1
|
He F, Wang Y, Li Y, Yu L. Human amniotic mesenchymal stem cells alleviate paraquat-induced pulmonary fibrosis in rats by inhibiting the inflammatory response. Life Sci 2020; 243:117290. [PMID: 31923420 DOI: 10.1016/j.lfs.2020.117290] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
AIMS To investigate the therapeutic effects of human amniotic mesenchymal stem cells (hAMSCs) on paraquat (PQ)-induced pulmonary fibrosis in rats and investigate the inflammatory mechanisms. MAIN METHODS hAMSCs were identified by morphological, flow cytometry and immunocytochemistry. A pulmonary fibrosis model was induced by administering PQ to rats. The hAMSCs group was treated with hAMSCs after 6 h of PQ poisoning. At 21 days after hAMSCs transplantation, lungs were harvested for H&E, Masson and immunohistochemical staining to evaluate pulmonary histopathology, collagen deposition, CD3+ cell infiltration and hAMSCs colonization. Arterial blood was used for lactic acid analysis and venous blood was used to detect TNF-α, IL-6, and TGF-β1 by ELISA method. KEY FINDINGS hAMSCs can improve the lung structure and decrease collagen deposition induced by PQ. The membranes of CD3+ T cell in the PQ group were round and complete, while that in the hAMSCs group rats exhibited punctate or diffuse staining. In addition, the CD3+ cell was decreased by hAMSCs administration, and MAB1281-positive cells were detected in lung of hAMSCs group rats. The survival rate of the hAMSCs group was significantly higher than that of the PQ group at 21 days after injection. TNF-α, IL-6, TGF-β1 and lactic acid were significantly decreased by hAMSCs administration. SIGNIFICANCE hAMSCs have a significant therapeutic effect on pulmonary fibrosis induced by acute PQ poisoning and can improve survival rate in rats. Furthermore, hAMSCs administration can improve lung histopathology and reduce collagen deposition by reducing inflammatory CD3+ T cell infiltration, inflammatory cytokine expression and lactic acid levels.
Collapse
Affiliation(s)
- Fang He
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China.
| | - Yuying Wang
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China.
| | - Yuxiang Li
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China.
| | - Limei Yu
- Key Laboratory of Cell Engineering in Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Biological Treatment Talent Base of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Zunyi Stem Cell and Regenerative Medicine Engineering Research Center, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, PR China.
| |
Collapse
|
2
|
Lv Y, Lau WY, Li Y, Deng J, Han X, Gong X, Liu N, Wu H. Hypersplenism: History and current status. Exp Ther Med 2016; 12:2377-2382. [PMID: 27703501 PMCID: PMC5038876 DOI: 10.3892/etm.2016.3683] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022] Open
Abstract
Hypersplenism is a common disorder characterized by an enlarged spleen which causes rapid and premature destruction of blood cells. This review summarizes the history of hypersplenism, discuss its classification and pathogenesis, and examines its diagnosis and treatment options. We performed a comprehensive literature search using PubMed, Web of Knowledge and the China National Knowledge Infrastructure (CNKI) database, reviewed hypersplenism-related articles and summarized the major findings. According to its etiological causes, hypersplenism is characterized by splenomegaly and peripheral cytopenias. It can be classified into three categories: i) primary hypersplenism; ii) secondary hypersplenism; and iii) occult hypersplenism. A number of mechanisms causing hypersplenism have been identified, and mainly involve retention in the spleen, phagocytosis, and autoimmunity. Treatment options for hypersplenism include etiological treatment, non-surgical treatment, total splenectomy and liver transplantation. In any case, treatment should be individualized for each patient.
