1
|
Rabinovich D, Yaniv SP, Alyagor I, Schuldiner O. Nitric Oxide as a Switching Mechanism between Axon Degeneration and Regrowth during Developmental Remodeling. Cell 2016; 164:170-182. [PMID: 26771490 DOI: 10.1016/j.cell.2015.11.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/02/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022]
Abstract
During development, neurons switch among growth states, such as initial axon outgrowth, axon pruning, and regrowth. By studying the stereotypic remodeling of the Drosophila mushroom body (MB), we found that the heme-binding nuclear receptor E75 is dispensable for initial axon outgrowth of MB γ neurons but is required for their developmental regrowth. Genetic experiments and pharmacological manipulations on ex-vivo-cultured brains indicate that neuronally generated nitric oxide (NO) promotes pruning but inhibits regrowth. We found that high NO levels inhibit the physical interaction between the E75 and UNF nuclear receptors, likely accounting for its repression of regrowth. Additionally, NO synthase (NOS) activity is downregulated at the onset of regrowth, at least partially, by short inhibitory NOS isoforms encoded within the NOS locus, indicating how NO production could be developmentally regulated. Taken together, these results suggest that NO signaling provides a switching mechanism between the degenerative and regenerative states of neuronal remodeling.
Collapse
Affiliation(s)
- Dana Rabinovich
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Shiri P Yaniv
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Idan Alyagor
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel.
| |
Collapse
|
2
|
Camiletti AL, Awde DN, Thompson GJ. How flies respond to honey bee pheromone: the role of the foraging gene on reproductive response to queen mandibular pheromone. Naturwissenschaften 2013; 101:25-31. [DOI: 10.1007/s00114-013-1125-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/13/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022]
|
3
|
Abstract
Nitric oxide (NO) is an essential signaling molecule in biological systems. In mammals, the diatomic gas is critical to the cyclic guanosine monophosphate (cGMP) pathway as it functions as the primary activator of soluble guanylate cyclase (sGC). NO is synthesized from l-arginine and oxygen (O(2)) by the enzyme nitric oxide synthase (NOS). Once produced, NO rapidly diffuses across cell membranes and binds to the heme cofactor of sGC. sGC forms a stable complex with NO and carbon monoxide (CO), but not with O(2). The binding of NO to sGC leads to significant increases in cGMP levels. The second messenger then directly modulates phosphodiesterases (PDEs), ion-gated channels, or cGMP-dependent protein kinases to regulate physiological functions, including vasodilation, platelet aggregation, and neurotransmission. Many studies are focused on elucidating the molecular mechanism of sGC activation and deactivation with a goal of therapeutic intervention in diseases involving the NO/cGMP-signaling pathway. This review summarizes the current understanding of sGC structure and regulation as well as recent developments in NO signaling.
Collapse
Affiliation(s)
- Emily R Derbyshire
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
4
|
Zimmerman JE, Raizen DM, Maycock MH, Maislin G, Pack AI. A video method to study Drosophila sleep. Sleep 2009; 31:1587-98. [PMID: 19014079 DOI: 10.1093/sleep/31.11.1587] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES To use video to determine the accuracy of the infrared beam-splitting method for measuring sleep in Drosophila and to determine the effect of time of day, sex, genotype, and age on sleep measurements. DESIGN A digital image analysis method based on frame subtraction principle was developed to distinguish a quiescent from a moving fly. Data obtained using this method were compared with data obtained using the Drosophila Activity Monitoring System (DAMS). The location of the fly was identified based on its centroid location in the subtracted images. MEASUREMENTS AND RESULTS The error associated with the identification of total sleep using DAMS ranged from 7% to 95% and depended on genotype, sex, age, and time of day. The degree of the total sleep error was dependent on genotype during the daytime (P < 0.001) and was dependent on age during both the daytime and the nighttime (P < 0.001 for both). The DAMS method overestimated sleep bout duration during both the day and night, and the degree of these errors was genotype dependent (P < 0.001). Brief movements that occur during sleep bouts can be accurately identified using video. Both video and DAMS detected a homeostatic response to sleep deprivation. CONCLUSIONS Video digital analysis is more accurate than DAMS in fly sleep measurements. In particular, conclusions drawn from DAMS measurements regarding daytime sleep and sleep architecture should be made with caution. Video analysis also permits the assessment of fly position and brief movements during sleep.
