jue-Yi Zhou
- Graduate School, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Ji-Hong Feng
- Graduate School, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| |
Collapse
|
19
|
Ye L, Ma RH, Zhang XX, Thakur K, Zhang JG, Khan MR, Busquets R, Wei ZJ. Isorhamnetin Induces Apoptosis and Suppresses Metastasis of Human Endometrial Carcinoma Ishikawa Cells via Endoplasmic Reticulum Stress Promotion and Matrix Metalloproteinase-2/9 Inhibition In Vitro and In Vivo. Foods 2022; 11:3415. [PMID: 36360027 PMCID: PMC9654916 DOI: 10.3390/foods11213415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024] Open
Abstract
Endometrial cancer (EC) is a very common female cancer which has attracted more and more attention. According to the individual patient's condition, the current treatment of EC patients is mainly based on surgery, which is supplemented by chemotherapy, radiotherapy, and endocrine intervention. However, these existing treatment strategies also have some inevitable limitations. Therefore, it is particularly important to find an active ingredient with low toxicity and a high safety profile against EC. Isorhamnetin is a flavonoid known to be present in a variety of plants, such as sea buckthorn, dry willow, and wolfberry. In recent years, the anti-tumor effects of isorhamnetin have been reported. In our study, isorhamnetin was shown to induce apoptosis in Ishikawa cells by inducing the endogenous mitochondrial apoptotic pathway and exogenous death receptor pathway, promoting the endoplasmic reticulum stress-related pathway, and activating the corresponding markers of UPR response. In addition, isorhamnetin affected the expression of MMP2 and MMP9-related proteins in vitro and in vivo and eventually repressed metastasis. Therefore, isorhamnetin can be used as a promising medicinal material for the treatment of EC.
Collapse
Affiliation(s)
- Lei Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Run-Hui Ma
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiu-Xiu Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kiran Thakur
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Jian-Guo Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK
| | - Zhao-Jun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
20
|
Piatek K, Schepelmann M, Kallay E. The Effect of Vitamin D and Its Analogs in Ovarian Cancer. Nutrients 2022; 14:3867. [PMID: 36145244 PMCID: PMC9501475 DOI: 10.3390/nu14183867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is one of the deadliest cancers in women, due to its heterogeneity and usually late diagnosis. The current first-line therapies of debulking surgery and intensive chemotherapy cause debilitating side effects. Therefore, there is an unmet medical need to find new and effective therapies with fewer side effects, or adjuvant therapies, which could reduce the necessary doses of chemotherapeutics. Vitamin D is one of the main regulators of serum calcium and phosphorus homeostasis, but it has also anticancer effects. It induces differentiation and apoptosis, reduces proliferation and metastatic potential of cancer cells. However, doses that would be effective against cancer cause hypercalcemia. For this reason, synthetic and less calcemic analogs have been developed and tested in terms of their anticancer effect. The anticancer role of vitamin D is best understood in colorectal, breast, and prostate cancer and much less research has been done in ovarian cancer. In this review, we thus summarize the studies on the role of vitamin D and its analogs in vitro and in vivo in ovarian cancer models.
Collapse
Affiliation(s)
| | | | - Enikö Kallay
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
21
|
Liu W, Gan Y, Ding Y, Zhang L, Jiao X, Liu L, Cao H, Gu Y, Yan L, Wang Y, Wang L, Chen S, Shao F. Autophagy promotes GSDME-mediated pyroptosis via intrinsic and extrinsic apoptotic pathways in cobalt chloride-induced hypoxia reoxygenation-acute kidney injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113881. [PMID: 35863214 DOI: 10.1016/j.ecoenv.2022.113881] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Cobalt is a transition element that abundantly exists in the environment. Besides direct hypoxia stress, cobalt ions indirectly induce hypoxia-reoxygenation injury (HRI), the main cause of acute kidney injury (AKI), a life-threatening clinical syndrome characterized by the necrosis of the proximal tubular epithelial cells (PTECs) and inflammation. Pyroptosis, a type of inflammatory programmed cell death, might play an essential role in HRI-AKI. However, whether pyroptosis is involved in cobalt chloride (CoCl2)-induced HRI-AKI remains unknown. Autophagy is a cellular biological process maintaining cell homeostasis that is involved in cell damage in AKI, yet the underlying regulatory mechanism of autophagy on pyroptosis has not been fully understood. In this study, the in vitro and in vivo models of CoCl2-induced HRI-AKI were established with HK-2 cell line and C57BL/6J mouse. Pyroptosis-related markers were detected with western blotting and immunofluorescence assays, and results showed that gasdermin E (GSDME)-mediated pyroptosis was involved in the cell damage in HRI-AKI. Specific chemical inhibitors of caspase 3, caspase 8, and caspase 9 significantly inhibited GSDME-mediated pyroptosis, verifying that GSDME-mediated pyroptosis was induced via the activation of caspase 3/8/9. The western blotting and immunofluorescence assays were adopted to detect the accumulation of the autophagosomes, and results suggested that HRI increased the autophagic level. The effects of autophagy on apoptosis and pyroptosis were evaluated using lentivirus transfection assays to knock down autophagy-specific genes atg5 and fip200, and results demonstrated that autophagy induced GSDME-mediated pyroptosis via apoptotic pathways in HRI-AKI. Our results revealed the involvement of GSDME-mediated pyroptosis in CoCl2-induced HRI-AKI and promoted the understanding of the regulatory mechanism of GSDME cleavage. Our study might provide a potential therapeutic target for HRI-AKI, and will be helpful for the risk evaluation of cobalt exposure.
