1
|
Maiborodin I, Klinnikova M, Kuzkin S, Maiborodina V, Krasil’nikov S, Pichigina A, Lushnikova E. Morphology of the Myocardium after Experimental Bone Tissue Trauma and the Use of Extracellular Vesicles Derived from Mesenchymal Multipotent Stromal Cells. J Pers Med 2021; 11:jpm11111206. [PMID: 34834558 PMCID: PMC8621714 DOI: 10.3390/jpm11111206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/31/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
The effect of extracellular vesicles (EVs) of various origins on the heart structures in the time of health and disease has been well studied. At the same time, data on the distribution of EVs throughout the body after introduction into the tissues and the possibility of the influence of these EVs on organs distant from the injection site are practically absent. It is also necessary to note a certain inconsistency in the results of various researchers: from articles on the direct absorption of EVs derived from mesenchymal multipotent stromal cells (MSC EVs) by cardiomyocytes to the data that the heart is inherently immune to drug delivery mediated by nanoparticles. In this regard, the morphological changes in the myocardium of outbred rabbits of both sexes weighing 3–4 kg were studied at various times after experimental trauma of the bone tissue in the proximal condyle of the tibia (PCT) and the use of MSC EVs. As a result of modeling the PCT defect, rabbits develop myocardial edema in the heart muscle by the 3rd day, their lymphatic vessels expand, and then, on the 7th day, the blood vessels become dilated. In the myocardium, the relative and absolute contents of neutrophils, erythrocytes, and macrophages increase, but the percentage of lymphocytes decreases. By day 10, almost all of these changes return to their initial values. The detected transformations of the myocardium are most likely due to the ingress of detritus with the blood flow from the PCT. The use of MSC EVs to influence the regeneration of damaged tissue of PCT promotes earlier dilatation of the blood vessels of the heart with pronounced diapedesis of erythrocytes or even hemorrhages, prolongation of edema, the formation of blood clots in vessels with obliteration of their lumen, sclerotic transformation of vascular walls and paravascular tissues. In the myocardium, the number density of neutrophils, the percentage of lymphocytes, and neutrophils become smaller, with a simultaneous increase in the relative numbers of erythrocytes and macrophages, and changes in the content of macrophages remained until the end of the observation—up to 10 days after the surgery. The discovered effect of MSC EVs is most likely associated with the suppression of the activity of the inflammatory process in the PCT area, which, in turn, was caused by a longer ingress of detritus with blood flow into the myocardium. The absence of statistically significant differences between changes in the myocardium of the left and right ventricles may indicate that both detritus from the surgical site and MSC EVs affect the heart spreading through the coronary artery system.
Collapse
|
2
|
Maiborodin I, Shevela A, Matveeva V, Morozov V, Toder M, Krasil’nikov S, Koryakina A, Shevela A, Yanushevich O. First Experimental Study of the Influence of Extracellular Vesicles Derived from Multipotent Stromal Cells on Osseointegration of Dental Implants. Int J Mol Sci 2021; 22:ijms22168774. [PMID: 34445482 PMCID: PMC8395855 DOI: 10.3390/ijms22168774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Herein, the aim was to study the state of the bone tissue adjacent to dental implants after the use of extracellular vesicles derived from multipotent stromal cells (MSC EVs) of bone marrow origin in the experiment. In compliance with the rules of asepsis and antiseptics under general intravenous anesthesia with propofol, the screw dental implants were installed in the proximal condyles of the tibia of outbred rabbits without and with preliminary introduction of 19.2 μg MSC EVs into each bone tissue defect. In 3, 7, and 10 days after the operation, the density of bone tissue adjacent to different parts of the implant using an X-ray unit with densitometer was measured. In addition, the histological examinations of the bone site with the hole from the removed device and the soft tissues from the surface of the proximal tibial condyle in the area of intra-bone implants were made. It was found out that 3 days after implantation with the use of MSC EVs, the bone density was statistically significantly higher by 47.2% than after the same implantation, but without the injection of MSC EVs. It is possible that as a result of the immunomodulatory action of MSC EVs, the activity of inflammation decreases, and, respectively, the degree of vasodilation in bones and leukocyte infiltration of the soft tissues are lower, in comparison with the surgery performed in the control group. The bone fragments formed during implantation are mainly consolidated with each other and with the regenerating bone. Day 10 demonstrated that all animals with the use of MSC EVs had almost complete fusion of the screw device with the bone tissue, whereas after the operation without the application of MSC EVs, the heterogeneous histologic pattern was observed: From almost complete osseointegration of the implant to the absolute absence of contact between the foreign body and the new formed bone. Therefore, the use of MSC EVs during the introduction of dental implants into the proximal condyle of the tibia of rabbits contributes to an increase of the bone tissue density near the device after 3 days and to the achievement of consistently successful osseointegration of implants 10 days after the surgery.