Collapse
Affiliation(s)
- John E Zimmerman
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania School of Medicine, 125 South 31st ST, Suite 2100, Philadelphia, PA 19104-3403, USA.
| | | | | | | | | |
Collapse
|
5
|
Kaun KR, Sokolowski MB. cGMP-dependent protein kinase: linking foraging to energy homeostasis. Genome 2009; 52:1-7. [DOI: 10.1139/g08-090] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Successful foraging is necessary for procurement of nutritional resources essential for an animal’s survival. Maintenance of foraging and food acquisition is dependent on the ability to balance food intake and energy expenditure. This review examines the role of cGMP-dependent protein kinase (PKG) as a regulator of foraging behaviour, food acquisition, and energy balance. The role of PKG in food-related behaviours is highly conserved among worms, flies, bees, ants, and mammals. A growing body of literature suggests that PKG plays an integral role in the component behaviours and physiologies underlying foraging behaviour. These include energy acquisition, nutrient absorption, nutrient allocation, nutrient storage, and energy use. New evidence suggests that PKG mediates both neural and physiological mechanisms underlying these processes. This review illustrates how investigating the role of PKG in energy homeostasis in a diversity of organisms can offer a broad perspective on the mechanisms mediating energy balance.
Collapse
Affiliation(s)
- Karla R. Kaun
- Department of Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Marla B. Sokolowski
- Department of Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
6
|
Abstract
The importance of cGMP-dependent protein kinase (PKG) to the modulation of behavioural phenotypes has become increasingly clear in recent decades. The effects of PKG on behaviour have been studied in diverse taxa from perspectives as varied as ethology, evolution, genetics and neuropharmacology. The genetic variation of the Drosophila melanogaster gene, foraging (for), has provided a fertile model for examining natural variation in a single major gene influencing behaviour. Concurrent studies in other invertebrates and mammals suggest that PKG is an important signalling molecule with varied influences on behaviour and a large degree of pleiotropy and plasticity. Comparing these cross-taxa effects suggests that there are several potentially overlapping behavioural modalities in which PKG signalling acts to influence behaviours which include feeding, learning, stress and biological rhythms. More in-depth comparative analyses across taxa of the similarities and differences of the influence of PKG on behaviour may provide powerful mechanistic explications of the evolution of behaviour.
Collapse
|
7
|
Blanco E, Pignatelli M, Beltran S, Punset A, Pérez-Lluch S, Serras F, Guigó R, Corominas M. Conserved chromosomal clustering of genes governed by chromatin regulators in Drosophila. Genome Biol 2008; 9:R134. [PMID: 18783608 PMCID: PMC2592712 DOI: 10.1186/gb-2008-9-9-r134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/04/2008] [Accepted: 09/10/2008] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The trithorax group (trxG) and Polycomb group (PcG) proteins are responsible for the maintenance of stable transcriptional patterns of many developmental regulators. They bind to specific regions of DNA and direct the post-translational modifications of histones, playing a role in the dynamics of chromatin structure. RESULTS We have performed genome-wide expression studies of trx and ash2 mutants in Drosophila melanogaster. Using computational analysis of our microarray data, we have identified 25 clusters of genes potentially regulated by TRX. Most of these clusters consist of genes that encode structural proteins involved in cuticle formation. This organization appears to be a distinctive feature of the regulatory networks of TRX and other chromatin regulators, since we have observed the same arrangement in clusters after experiments performed with ASH2, as well as in experiments performed by others with NURF, dMyc, and ASH1. We have also found many of these clusters to be significantly conserved in D. simulans, D. yakuba, D. pseudoobscura and partially in Anopheles gambiae. CONCLUSION The analysis of genes governed by chromatin regulators has led to the identification of clusters of functionally related genes conserved in other insect species, suggesting this chromosomal organization is biologically important. Moreover, our results indicate that TRX and other chromatin regulators may act globally on chromatin domains that contain transcriptionally co-regulated genes.