Collapse
Affiliation(s)
- Yunfu Lv
- Department of General Surgery, Hainan Province People's Hospital, Haikou, Hainan 570311, P.R. China; Department of Molecular Biology, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Wan Yee Lau
- Department of General Surgery, Hainan Province People's Hospital, Haikou, Hainan 570311, P.R. China; Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Yejuan Li
- Department of General Surgery, Hainan Province People's Hospital, Haikou, Hainan 570311, P.R. China; Department of Molecular Biology, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Jie Deng
- Department of Molecular Biology, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Xiaoyu Han
- Department of General Surgery, Hainan Province People's Hospital, Haikou, Hainan 570311, P.R. China
| | - Xiaoguang Gong
- Department of General Surgery, Hainan Province People's Hospital, Haikou, Hainan 570311, P.R. China
| | - Ning Liu
- Department of General Surgery, Hainan Province People's Hospital, Haikou, Hainan 570311, P.R. China
| | - Hongfei Wu
- Department of General Surgery, Hainan Province People's Hospital, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
3
|
Lee PH, Tu CT, Hsiao CC, Tsai MS, Ho CM, Cheng NC, Hung TM, Shih DTB. Antifibrotic Activity of Human Placental Amnion Membrane-Derived CD34+ Mesenchymal Stem/Progenitor Cell Transplantation in Mice With Thioacetamide-Induced Liver Injury. Stem Cells Transl Med 2016; 5:1473-1484. [PMID: 27405780 DOI: 10.5966/sctm.2015-0343] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/18/2016] [Indexed: 12/31/2022] Open
Abstract
: Liver fibrosis represents the end stage of chronic liver inflammatory diseases and is defined by the abnormal accumulation of extracellular matrix in the liver. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension. Liver transplantation has been the most effective treatment for these diseases, but the procedure is limited by the shortage of suitable donors. Mesenchymal stromal cells (MSCs) have shown great potential in the treatment of chronic inflammatory diseases associated with fibrosis. This study aimed to evaluate the therapeutic effect of MSC-based cell transplantation as an alternative treatment for liver fibrosis. A CD34-positive subpopulation of human placental amnion membrane-derived stem/progenitor cells (CD34+ AMSPCs) was isolated through the depletion of CD34-negative stromal fibroblasts (CD34- AMSFCs) facilitated by CD34 fluorescence-activated cell sorting, enriched and expanded ex vivo. These cells express pluripotency markers and demonstrate multidirectional differentiation potentials. Comparative analysis was made between CD34+ AMSPCs and CD34- AMSFCs in terms of the expressions of stemness surface markers, embryonic surface antigens, and multilineage differentiation potentials. A mouse model of liver fibrosis was established by thioacetamide (TAA) administration. When injected into the spleen of TAA-injured mice, human placental amnion membrane-derived MSCs (hAM-MSCs) can engraft into the injury site, ameliorate liver fibrosis, and restore liver function, as shown by pathological and blood biochemical analysis and downregulated gene expressions associated with liver damage. CD34+ AMSPCs represent a more primitive subset of hAM-MSCs and could be a suitable candidate with a potentially better safety profile for cell-based therapy in treatment of liver diseases associated with fibrosis. SIGNIFICANCE In this study, a CD34+ subpopulation of stem/progenitor cells derived from neonatal placental amnion membrane, denoted as CD34+ AMSPCs, were identified, enriched, and characterized. These cells are highly proliferative, express mesenchymal stromal cells and pluripotent stem cell markers, and demonstrate multidirectional differentiation potentials, indicating their promising application in clinical regenerative therapies. CD34+ AMSPC transplantation ameliorated liver fibrosis in mice with drug-induced liver injury. These cells represent a potential therapeutic agent for treating liver diseases associated with fibrosis.
Collapse
Affiliation(s)
- Po-Huang Lee
- National Taiwan University Hospital, Taipei City, Taiwan, Republic of China
- E-Da Hospital/I-Shou University, Yan-Chau Shiang, Kaohsiung County, Taiwan, Republic of China
| | - Chi-Tang Tu
- National Taiwan University Hospital, Taipei City, Taiwan, Republic of China
| | - Chih-Chiang Hsiao
- Taipei Medical University Hospital, Taipei City, Taiwan, Republic of China
| | - Ming-Song Tsai
- Prenatal Diagnosis Center, Cathay General Hospital, Taipei City, Taiwan, Republic of China
| | - Cheng-Maw Ho
- National Taiwan University Hospital, Taipei City, Taiwan, Republic of China
| | - Nai-Chen Cheng
- National Taiwan University Hospital, Taipei City, Taiwan, Republic of China