Collapse
Affiliation(s)
- Igor Maiborodin
- Laboratory of Health Management Technologies, The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva Str., 8, 630090 Novosibirsk, Russia; (A.S.); (V.M.); (V.M.); (S.K.); (A.S.)
- Institute of Molecular Pathology and Pathomorphology, Federal State Budget Scientific Institution “Federal Research Center of Fundamental and Translational Medicine” of the Ministry of Science and Higher Education of the Russian Federation, Akademika Timakova Str., 2, 630117 Novosibirsk, Russia
- Correspondence:
| | - Aleksandr Shevela
- Laboratory of Health Management Technologies, The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva Str., 8, 630090 Novosibirsk, Russia; (A.S.); (V.M.); (V.M.); (S.K.); (A.S.)
- International Center of Dental Implantology iDent, Sibrevkoma Str., 9b, 630007 Novosibirsk, Russia; (M.T.); (A.K.)
| | - Vera Matveeva
- Laboratory of Health Management Technologies, The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva Str., 8, 630090 Novosibirsk, Russia; (A.S.); (V.M.); (V.M.); (S.K.); (A.S.)
| | - Vitaly Morozov
- Laboratory of Health Management Technologies, The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva Str., 8, 630090 Novosibirsk, Russia; (A.S.); (V.M.); (V.M.); (S.K.); (A.S.)
| | - Michael Toder
- International Center of Dental Implantology iDent, Sibrevkoma Str., 9b, 630007 Novosibirsk, Russia; (M.T.); (A.K.)
| | - Sergey Krasil’nikov
- Laboratory of Health Management Technologies, The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva Str., 8, 630090 Novosibirsk, Russia; (A.S.); (V.M.); (V.M.); (S.K.); (A.S.)
| | - Alina Koryakina
- International Center of Dental Implantology iDent, Sibrevkoma Str., 9b, 630007 Novosibirsk, Russia; (M.T.); (A.K.)
| | - Andrew Shevela
- Laboratory of Health Management Technologies, The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva Str., 8, 630090 Novosibirsk, Russia; (A.S.); (V.M.); (V.M.); (S.K.); (A.S.)
| | - Oleg Yanushevich
- Moscow State University of Medicine and Dentistry, The Ministry of Healthcare of the Russian Federation, Delegatskaya Str., 20, p. 1, 127473 Moscow, Russia;
| |
Collapse
|
3
|
Pekarev OG, Pekareva EO, Mayborodin IV, Silachev DN, Baranov II, Pozdnyakov IM, Bushueva NS, Novikov AM, Sukhikh GT. The potential of extracellular microvesicles of mesenchymal stromal cells in obstetrics. J Matern Fetal Neonatal Med 2021; 35:7523-7525. [PMID: 34344283 DOI: 10.1080/14767058.2021.1951213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The rate of cesarean deliveries is steadily growing worldwide as a result of increasing maternal age at first delivery. Ensuring optimal recovery after surgery, specifically the development of a functionally competent uterine scar to facilitate vaginal birth after a cesarean delivery (VBAC), is one of the challenges in modern obstetrics. Extracellular microvesicles (EMVs) are secreted by multiple cell types and act as mediators of intercellular interaction during tissue reparation. The immunomodulatory and regenerative effects of EMVs of mesenchymal stromal cells (MSCs) have been studied shown in pre-clinical studies. AIM OF THE STUDY To evaluate the safety profile of EMVs of mesenchymal stromal placental cells (MSPCs) injected during the cesarean delivery and the impact of this pilot approach on post-surgery recovery. MATERIALS AND METHODS This pilot study included 53 women undergoing cesarean delivery with (n = 23) or without (n = 30) an injection of 500 µl of MSC EMVs after closing the uterine incision with a single continuous Vicryl suture. RESULTS All study participants had uncomplicated post-surgery period. The mean inpatient stay duration in women receiving the EMV injection was 4.26 ± 0.09 days vs. 5.33 ± 0.38 in the control group (p<.05). There were no postpartum inflammatory complications in the study group compared with two cases (6.7%) by postpartum endometritis/myometrial infection and one case (3.3%) of lochiometra in the control group. SUMMARY Intra-surgery injection of MSC EMVs was well-tolerated and associated with a lower rate of infectious post-partum complications in women undergoing cesarean delivery.
