1
|
Song T, Gu Y, Hui W, Yang X, Liu Y, Chen X. Oxygen–Glucose Deprivation Promoted Fibroblast Senescence and Collagen Expression via IL11. Int J Mol Sci 2022; 23:ijms232012090. [PMID: 36292942 PMCID: PMC9603009 DOI: 10.3390/ijms232012090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cell senescence is one of the most important forms of injury induced by cardiovascular and other ischemic diseases. Fibroblasts are important participants in tissue repair after ischemic injury and the main source of IL11 secretion. However, the roles of oxygen–glucose deprivation (OGD) and IL11 in promoting fibroblast senescence and their regulatory mechanisms remain unclear. This study selected the NIH3T3 and L929 fibroblast cell lines as research objects. We found that OGD could induce the expression of p53, P16, p21, and collagen in fibroblasts. In the condition of OGD, when IL11 intervened, fibroblasts’ senescence and collagen expression were changed. Some studies have found that changes in kynurenine (KYN) metabolism are related to aging diseases, and indoleamine 2,3-dioxygenase 1 (IDO1) is a key rate-limiting enzyme in the KYN metabolic pathway. We found that KYN secretion decreased after OGD increased fibroblast senescence, and inhibition of IL11 promoted IDO1 and increased KYN secretion. These results suggest that OGD may promote fibroblast senescence and collagen expression via IL11 inhibition of the IDO1/KYN metabolic pathway. Therefore, the revealed mechanism of OGD-promoted fibroblast senescence could provide an effective theoretical basis for the clinical treatment of aging-related ischemic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Xia Chen
- Correspondence: ; Tel.: +86-431-85619077
| |
Collapse
|
2
|
Ghosh AK, O’Brien M, Mau T, Qi N, Yung R. Adipose Tissue Senescence and Inflammation in Aging is Reversed by the Young Milieu. J Gerontol A Biol Sci Med Sci 2019; 74:1709-1715. [PMID: 30590424 PMCID: PMC6777079 DOI: 10.1093/gerona/gly290] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 11/14/2022] Open
Abstract
Visceral adipose tissue (VAT) inflammation plays a central role in longevity and multiple age-related disorders. Cellular senescence (SEN) is a fundamental aging mechanism that contributes to age-related chronic inflammation and organ dysfunction, including VAT. Recent studies using heterochronic parabiosis models strongly suggested that circulating factors in young plasma alter the aging phenotypes of old animals. Our study investigated if young plasma rescued SEN phenotypes in the VAT of aging mice. With heterochronic parabiosis model using young (3 months) and old (18 months) mice, we found significant reduction in the levels of pro-inflammatory cytokines and altered adipokine profile that are protective of SEN in the VAT of old mice. These data are indicative of protection from SEN of aging VAT by young blood circulation. Old parabionts also exhibited diminished expression of cyclin-dependent kinase inhibitors (CDKi) genes p16 (Cdkn2a) and p21 (Cdkn1a/Cip1) in the VAT. In addition, when exposed to young serum condition in an ex vivo culture system, aging adipose tissue-derived stromovascular fraction cells produced significantly lower amounts of pro-inflammatory cytokines (MCP-1 and IL-6) compared to old condition. Expressions of p16 and p21 genes were also diminished in the old stromovascular fraction cells under young serum condition. Finally, in 3T3-preadipocytes culture system, we found reduced pro-inflammatory cytokines (Mcp-1 and Il-6) and diminished expression of cyclin-dependent kinase inhibitor genes in the presence of young serum compared to old serum. In summary, this study demonstrates that young milieu is capable of protecting aging adipose tissue from SEN and thereby inflammation.