| | - Tzu-Min Hung
- National Taiwan University Hospital, Taipei City, Taiwan, Republic of China
- E-Da Hospital/I-Shou University, Yan-Chau Shiang, Kaohsiung County, Taiwan, Republic of China
| | - Daniel Tzu-Bi Shih
- E-Da Hospital/I-Shou University, Yan-Chau Shiang, Kaohsiung County, Taiwan, Republic of China
- Taipei Medical University Hospital, Taipei City, Taiwan, Republic of China
- Innovation Incubation Center, National Taiwan University Hospital, Taipei City, Taiwan, Republic of China
| |
Collapse
|
4
|
Lv Y, Gong X, Xie X, Wang B, Yang Y, Li Y. Clinical study on the relationship between hematocytopenia and splenomegaly caused by cirrhotic portal hypertension. Cell Biochem Biophys 2015; 70:355-60. [PMID: 24696075 DOI: 10.1007/s12013-014-9920-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This clinical study was designed to evaluate the presence of hematocytopenia in patients with splenomegaly caused by non-alcoholic cirrhotic portal hypertension. For this purpose, we randomly selected 358 patients with splenomegaly caused by non-alcoholic cirrhotic portal hypertension and admitted to the clinical data in our hospital between January 1991 and June 2009. Among these 358 patients, 322 patients (90.0 %) showed hematocytopenia, including multi-hemocyte decrease in 206 patients (i.e., 89 patients with a decrease in white blood cell count (WBC) + red blood cell count (RBC) + platelets count (PLT)); 52 patients with WBC + PLT decrease; 29 patients with RBC + PLT decrease; and 36 patients with WBC + RBC decrease) and single-hemocyte decrease in 116 patients (i.e., 31 cases with single PLT decrease; 29 cases with single WBC decrease; and 56 patients with single RBC decrease). After splenectomy, 36 patients (10.0 %) with hematocytopenia presented a statistical improvement of blood cell to normal level (P < 0.05), while 32 patients did not have any change as compared to pre-operative one (P > 0.05). It has to be noted that 4 patients did not received any surgery. Hematocytopenia was not detected in all the patients with splenomegaly caused by cirrhotic portal hypertension, thus it is probably a complication of splenomegaly but not an inevitable manifestation. It was concluded that splenectomy could be an effective treatment for splenomegaly associated with hematocytopenia, but patients without hematocytopenia could choose a non-surgical alternative treatment.
Collapse
Affiliation(s)
- Yunfu Lv
- Surgery Department, People's Hospital of Hainan Province, Haikou, 570311, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
5
|
Quintanilha LF, Takami T, Hirose Y, Fujisawa K, Murata Y, Yamamoto N, Goldenberg RCDS, Terai S, Sakaida I. Canine mesenchymal stem cells show antioxidant properties against thioacetamide-induced liver injury in vitro and in vivo. Hepatol Res 2014; 44:E206-17. [PMID: 23889977 DOI: 10.1111/hepr.12204] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/19/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023]
Abstract
AIM To overcome current limitations of therapy for liver diseases, cell-based therapies using mesenchymal stem cells (MSC) have been attempted through basic and clinical approaches. Oxidative stress is a crucial factor in hepatology, and reactive oxygen species (ROS) are well-established molecules responsible for its deleterious effects. The antioxidant properties of MSC were recently demonstrated, and therefore we examined the antioxidant activity of canine MSC (cMSC), their effects on isolated hepatocytes in vitro and their curative potential against thioacetamide (TAA)-induced liver injury in vivo. METHODS To evaluate the ability of cMSC to challenge oxidative stress, cell viability, cytotoxicity and ROS were measured in cultured cMSC treated with TAA. Also, cMSC were co-cultured with hepatocytes in the same injury condition, and the ROS level was measured exclusively in hepatocytes. Finally, to verify the curative potential of cMSC, 2.0 × 10(6) cells or phosphate-buffered saline were injected systemically in non-obese diabetic/severe combined immunodeficiency mice that received TAA injections twice a week for 13 weeks. We then evaluated histological parameters, serum injury markers and redox homeostasis. RESULTS cMSC overcame TAA-induced oxidative stress in vitro, as shown by increased viability and lower cytotoxicity and ROS levels. Moreover, hepatocytes co-cultured with cMSC also showed decreased cellular ROS. The in vivo study showed that mice treated with cMSC presented with an ameliorated histological pattern, suppressed fibrosis, lower serum injury marker levels and better oxidative parameters. CONCLUSION We concluded that cMSC injection reduce TAA-induced liver injury through antioxidant activities and hepatoprotective effects, showing a curative potential in liver diseases.