Collapse
Affiliation(s)
- Wenna Liu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yujin Gan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yun Ding
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lina Zhang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China
| | - Xiaojing Jiao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China
| | - Lu Liu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China
| | - Lei Yan
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China
| | - Yanliang Wang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China
| | - Limeng Wang
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China.
| | - Song Chen
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450053, China.
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, 7 Weiwu Road, Henan 450053, China.
| |
Collapse
|
22
|
Ura B, Capaci V, Aloisio M, Di Lorenzo G, Romano F, Ricci G, Monasta L. A Targeted Proteomics Approach for Screening Serum Biomarkers Observed in the Early Stage of Type I Endometrial Cancer. Biomedicines 2022; 10:1857. [PMID: 36009404 PMCID: PMC9405144 DOI: 10.3390/biomedicines10081857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy, and it arises in the inner part of the uterus. Identification of serum biomarkers is essential for diagnosing the disease at an early stage. In this study, we selected 44 healthy controls and 44 type I EC at tumor stage 1, and we used the Immuno-oncology panel and the Target 96 Oncology III panel to simultaneously detect the levels of 92 cancer-related proteins in serum, using a proximity extension assay. By applying this methodology, we identified 20 proteins, associated with the outcome at binary logistic regression, with a p-value below 0.01 for the first panel and 24 proteins with a p-value below 0.02 for the second one. The final multivariate logistic regression model, combining proteins from the two panels, generated a model with a sensitivity of 97.67% and a specificity of 83.72%. These results support the use of the proposed algorithm after a validation phase.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Valeria Capaci
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Michelangelo Aloisio
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Federico Romano
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| | - Giuseppe Ricci
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34129 Trieste, Italy
| | - Lorenzo Monasta
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (G.D.L.); (F.R.); (G.R.); (L.M.)
| |
Collapse
|
23
|
Gu G, Jiang M, Hu H, Qiao W, Jin H, Hou T, Tao K. Neochamaejasmin B extracted from Stellera chamaejasme L. induces apoptosis through caspase-10-dependent way in insect neuronal cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21892. [PMID: 35478464 DOI: 10.1002/arch.21892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
To explore the toxicity mechanisms of neochamaejasmin B (NCB) extracted from Stellera chamaejasme L., we first evaluated its cytotoxicity in neuronal cells of Helicoverpa zea (AW1 cells). NCB inhibited cell growth and was cytotoxic to AW1 cells in a dose-dependent manner. Further, transmission electron microscopy (TEM) was used to analyze the microstructure, and typical apoptotic characteristics were observed in AW1 cells treated with NCB. Moreover, the NCB-induced apoptosis was dose dependent. Subsequently, we explored the mechanism of apoptosis. A decline in the mitochondrial membrane potential (MMP) was found. Also, the levels of Bax were increased with increases in drug concentration, but there was no statistical difference in Bcl-2 levels at different NCB doses. Caspase-3 and caspase-10 activity was increased. These findings confirmed that NCB induced apoptosis in AW1 cells through a caspase-10-dependent mechanism. The results provide the basic information needed for understanding the toxicity and mechanisms of action of NCB, which could potentially be used to develop NCB as a new insecticide.