Collapse
Affiliation(s)
- Enrique Blanco
- Departament de Genètica and Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Exploratory behaviour in NO-dependent cyclase mutants of Drosophila shows defects in coincident neuronal signalling. BMC Neurosci 2007; 8:65. [PMID: 17683617 PMCID: PMC1963332 DOI: 10.1186/1471-2202-8-65] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 08/06/2007] [Indexed: 11/25/2022] Open
Abstract
Background Drosophila flies explore the environment very efficiently in order to colonize it. They explore collectively, not individually, so that when a few land on a food spot, they attract the others by signs. This behaviour leads to aggregation of individuals and optimizes the screening of mates and egg-laying on the most favourable food spots. Results Flies perform cycles of exploration/aggregation depending on the resources of the environment. This behavioural ecology constitutes an excellent model for analyzing simultaneous processing of neurosensory information. We reasoned that the decision of flies to land somewhere in order to achieve aggregation is based on simultaneous integration of signals (visual, olfactory, acoustic) during their flight. On the basis of what flies do in nature, we designed laboratory tests to analyze the phenomenon of neuronal coincidence. We screened many mutants of genes involved in neuronal metabolism and the synaptic machinery. Conclusion Mutants of NO-dependent cyclase show a specifically-marked behaviour phenotype, but on the other hand they are associated with moderate biochemical defects. We show that these mutants present errors in integrative and/or coincident processing of signals, which are not reducible to the functions of the peripheral sensory cells.
Collapse
|
9
|
Godoy-Herrera R, Connolly K. Organization of Foraging Behavior in Larvae of Cosmopolitan, Widespread, and Endemic Drosophila Species. Behav Genet 2007; 37:595-603. [PMID: 17394057 DOI: 10.1007/s10519-007-9151-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 03/08/2007] [Indexed: 10/23/2022]
Abstract
To explore the evolution of higher order behavioral traits we investigated the organization of foraging patterns in first instar larvae of natural populations of Drosophila. We examined Drosophila simulans (cosmopolitan); D. mauritania (widespread); D. pavani, and D. gaucha (endemic). Larvae of these four species share the same behavior components that comprise foraging (locomotion, feeding, bending, and turning). D. simulans and D. mauritania larvae show uncoupled foraging patterns organized into partially independent behavioral elements. Larvae of D. pavani and D. gaucha exhibit coupled foraging behaviors based on a dependency between behavioral components. Hybrid larvae obtained from crosses of natural populations of D. simulans and D. mauritania show an organization of foraging patterns similar to that of the parental lines. In contrast, hybridization disrupts the organization of foraging patterns in D. pavani and D. gaucha intra- and inter-specific hybrid larvae. This suggests genetic co-adaptation for linkage between the behavioral components that comprise foraging. The organization of larval foraging patterns of the endemic species D. pavani seems readily affected by hybridization. The absence of linkage between behavioral components, as in the case of larval foraging patterns of D. simulans and D. mauritania could lead to an increase in the variability of organization of this higher order behavior. The possibility that larvae may use a variable and flexible behavioral integration of foraging patterns could contribute to their development and feeding in a diversity of substrates and climates.