Collapse
Affiliation(s)
- Amiya Kumar Ghosh
- Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor
| | - Martin O’Brien
- Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor
| | - Theresa Mau
- Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor
| | - Nathan Qi
- Animal Phenotyping Core, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Raymond Yung
- Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor
| |
Collapse
|
3
|
Luo W, Wang Y, Yang H, Dai C, Hong H, Li J, Liu Z, Guo Z, Chen X, He P, Li Z, Li F, Jiang J, Liu P, Li Z. Heme oxygenase-1 ameliorates oxidative stress-induced endothelial senescence via regulating endothelial nitric oxide synthase activation and coupling. Aging (Albany NY) 2019; 10:1722-1744. [PMID: 30048241 PMCID: PMC6075439 DOI: 10.18632/aging.101506] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/20/2018] [Indexed: 12/20/2022]
Abstract
AIM Premature senescence of vascular endothelial cells is a leading cause of various cardiovascular diseases. Therapies targeting endothelial senescence would have important clinical implications. The present study was aimed to evaluate the potential of heme oxygenase-1 (HO-1) as a therapeutic target for endothelial senescence. METHODS AND RESULTS Upregulation of HO-1 by Hemin or adenovirus infection reversed H2O2-induced senescence in human umbilical vein endothelial cells (HUVECs); whereas depletion of HO-1 by siRNA or HO-1 inhibitor protoporphyrin IX zinc (II) (ZnPP) triggered HUVEC senescence. Mechanistically, overexpression of HO-1 enhanced the interaction between HO-1 and endothelial nitric oxide synthase (eNOS), and promoted the interaction between eNOS and its upstream kinase Akt, thus resulting in an enhancement of eNOS phosphorylation at Ser1177 and a subsequent increase of nitric oxide (NO) production. Moreover, HO-1 induction prevented the decrease of eNOS dimer/monomer ratio stimulated by H2O2 via its antioxidant properties. Contrarily, HO-1 silencing impaired eNOS phosphorylation and accelerated eNOS uncoupling. In vivo, Hemin treatment alleviated senescence of endothelial cells of the aorta from spontaneously hypertensive rats, through upregulating eNOS phosphorylation at Ser1177. CONCLUSIONS HO-1 ameliorated endothelial senescence through enhancing eNOS activation and defending eNOS uncoupling, suggesting that HO-1 is a potential target for treating endothelial senescence.
Collapse
Affiliation(s)
- Wenwei Luo
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Wang
- Infinitus (China) Co. Ltd, Guangzhou 510663, China
| | - Hanwei Yang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunmei Dai
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huiling Hong
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jingyan Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiping Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhen Guo
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xinyi Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping He
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ziqing Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fang Li
- College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianmin Jiang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuoming Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Bürkle A. In memoriam Olivier Toussaint – Stress-induced premature senescence and the role of DNA damage. Mech Ageing Dev 2018. [DOI: 10.1016/j.mad.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Petrova NV, Velichko AK, Razin SV, Kantidze OL. Small molecule compounds that induce cellular senescence. Aging Cell 2016; 15:999-1017. [PMID: 27628712 PMCID: PMC6398529 DOI: 10.1111/acel.12518] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
To date, dozens of stress‐induced cellular senescence phenotypes have been reported. These cellular senescence states may differ substantially from each other, as well as from replicative senescence through the presence of specific senescence features. Here, we attempted to catalog virtually all of the cellular senescence‐like states that can be induced by low molecular weight compounds. We summarized biological markers, molecular pathways involved in senescence establishment, and specific traits of cellular senescence states induced by more than fifty small molecule compounds.
Collapse
Affiliation(s)
| | - Artem K. Velichko
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
| | - Sergey V. Razin
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
- Department of Molecular Biology Lomonosov Moscow State University 119991 Moscow Russia
- LIA 1066 French‐Russian Joint Cancer Research Laboratory 94805 Villejuif France
| | - Omar L. Kantidze
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
- LIA 1066 French‐Russian Joint Cancer Research Laboratory 94805 Villejuif France
| |
Collapse
|
6
|
Matos L, Gouveia A, Almeida H. Copper ability to induce premature senescence in human fibroblasts. AGE (DORDRECHT, NETHERLANDS) 2012; 34:783-94. [PMID: 21695420 PMCID: PMC3682071 DOI: 10.1007/s11357-011-9276-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/27/2011] [Indexed: 05/06/2023]
Abstract
Human diploid fibroblasts (HDFs) exposed to subcytotoxic concentrations of oxidative or stressful agents, such as hydrogen peroxide, tert-butylhydroperoxide, or ethanol, undergo stress-induced premature senescence (SIPS). This condition is characterized by the appearance of replicative senescence biomarkers such as irreversible growth arrest, increase in senescence-associated β-galactosidase (SA β-gal) activity, altered cell morphology, and overexpression of several senescence-associated genes. Copper is an essential trace element known to accumulate with ageing and to be involved in the pathogenesis of some age-related disorders. Past studies using either yeast or human cellular models of ageing provided evidence in favor of the role of intracellular copper as a longevity modulator. In the present study, copper ability to cause the appearance of senescent features in HDFs was assessed. WI-38 fibroblasts exposed to a subcytotoxic concentration of copper sulfate presented inhibition of cell proliferation, cell enlargement, increased SA β-gal activity, and mRNA overexpression of several senescence-associated genes such as p21, apolipoprotein J (ApoJ), fibronectin, transforming growth factor β-1 (TGF β1), insulin growth factor binding protein 3, and heme oxygenase 1. Western blotting results confirmed enhanced intracellular p21, ApoJ, and TGF β1 in copper-treated cells. Thus, similar to other SIPS-inducing agents, HDF exposure to subcytotoxic concentration of copper results in premature senescence. Further studies will unravel molecular mechanisms and the biological meaning of copper-associated senescence and lead to a better understanding of copper-related disorder establishment and progression.