Collapse
Affiliation(s)
- Guirong Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Mingfang Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hanying Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Weijie Qiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Hong Jin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Taiping Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ke Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
24
|
Muñoz A, Grant WB. Vitamin D and Cancer: An Historical Overview of the Epidemiology and Mechanisms. Nutrients 2022; 14:1448. [PMID: 35406059 PMCID: PMC9003337 DOI: 10.3390/nu14071448] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
This is a narrative review of the evidence supporting vitamin D's anticancer actions. The first section reviews the findings from ecological studies of cancer with respect to indices of solar radiation, which found a reduced risk of incidence and mortality for approximately 23 types of cancer. Meta-analyses of observational studies reported the inverse correlations of serum 25-hydroxyvitamin D [25(OH)D] with the incidence of 12 types of cancer. Case-control studies with a 25(OH)D concentration measured near the time of cancer diagnosis are stronger than nested case-control and cohort studies as long follow-up times reduce the correlations due to changes in 25(OH)D with time. There is no evidence that undiagnosed cancer reduces 25(OH)D concentrations unless the cancer is at a very advanced stage. Meta-analyses of cancer incidence with respect to dietary intake have had limited success due to the low amount of vitamin D in most diets. An analysis of 25(OH)D-cancer incidence rates suggests that achieving 80 ng/mL vs. 10 ng/mL would reduce cancer incidence rates by 70 ± 10%. Clinical trials have provided limited support for the UVB-vitamin D-cancer hypothesis due to poor design and execution. In recent decades, many experimental studies in cultured cells and animal models have described a wide range of anticancer effects of vitamin D compounds. This paper will review studies showing the inhibition of tumor cell proliferation, dedifferentiation, and invasion together with the sensitization to proapoptotic agents. Moreover, 1,25-(OH)2D3 and other vitamin D receptor agonists modulate the biology of several types of stromal cells such as fibroblasts, endothelial and immune cells in a way that interferes the apparition of metastases. In sum, the available mechanistic data support the global protective action of vitamin D against several important types of cancer.
Collapse
Affiliation(s)
- Alberto Muñoz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, CIBERONC and IdiPAZ, 28029 Madrid, Spain;
| | - William B. Grant
- Sunlight, Nutrition and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| |
Collapse
|
25
|
Tagde P, Tagde P, Islam F, Tagde S, Shah M, Hussain ZD, Rahman MH, Najda A, Alanazi IS, Germoush MO, Mohamed HRH, Algandaby MM, Nasrullah MZ, Kot N, Abdel-Daim MM. The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders. Molecules 2021; 26:7109. [PMID: 34885693 PMCID: PMC8659038 DOI: 10.3390/molecules26237109] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Curcumin is the primary polyphenol in turmeric's curcuminoid class. It has a wide range of therapeutic applications, such as anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, antibacterial, and anticancer effects against various cancers, but has poor solubility and low bioavailability. Objective: To improve curcumin's bioavailability, plasma concentration, and cellular permeability processes. The nanocurcumin approach over curcumin has been proven appropriate for encapsulating or loading curcumin (nanocurcumin) to increase its therapeutic potential. Conclusion: Though incorporating curcumin into nanocurcumin form may be a viable method for overcoming its intrinsic limitations, and there are reasonable concerns regarding its toxicological safety once it enters biological pathways. This review article mainly highlights the therapeutic benefits of nanocurcumin over curcumin.