Collapse
Affiliation(s)
- O G Pekarev
- FSBI "National Medical Research Centre for Obstetrics, Gynecology and Perinatology named after academician V.I.Kulakov" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - E O Pekareva
- GBUZ NSO Novosibirsk City Clinical Perinatal Centre, Novosibirsk, Russia
| | - I V Mayborodin
- FGBOUN "Institute of Chemical Biology and Fundamental Medicine", Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D N Silachev
- FSBI "National Medical Research Centre for Obstetrics, Gynecology and Perinatology named after academician V.I.Kulakov" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - I I Baranov
- FSBI "National Medical Research Centre for Obstetrics, Gynecology and Perinatology named after academician V.I.Kulakov" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - I M Pozdnyakov
- GBUZ NSO Novosibirsk City Clinical Perinatal Centre, Novosibirsk, Russia
| | - N S Bushueva
- GBUZ NSO Novosibirsk City Clinical Perinatal Centre, Novosibirsk, Russia
| | - A M Novikov
- FGBOUN "Institute of Chemical Biology and Fundamental Medicine", Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - G T Sukhikh
- FSBI "National Medical Research Centre for Obstetrics, Gynecology and Perinatology named after academician V.I.Kulakov" of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Maiborodin I, Shevela A, Toder M, Marchukov S, Tursunova N, Klinnikova M, Maiborodina V, Lushnikova E, Shevela A. Multipotent Stromal Cell Extracellular Vesicle Distribution in Distant Organs after Introduction into a Bone Tissue Defect of a Limb. Life (Basel) 2021; 11:life11040306. [PMID: 33916128 PMCID: PMC8066794 DOI: 10.3390/life11040306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
When administered intravenously, extracellular vesicles derived from multipotent stromal cells (MSC EVs) immediately pass through the lungs along with the blood and regularly spread to all organs. When administered intraperitoneally, they are absorbed either into the blood or into the lymph and are quickly disseminated throughout the body. The possibility of generalized spread of MSC EVs to distant organs in case of local intratissular administration remains unexplored. However, it is impossible to exclude MSC EV influence on tissues distant from the injection site due to the active or passive migration of these injected nanoparticles through the vessels. The research is based on findings obtained when studying the samples of lungs, heart, spleen, and liver of outbred rabbits of both sexes weighing 3-4 kg at various times after the injection of EVs derived from MSCs of bone marrow origin and labeled by PKH26 into an artificially created defect of the proximal condyle of the tibia. MSC EVs were isolated by serial ultracentrifugation and characterized by transmission electron microscopy and flow cytometry. After the introduction of MSC EVs into the damaged proximal condyle of the tibia of rabbits, these MSC EVs can be found most frequently in the lungs, myocardium, liver, and spleen. MSC EVs enter all of these organs with the blood flow. The lungs contained the maximum number of labeled MSC EVs; moreover, they were often associated with detritus and were located in the lumen of the alveoli. In the capillary network of various organs except the myocardium, MSC EVs are adsorbed by paravasal phagocytes; in some cases, specifically labeled small dust-like objects can be detected throughout the entire experiment-up to ten days of observation. Therefore, we can conclude that the entire body, including distant organs, is effected both by antigenic detritus, which appeared in the bloodstream after extensive surgery, and MSC EVs introduced from the outside.