Collapse
Affiliation(s)
- Liliana Matos
- />Faculty of Nutrition and Food Sciences, University of Porto, Rua Dr. Roberto Frias, 4200–465 Oporto, Portugal
- />Laboratory for Cell and Molecular Biology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200–319 Oporto, Portugal
- />IBMC-Instituto de Biologia Molecular e Celular, Rua do Campo Alegre no.823, 4150–180 Oporto, Portugal
| | - Alexandra Gouveia
- />Faculty of Nutrition and Food Sciences, University of Porto, Rua Dr. Roberto Frias, 4200–465 Oporto, Portugal
- />Laboratory for Cell and Molecular Biology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200–319 Oporto, Portugal
- />IBMC-Instituto de Biologia Molecular e Celular, Rua do Campo Alegre no.823, 4150–180 Oporto, Portugal
| | - Henrique Almeida
- />Laboratory for Cell and Molecular Biology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200–319 Oporto, Portugal
- />IBMC-Instituto de Biologia Molecular e Celular, Rua do Campo Alegre no.823, 4150–180 Oporto, Portugal
| |
Collapse
|
7
|
Ota K, Dohi Y, Brydun A, Nakanome A, Ito S, Igarashi K. Identification of senescence-associated genes and their networks under oxidative stress by the analysis of Bach1. Antioxid Redox Signal 2011; 14:2441-51. [PMID: 21110788 DOI: 10.1089/ars.2010.3574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cellular senescence is induced in response to DNA damage, caused by genotoxic stresses, including oxidative stress, and serves as a barrier against malignant transformation. Tumor-suppressor protein p53 induces genes critical for implementing cellular senescence. However, the identities of p53 target genes and other regulators that achieve senescence under oxidative stress remain to be elucidated. Effector genes for oxidative stress-induced cellular senescence were sought, based on the fact that transcription factor Bach1 inhibits this response by impeding the transcriptional activity of p53. pRb became hypophosphorylated more rapidly in Bach1-deficient MEFs than in wild-type cells, suggesting that pRb activation was involved in their senescence. Bach1-deficient MEFs bypassed the senescence state when the expression of a subset of p53 target genes, including p21, Pai1, Noxa, and Perp, was simultaneously reduced by using RNAi. Combined knockdown of p21 and pRb resulted in vigorous re-proliferation. These results suggest that oxidative stress-induced cellular senescence is registered by multiple p53 target genes, which arrest proliferation redundantly, in part by activating pRb. Our elucidations contrast with previous reports describing monopolistic regulations of senescence by single p53 target genes.
Collapse
Affiliation(s)
- Kazushige Ota
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Vo TKD, de Saint-Hubert M, Morrhaye G, Godard P, Geenen V, Martens HJ, Debacq-Chainiaux F, Swine C, Toussaint O. Transcriptomic biomarkers of the response of hospitalized geriatric patients admitted with heart failure. Comparison to hospitalized geriatric patients with infectious diseases or hip fracture. Mech Ageing Dev 2011; 132:131-9. [DOI: 10.1016/j.mad.2011.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/24/2010] [Accepted: 02/08/2011] [Indexed: 01/05/2023]
|
9
|
Vo TKD, Godard P, de Saint-Hubert M, Morrhaye G, Debacq-Chainiaux F, Swine C, Geenen V, Martens HJ, Toussaint O. Differentially abundant transcripts in PBMC of hospitalized geriatric patients with hip fracture compared to healthy aged controls. Exp Gerontol 2010; 46:257-64. [PMID: 21074600 DOI: 10.1016/j.exger.2010.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
The abundance of a selection of transcript species involved in inflammation, immunosenescence and stress response was compared between PBMC of 35 geriatric patients with hip fracture in acute phase (days 2-4 after hospitalization) or convalescence phase (days 7-10) and 28 healthy aged controls. Twenty-nine differentially abundant transcripts were identified in acute phase versus healthy ageing. Twelve of these transcripts remained differentially abundant in convalescence phase, and 22 were similarly differentially abundant in acute phase of geriatric infectious diseases. Seven of these 22 transcripts were previously identified as differentially abundant in PBMC of healthy aged versus healthy young controls, with further alteration for CD28, CD69, LCK, CTSD, HMOX1, and TNFRSF1A in acute phase after geriatric hip fracture and infectious diseases. The next question is whether these alterations are common to other geriatric diseases and/or preexist before the clinical onset of the diseases.