Collapse
Affiliation(s)
- Luiz Fernando Quintanilha
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan; Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Behbahan IS, Keating A, Gale RP. Concise review: bone marrow autotransplants for liver disease? Stem Cells 2014; 31:2313-29. [PMID: 23939914 DOI: 10.1002/stem.1510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 12/11/2022]
Abstract
There are increasing reports of using bone marrow-derived stem cells to treat advanced liver disease. We consider several critical issues that underlie this approach. For example, are there multipotent stem cell populations in human adult bone marrow? Can they develop into liver cells or supporting cell types? What are stromal stem/progenitor cells, and can they promote tissue repair without replacing hepatocytes? Does reversal of end-stage liver disease require new hepatocytes, a new liver microenvironment, both, neither or something else? Although many of these questions are unanswered, we consider the conceptual and experimental bases underlying these issues and critically analyze results of clinical trials of stem cell therapy of end-stage liver disease.
Collapse
Affiliation(s)
- Iman Saramipoor Behbahan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
7
|
Cui L, Shi Y, Han Y, Fan D. Immunological basis of stem cell therapy in liver diseases. Expert Rev Clin Immunol 2014; 10:1185-96. [PMID: 24964800 DOI: 10.1586/1744666x.2014.930665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Unbalanced immune cell populations or immune cell infiltration of the liver can disrupt the immune-privileged state of the liver, resulting in liver injury or fibrosis. Therefore, the treatment for liver diseases involves not only hepatic regeneration but also immunological regulation. Recent studies demonstrated that stem cells, especially mesenchymal stem cells, have the capacity for not only hepatic differentiation but also immunomodulation. In this respect, stem cell therapy could be a realistic aim for liver diseases by modulating the liver regenerative processes and down-regulating immune-mediated liver damage. In this review, we discuss in detail the importance of immune cells in liver injury and repair; the mechanism by which stem cells demonstrate an immune-tolerant phenotype that can be used for allogeneic transplantation; the effect of stem cell transplantation on immune-mediated diseases, especially liver diseases; and the mechanism by which stem cells improve the hepatic microenvironment.
Collapse
Affiliation(s)
- Lina Cui
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | | | | | | |
Collapse
|
8
|
Peng SY, Chou CJ, Cheng PJ, Ko IC, Kao YJ, Chen YH, Cheng WTK, Shaw SWS, Wu SC. Therapeutic potential of amniotic-fluid-derived stem cells on liver fibrosis model in mice. Taiwan J Obstet Gynecol 2014; 53:151-157. [PMID: 25017258 DOI: 10.1016/j.tjog.2014.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Liver fibrosis results from the wound healing response to chronic liver damage. Advanced liver fibrosis results in cirrhosis and liver failure, and liver transplantation is often the only option for effective therapy; however, the shortage of available donor livers limits this treatment. Thus, new therapies for advanced liver fibrosis are essential. MATERIALS AND METHODS Amniotic fluid contains an abundance of stem cells, which are derived from all three germ layers of the developing fetus. These cells do not induce teratomas in vivo and do not pose any ethical concerns. To generate liver fibrosis models, male ICR mice were treated with CCl4 via oral gavage for 4 weeks, and the serum levels of glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and albumin were higher than in the control group following chemical induction. To assess the potential of amniotic-fluid-derived stem cells (mAFSCs) to ameliorate liver fibrosis in vivo, mAFSCs were isolated from amniotic fluid of 13.5-day-old transgenic mice, which globally express the fluorescent protein, enhanced green fluorescent protein (EGFP), for tracing purposes (EGFP-mAFSCs). Single cells were injected via the mesentery (1 × 10(6) cells/mouse) of transplanted mice with liver fibrosis. RESULTS Four weeks after EGFP-mAFSC transplantation, the serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and albumin levels of recipient mice in the EGFP-mAFSC-injected group were significantly decreased when compared with mice in the saline-injected group. Additionally, fibrotic tissues were evaluated using Masson's trichrome staining 4 weeks after cell transplantation. Shrinkage of the fibrotic area was observed in the EGFP-mAFSC-injected group. The tissue-repair effects were also confirmed by hydroxyproline content analysis. CONCLUSION The possible repair mechanism from our data revealed that EGFP-mAFSCs may fuse with the recipient liver cells. Overall, EGFP-mAFSCs can ameliorate liver fibrosis in mice, thus providing insight into the future development of regenerative medicine.