Collapse
Affiliation(s)
- Igor Maiborodin
- Institute of Molecular Pathology and Pathomorphology, Federal State Budget Scientific Institution “Federal Research Center of Fundamental and Translational Medicine”, Ministry of Science and Higher Education of the Russian Federation, Akademika Timakova st., 2, 630117 Novosibirsk, Russia; (N.T.); (M.K.); (V.M.); (E.L.)
- The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva str., 8, 630090 Novosibirsk, Russia; (A.S.); (S.M.); (A.S.)
- Correspondence:
| | - Aleksandr Shevela
- The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva str., 8, 630090 Novosibirsk, Russia; (A.S.); (S.M.); (A.S.)
- International Center of Dental Implantology “iDent”, Sibrevkoma st., 9b, 630007 Novosibirsk, Russia;
| | - Michael Toder
- International Center of Dental Implantology “iDent”, Sibrevkoma st., 9b, 630007 Novosibirsk, Russia;
| | - Sergey Marchukov
- The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva str., 8, 630090 Novosibirsk, Russia; (A.S.); (S.M.); (A.S.)
| | - Natalya Tursunova
- Institute of Molecular Pathology and Pathomorphology, Federal State Budget Scientific Institution “Federal Research Center of Fundamental and Translational Medicine”, Ministry of Science and Higher Education of the Russian Federation, Akademika Timakova st., 2, 630117 Novosibirsk, Russia; (N.T.); (M.K.); (V.M.); (E.L.)
| | - Marina Klinnikova
- Institute of Molecular Pathology and Pathomorphology, Federal State Budget Scientific Institution “Federal Research Center of Fundamental and Translational Medicine”, Ministry of Science and Higher Education of the Russian Federation, Akademika Timakova st., 2, 630117 Novosibirsk, Russia; (N.T.); (M.K.); (V.M.); (E.L.)
| | - Vitalina Maiborodina
- Institute of Molecular Pathology and Pathomorphology, Federal State Budget Scientific Institution “Federal Research Center of Fundamental and Translational Medicine”, Ministry of Science and Higher Education of the Russian Federation, Akademika Timakova st., 2, 630117 Novosibirsk, Russia; (N.T.); (M.K.); (V.M.); (E.L.)
| | - Elena Lushnikova
- Institute of Molecular Pathology and Pathomorphology, Federal State Budget Scientific Institution “Federal Research Center of Fundamental and Translational Medicine”, Ministry of Science and Higher Education of the Russian Federation, Akademika Timakova st., 2, 630117 Novosibirsk, Russia; (N.T.); (M.K.); (V.M.); (E.L.)
| | - Andrew Shevela
- The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, The Russian Academy of Sciences, Siberian Branch, Akademika Lavrenteva str., 8, 630090 Novosibirsk, Russia; (A.S.); (S.M.); (A.S.)
| |
Collapse
|
5
|
Recent Advances in Extracellular Vesicles as Drug Delivery Systems and Their Potential in Precision Medicine. Pharmaceutics 2020; 12:pharmaceutics12111006. [PMID: 33105857 PMCID: PMC7690579 DOI: 10.3390/pharmaceutics12111006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bilayered nanoparticles released by most cell types. Recently, an enormous number of studies have been published on the potential of EVs as carriers of therapeutic agents. In contrast to systems such as liposomes, EVs exhibit less immunogenicity and higher engineering potential. Here, we review the most relevant publications addressing the potential and use of EVs as a drug delivery system (DDS). The information is divided based on the key steps for designing an EV-mediated delivery strategy. We discuss possible sources and isolation methods of EVs. We address the administration routes that have been tested in vivo and the tissue distribution observed. We describe the current knowledge on EV clearance, a significant challenge towards enhancing bioavailability. Also, EV-engineering approaches are described as alternatives to improve tissue and cell-specificity. Finally, a summary of the ongoing clinical trials is performed. Although the application of EVs in the clinical practice is still at an early stage, a high number of studies in animals support their potential as DDS. Thus, better treatment options could be designed to precisely increase target specificity and therapeutic efficacy while reducing off-target effects and toxicity according to the individual requirements of each patient.
Collapse
|