Collapse
Affiliation(s)
- Raúl Godoy-Herrera
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago-7, Casilla 70061, Chile.
| | | |
Collapse
|
10
|
Neal SJ, Karunanithi S, Best A, So AKC, Tanguay RM, Atwood HL, Westwood JT. Thermoprotection of synaptic transmission in aDrosophilaheat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1. Physiol Genomics 2006; 25:493-501. [PMID: 16595740 DOI: 10.1152/physiolgenomics.00195.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Drosophila larvae, acquired synaptic thermotolerance after heat shock has previously been shown to correlate with the induction of heat shock proteins (Hsps) including HSP70. We tested the hypothesis that synaptic thermotolerance would be significantly diminished in a temperature-sensitive strain ( Drosophila heat shock factor mutant hsf4), which has been reported not to be able to produce inducible Hsps in response to heat shock. Contrary to our hypothesis, considerable thermoprotection was still observed at hsf4larval synapses after heat shock. To investigate the cause of this thermoprotection, we conducted DNA microarray experiments to identify heat-induced transcript changes in these organisms. Transcripts of the hsp83, dnaJ-1 ( hsp40), and glutathione- S-transferase gstE1 genes were significantly upregulated in hsf4larvae after heat shock. In addition, increases in the levels of Hsp83 and DnaJ-1 proteins but not in the inducible form of Hsp70 were detected by Western blot analysis. The mode of heat shock administration differentially affected the relative transcript and translational changes for these chaperones. These results indicate that the compensatory upregulation of constitutively expressed Hsps, in the absence of the synthesis of the major inducible Hsp, Hsp70, could still provide substantial thermoprotection to both synapses and the whole organism.
Collapse
Affiliation(s)
- Scott J Neal
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
This paper discusses the hypothesis that a 'drive for activity" in the presence of physiological and endocrine changes consistent with starvation is a characteristic symptom of acute anorexia nervosa (AN). This 'drive for movement', along with alertness and lack of fatigue, so unlike the motor slowing and loss of energy observed in simple starvation has been recognized in AN throughout history, but has received little attention in the past fifty years. Clinical reports and experimental evidence suggest that 'restlessness' and a 'drive for activity' vary in intensity, they appears to be starvation-dependent and to wane with food intake. Central nervous system (CNS) systems known to be involved in mediating activity and arousal levels that are altered by the negative energy expenditure in AN are reviewed. Among these, the corticotropin-releasing hormone (CRH) system, the melanocyte stimulating hormone/agouti-related protein (MSH/AGRP) system and the norepinephrine/epinephrine (NE/EPI) and dopamine (DA) system may contribute to the 'drive for activity' and alertness in AN. AN appears to represent a disorder of gene/environment interaction. Future research will reveal whether in individuals predisposed to AN, the 'drive for activity' reflects the reactivation of mechanisms important in food scarcity, controlled by one or more evolutionary conserved genes including those regulating foraging behavior. Recognition of the 'drive for activity' as a diagnostic symptom of AN and its assessment prior to re-nutrition would permit clarification of its role in the etiology of AN.
Collapse
Affiliation(s)
- Regina C Casper
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Room 2365, CA 94305-5723, USA.
| |
Collapse
|
12
|
Douglas SJ, Dawson-Scully K, Sokolowski MB. The neurogenetics and evolution of food-related behaviour. Trends Neurosci 2005; 28:644-52. [PMID: 16203044 DOI: 10.1016/j.tins.2005.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/22/2005] [Accepted: 09/20/2005] [Indexed: 11/30/2022]
Abstract
All organisms must acquire nutrients from the ambient environment to survive. In animals, the need to eat has driven the evolution of a rich array of complex food-related behaviours that ensure appropriate nutrient intake in diverse niches. Here, we review some of the neural and genetic components that contribute to the regulation of food-related behaviour in invertebrates, with emphasis on mechanisms that are conserved throughout various taxa and activities. We focus on synthesizing neurobiological and genetic approaches into a neurogenetic framework that explains food-related behaviour as the product of interactions between neural substrates, genes and internal and external environments.
Collapse
Affiliation(s)
- Scott J Douglas
- Department of Biology, University of Toronto, 3359 Mississauga Road, Ontario, Canada L5L 1C6
| | | | | |
Collapse
|