Collapse
Affiliation(s)
- Thi Kim Duy Vo
- Unit of Research on Cellular Biology, NARILIS-Namur Research Institute for Life Sciences, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vo TKD, Godard P, de Saint-Hubert M, Morrhaye G, Swine C, Geenen V, Martens HJ, Debacq-Chainiaux F, Toussaint O. Transcriptomic biomarkers of the response of hospitalized geriatric patients with infectious diseases. IMMUNITY & AGEING 2010; 7:9. [PMID: 20716329 PMCID: PMC2933667 DOI: 10.1186/1742-4933-7-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/17/2010] [Indexed: 11/10/2022]
Abstract
Background Infectious diseases are significant causes of morbidity and mortality among elderly populations. However, the relationship between oxidative stress, immune function and inflammatory response in acute phase of the infectious disease is poorly understood. Results Herein the abundance of a selection of 148 transcripts involved in immunosenescence and stress response was compared in total RNA of PBMC of 28 healthy aged probands and 39 aged patients in acute phase of infectious disease (day 2-4 after hospitalization) or in convalescence phase (day 7-10). This study provides a list of 24 differentially abundant transcript species in the acute phase versus healthy aged. For instance, transcripts associated with inflammatory and anti-inflammatory reactions (TNFRSF1A, IL1R1, IL1R2, IL10RB) and with oxidative stress (HMOX1, GPX1, SOD2, PRDX6) were more abundant while those associated with T-cell functions (CD28, CD69, LCK) were less abundant in acute phase. The abundance of seven of these transcripts (CD28, CD69, LCK, CTSD, HMOX1, TNFRSF1A and PRDX6) was already known to be altered in healthy aged probands compared to healthy young ones and was further affected in aged patients in acute phase, compromising an efficient response. Conclusion This work provides insights of the state of acute phase response to infections in elderly patients and could explain further the lack of appropriate response in the elderly compared to younger persons.
Collapse
Affiliation(s)
- Thi Kim Duy Vo
- Unit of Research on Cellular Biology, NARILIS-Namur Research Institute for Life Sciences, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Černý D, Canová NK, Martínek J, Hořínek A, Kmoníčková E, Zídek Z, Farghali H. Effects of resveratrol pretreatment on tert-butylhydroperoxide induced hepatocyte toxicity in immobilized perifused hepatocytes: Involvement of inducible nitric oxide synthase and hemoxygenase-1. Nitric Oxide 2009; 20:1-8. [DOI: 10.1016/j.niox.2008.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/07/2008] [Accepted: 08/21/2008] [Indexed: 01/15/2023]
|
12
|
Wall IB, Moseley R, Baird DM, Kipling D, Giles P, Laffafian I, Price PE, Thomas DW, Stephens P. Fibroblast dysfunction is a key factor in the non-healing of chronic venous leg ulcers. J Invest Dermatol 2008; 128:2526-40. [PMID: 18449211 DOI: 10.1038/jid.2008.114] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic age-related degenerative disorders, including the formation of chronic leg wounds, may occur due to aging of the stromal tissues and ensuing dysfunctional cellular responses. This study investigated the impact of environmental-driven cellular aging on wound healing by conducting a comprehensive analysis of chronic wound fibroblast (CWF) behavior in comparison with patient-matched healthy skin normal fibroblasts (NF). The dysfunctional wound healing abilities of CWF correlated with a significantly reduced proliferative life span and early onset of senescence compared with NF. However, pair-wise comparisons of telomere dynamics between NF and CWF indicated that the induction of senescence in CWF was telomere-independent. Microarray and functional analysis suggested that CWFs have a decreased ability to withstand oxidative stress, which may explain why these cells prematurely senescence. Microarray analysis revealed lower expression levels of several CXC chemokine genes (CXCL-1, -2, -3, -5, -6, -12) in CWF compared with NF (confirmed by ELISA). Functionally, this was related to impaired neutrophil chemotaxis in response to CWF-conditioned medium. Although the persistence of non-healing wounds is, in part, due to prolonged chronic inflammation and bacterial infection, our investigations show that premature fibroblast aging and an inability to correctly express a stromal address code are also implicated in the disease chronicity.