Collapse
Affiliation(s)
- Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201303, India
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Pooja Tagde
- Practice of Medicine Department, Government Homeopathy College, Bhopa l462016, India;
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Sandeep Tagde
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopa l462026, India;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Department of Global Medical Science, Graduate School, Yonsei University, Wonju 26426, Korea
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland;
| | - Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
| | - Hanan R. H. Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Natalia Kot
- Department of Landscape Architecture, University of Life Science in Lublin, 28 Gleboka Street, 20-612 Lublin, Poland;
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
26
|
Fedotcheva TA, Fedotcheva NI, Shimanovsky NL. Progestins as Anticancer Drugs and Chemosensitizers, New Targets and Applications. Pharmaceutics 2021; 13:pharmaceutics13101616. [PMID: 34683909 PMCID: PMC8540053 DOI: 10.3390/pharmaceutics13101616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/13/2023] Open
Abstract
Progesterone and its synthetic analogues, progestins, participate in the regulation of cell differentiation, proliferation and cell cycle progression. Progestins are usually applied for contraception, maintenance of pregnancy, and hormone replacement therapy. Recently, their effectiveness in the treatment of hormone-sensitive tumors was revealed. According to current data, the anticancer activity of progestins is mainly mediated by their cytotoxic and chemosensitizing influence on different cancer cells. In connection with the detection of previously unknown targets of the progestin action, which include the membrane-associated progesterone receptor (PR), non-specific transporters related to the multidrug resistance (MDR) and mitochondrial permeability transition pore (MPTP), and checkpoints of different signaling pathways, new aspects of their application have emerged. It is likely that the favorable influence of progestins is predominantly associated with the modulation of expression and activity of MDR-related proteins, the inhibition of survival signaling pathways, especially TGF-β and Wnt/β-catenin pathways, which activate the proliferation and promote MDR in cancer cells, and the facilitation of mitochondrial-dependent apoptosis. Biological effects of progestins are mediated by the inhibition of these signaling pathways, as well as the direct interaction with the nucleotide-binding domain of ABC-transporters and mitochondrial adenylate translocase as an MPTP component. In these ways, progestins can restore the proliferative balance, the ability for apoptosis, and chemosensitivity to drugs, which is especially important for hormone-dependent tumors associated with estrogen stress, epithelial-to-mesenchymal transition, and drug resistance.
Collapse
Affiliation(s)
- Tatiana A. Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, 117997 Moscow, Russia;
- Correspondence: ; Tel.: +7-916-935-31-96
| | - Nadezhda I. Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya str., 3, Pushchino, 142290 Moscow, Russia;
| | - Nikolai L. Shimanovsky
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, 117997 Moscow, Russia;
| |
Collapse
|
27
|
Trabert B, Geczik AM, Bauer DC, Buist DSM, Cauley JA, Falk RT, Gierach GL, Hue TF, Lacey JV, LaCroix AZ, Michels KA, Tice JA, Xu X, Brinton LA, Dallal CM. Association of Endogenous Pregnenolone, Progesterone, and Related Metabolites with Risk of Endometrial and Ovarian Cancers in Postmenopausal Women: The B ∼FIT Cohort. Cancer Epidemiol Biomarkers Prev 2021; 30:2030-2037. [PMID: 34465588 DOI: 10.1158/1055-9965.epi-21-0669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/19/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Postmenopausal pregnenolone and/or progesterone levels in relation to endometrial and ovarian cancer risks have been infrequently evaluated. To address this, we utilized a sensitive and reliable assay to quantify prediagnostic levels of seven markers related to endogenous hormone metabolism. METHODS Hormones were quantified in baseline serum collected from postmenopausal women in a cohort study nested within the Breast and Bone Follow-up to the Fracture Intervention Trial (B∼FIT). Women using exogenous hormones at baseline (1992-1993) were excluded. Incident endometrial (n = 65) and ovarian (n = 67) cancers were diagnosed during 12 follow-up years and compared with a subcohort of 345 women (no hysterectomy) and 413 women (no oophorectomy), respectively. Cox models with robust variance were used to estimate cancer risk. RESULTS Circulating progesterone levels were not associated with endometrial [tertile (T)3 vs. T1 HR (95% confidence interval): 1.87 (0.85-4.11); P trend = 0.17] or ovarian cancer risk [1.16 (0.58-2.33); 0.73]. Increasing levels of the progesterone-to-estradiol ratio were inversely associated with endometrial cancer risk [T3 vs. T1: 0.29 (0.09-0.95); 0.03]. Increasing levels of 17-hydroxypregnenolone were inversely associated with endometrial cancer risk [0.40 (0.18-0.91); 0.03] and positively associated with ovarian cancer risk [3.11 (1.39-6.93); 0.01]. CONCLUSIONS Using sensitive and reliable assays, this study provides novel data that endogenous progesterone levels are not strongly associated with incident endometrial or ovarian cancer risks. 17-hydroxypregnenolone was positively associated with ovarian cancer and inversely associated with endometrial cancer. IMPACT While our results require replication in large studies, they provide further support of the hormonal etiology of endometrial and ovarian cancers.