Collapse
Affiliation(s)
- Shao-Yu Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Jen Chou
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - I-Chen Ko
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Jung Kao
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsu Chen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Department of Surgery, Hualien Armed Forces General Hospital, Hualien, Taiwan
| | - Winston Teng-Kui Cheng
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - S W Steven Shaw
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK.
| | - Shinn-Chih Wu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Lu YF, Li XQ, Han XY, Gong XG, Chang SW. Peripheral blood cell variations in cirrhotic portal hypertension patients with hypersplenism. ASIAN PAC J TROP MED 2014; 6:663-6. [PMID: 23790341 DOI: 10.1016/s1995-7645(13)60115-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/15/2013] [Accepted: 07/15/2013] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To explore peripheral blood cell variations in hepatic cirrhosis portal hypertension patients with hypersplenism. METHODS Clinical data of 322 hypersplenism patients with decreased peripheral blood cells, admitted with cirrhotic portal hypertension, was retrospectively studied over the last 17 years. RESULTS In 64% (206/322) of patients, more than 2 kinds of blood cell were decreased, including 89 cases of pancytopenia (43.2%), 52 cases of WBC + PLT decrease (25.2%), 29 cases of RBC + PLT decrease (14.1%), and 36 cases of WBC + RBC decrease (17.5%); in 36% (116/322) of patients, single type blood cell decrease occurred, including 31 cases of PLT decrease (26.7%), 29 cases of WBC decrease (25%) and 56 cases of RBC decrease (48.3%). Of 227 routine bone marrow examinations, bone marrow hyperplasia was observed in 118 cases (52.0%), the remainder showed no hyperplasia. For the distinct scope and extent of peripheralblood cell decreases, preoperative blood component transfusions were carried out, then treated by surgery, after whole group splenectomy, the peripheral blood cell count was significantly higher (P<0.05). CONCLUSIONS Of portal hypertensive patients with splenomegaly and hypersplenism, 64% have simultaneous decrease in various blood cells, 36% have decrease in single type blood cells, 52% of patients have bone marrow hyperplasia. A splenectomy can significantly increase the reduction of peripheral blood cells.
Collapse
Affiliation(s)
- Yun-Fu Lu
- Department of Surgery, People's Hospital of Hainan Province, Haikou, China
| | | | | | | | | |
Collapse
|
10
|
Zhang D, Jiang M, Miao D. Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One 2011; 6:e16789. [PMID: 21326862 PMCID: PMC3033905 DOI: 10.1371/journal.pone.0016789] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 01/14/2011] [Indexed: 01/19/2023] Open
Abstract
Background Human amniotic membrane-derived mesenchymal stem cells (hAMCs) have the potential to reduce heart and lung fibrosis, but whether could reduce liver fibrosis remains largely unknown. Methodology/Principal Findings Hepatic cirrhosis model was established by infusion of CCl4 (1 ml/kg body weight twice a week for 8 weeks) in immunocompetent C57Bl/6J mice. hAMCs, isolated from term delivered placenta, were infused into the spleen at 4 weeks after mice were challenged with CCl4. Control mice received only saline infusion. Animals were sacrificed at 4 weeks post-transplantation. Blood analysis was performed to evaluate alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Histological analysis of the livers for fibrosis, hepatic stellate cells activation, hepatocyte apoptosis, proliferation and senescence were performed. The donor cell engraftment was assessed using immunofluorescence and polymerase chain reaction. The areas of hepatic fibrosis were reduced (6.2%±2.1 vs. control 9.6%±1.7, p<0.05) and liver function parameters (ALT 539.6±545.1 U/dl, AST 589.7±342.8 U/dl,vs. control ALT 139.1±138.3 U/dl, p<0.05 and AST 212.3±110.7 U/dl, p<0.01) were markedly ameliorated in the hAMCs group compared to control group. The transplantation of hAMCs into liver-fibrotic mice suppressed activation of hepatic stellate cells, decreased hepatocyte apoptosis and promoted liver regeneration. More interesting, hepatocyte senescence was depressed significantly in hAMCs group compared to control group. Immunofluorescence and polymerase chain reaction revealed that hAMCs engraftment into host livers and expressed the hepatocyte-specific markers, human albumin and α-fetoproteinran. Conclusions/Significance The transplantation of hAMCs significantly decreased the fibrosis formation and progression of CCl4-induced cirrhosis, providing a new approach for the treatment of fibrotic liver disease.
Collapse
Affiliation(s)
- DingGuo Zhang
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - MinYue Jiang
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - DengShun Miao
- The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|