Collapse
Affiliation(s)
- Ivan B Wall
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen JH, Jones RH, Tarry-Adkins J, Smith NH, Ozanne SE. Adverse effects of reduced oxygen tension on the proliferative capacity of rat kidney and insulin-secreting cell lines involve DNA damage and stress responses. Exp Cell Res 2008; 314:3075-80. [PMID: 18692496 PMCID: PMC2631166 DOI: 10.1016/j.yexcr.2008.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/16/2008] [Accepted: 07/19/2008] [Indexed: 10/29/2022]
Abstract
Standard cell culture conditions do not reflect the physiological environment in terms of oxygen tension (20% vs 3%). The effects of lowering oxygen tension on cell proliferation in culture can be beneficial as well as detrimental depending on the cell line studied, but the molecular mechanism underlying such effects is not fully understood. We observed that the proliferative capacity of the rat cell lines NRK and INS-1 was inhibited when cultured under 3% oxygen as compared to 20% oxygen. Suppression of proliferation in NRK cells was accompanied by induction of DNA double strand breaks whereas in INS-1 cells it was accompanied by up-regulation of p53 and p27. Although Sirt1 was up-regulated in both cell lines by 3% oxygen the effects on antioxidant enzymes (MnSOD, CuZnSOD and catalase) were cell line specific. Marked up-regulation of heme oxygenase-1 (HO-1) was detected in both NRK and INS-1 cells when cultured in 3% oxygen. HO-1 expression can be readily induced by exposure to hydrogen peroxide in culture. These results suggest that reduced oxygen tension suppresses the proliferative capacity of these two cell lines through a stress response that is similar to an oxidative stress response but the molecular events that lead to the reduced cell proliferation are cell line specific.
Collapse
Affiliation(s)
- Jian-Hua Chen
- Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | | | | | | | | |
Collapse
|
14
|
Genomic and proteomic profiling of oxidative stress response in human diploid fibroblasts. Biogerontology 2008; 10:125-51. [PMID: 18654835 DOI: 10.1007/s10522-008-9157-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 06/16/2008] [Indexed: 12/15/2022]
Abstract
A number of lines of evidence suggest that senescence of normal human diploid fibroblasts (HDFs) in culture is relevant to the process of aging in vivo. Using normal human skin diploid fibroblasts, we examine the changes in genes and proteins following treatment with a mild dose of H2O2, which induces premature senescence. Multidimensional Protein Identification Technology (MudPIT) in combination with mass spectrometry analyses of whole cell lysates from HDFs detected 65 proteins in control group, 48 proteins in H2O2-treated cells and 109 proteins common in both groups. In contrast, cDNA microarray analyses show 173 genes up-regulated and 179 genes down-regulated upon H2O2 treatment. Both MudPIT and cDNA microarray analyses indicate that H2O2 treatment caused elevated levels of thioredoxin reductase 1. Semi-quantitative RT-PCR and Western-blot were able to verify the finding. Out of a large number of genes or proteins detected, only a small fraction shows the overlap between the outcomes of microarray versus proteomics. The low overlap suggests the importance of considering proteins instead of transcripts when investigating the gene expression profile altered by oxidative stress.
Collapse
|
15
|
Debacq-Chainiaux F, Pascal T, Boilan E, Bastin C, Bauwens E, Toussaint O. Screening of senescence-associated genes with specific DNA array reveals the role of IGFBP-3 in premature senescence of human diploid fibroblasts. Free Radic Biol Med 2008; 44:1817-32. [PMID: 18329388 DOI: 10.1016/j.freeradbiomed.2008.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 12/29/2007] [Accepted: 02/05/2008] [Indexed: 02/05/2023]
Abstract
Repeated exposures to sublethal concentrations of tert-butylhydroperoxide and ethanol trigger premature senescence of WI-38 human diploid fibroblasts. We found 16 replicative senescence-related genes with similar alterations in expression level in replicative senescence and two models of stress-induced premature senescence. Among these genes was IGFBP-3. Using a siRNA approach, we showed that IGFBP-3 regulates the appearance of several biomarkers of senescence after repeated exposures of WI-38 fibroblasts to tert-butylhydroperoxide and ethanol.
Collapse
Affiliation(s)
- Florence Debacq-Chainiaux
- Unit of Research on Cellular Biology, Department of Biology, University of Namur, Rue de Bruxelles, B-5000 Namur, Belgium
| | | | | | | | | | | |
Collapse
|