Collapse
Affiliation(s)
- Britton Trabert
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland. .,Department of Obstetrics and Gynecology, University of Utah, and Cancer Control and Population Sciences Research Program, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Ashley M Geczik
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Doug C Bauer
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California.,Department of Medicine, University of California San Francisco, San Francisco, California
| | - Diana S M Buist
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roni T Falk
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | | | - Trisha F Hue
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - James V Lacey
- Division of Health Analytics, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California
| | - Andrea Z LaCroix
- Division of Epidemiology, Department of Family and Preventive Medicine, University of California San Diego, San Diego, California
| | - Kara A Michels
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Jeffrey A Tice
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Xia Xu
- Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Louise A Brinton
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Cher M Dallal
- School of Public Health, University of Maryland, College Park, Maryland
| |
Collapse
|
28
|
Li H, Liu Y, Wang Y, Zhao X, Qi X. Hormone therapy for ovarian cancer: Emphasis on mechanisms and applications (Review). Oncol Rep 2021; 46:223. [PMID: 34435651 PMCID: PMC8424487 DOI: 10.3892/or.2021.8174] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) remains the leading cause of mortality due to gynecological malignancies. Epidemiological studies have demonstrated that steroid hormones released from the hypothalamic-pituitary-ovarian axis can play a role in stimulating or inhibiting OC progression, with gonadotropins, estrogens and androgens promoting OC progression, while gonadotropin-releasing hormone (GnRH) and progesterone may be protective factors in OC. Experimental studies have indicated that hormone receptors are expressed in OC cells and mediate the growth stimulatory or growth inhibitory effects of hormones on these cells. Hormone therapy agents have been evaluated in a number of clinical trials. The majority of these trials were conducted in patients with relapsed or refractory OC with average efficacy and limited side-effects. A better understanding of the mechanisms through which hormones affect cell growth may improve the efficacy of hormone therapy. In the present review article, the role of hormones (GnRH, gonadotropins, androgens, estrogens and progestins) and their receptors in OC tumorigenesis, and hormonal therapy in OC treatment is discussed and summarized.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Liu
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
29
|
Simu S, Marcovici I, Dobrescu A, Malita D, Dehelean CA, Coricovac D, Olaru F, Draghici GA, Navolan D. Insights into the Behavior of Triple-Negative MDA-MB-231 Breast Carcinoma Cells Following the Treatment with 17β-Ethinylestradiol and Levonorgestrel. Molecules 2021; 26:2776. [PMID: 34066763 PMCID: PMC8125870 DOI: 10.3390/molecules26092776] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/30/2022] Open
Abstract
Oral contraceptives (OCs) are widely used due to their efficiency in preventing unplanned pregnancies and treating several human illnesses. Despite their medical value, the toxicity of OCs remains a public concern. Previous studies indicate the carcinogenic potential of synthetic sex hormones and their link to the development and progression of hormone-dependent malignancies such as breast cancer. However, little is known about their influence on the evolution of triple-negative breast carcinoma (TNBC), a malignancy defined by the absence of estrogen, progesterone, and HER2 receptors. This study reveals that the active ingredients of modern OCs, 17β-Ethinylestradiol, Levonorgestrel, and their combination induce differential effects in MDA-MB-231 TNBC cells. The most relevant behavioral changes occurred after the 24 h treatment with 17β-Ethinylestradiol, summarized as follows: (i) decreased cell viability (64.32% at 10 µM); (ii) cell roundness and loss of confluence; (iii) apoptotic aspect of cell nuclei (fragmentation, membrane blebbing); and (iv) inhibited cell migration, suggesting a potential anticancer effect. Conversely, Levonorgestrel was generally associated with a proliferative activity. The association of the two OCs exerted similar effects as 17β-Ethinylestradiol but was less effective. Further studies are necessary to elucidate the hormones' cytotoxic mechanism of action on TNBC cells.
Collapse
Affiliation(s)
- Sebastian Simu
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Iasmina Marcovici
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Amadeus Dobrescu
- Faculty of Medicine, 2nd Department of Surgery, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Daniel Malita
- Faculty of Medicine, Department of Radiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Dorina Coricovac
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Flavius Olaru
- Faculty of Medicine, Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (F.O.); (D.N.)
| | - George Andrei Draghici
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (S.S.); (I.M.); (C.A.D.); (D.C.); (G.A.D.)
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania
| | - Dan Navolan
- Faculty of Medicine, Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, RO-300041 Timisoara, Romania; (F.O.); (D.N.)
| |
Collapse
|