1
|
Vasileva B, Krasteva N, Hristova-Panusheva K, Ivanov P, Miloshev G, Pavlov A, Georgiev V, Georgieva M. Exploring the Biosafety Potential of Haberlea rhodopensis Friv. In Vitro Culture Total Ethanol Extract: A Comprehensive Assessment of Genotoxicity, Mitotoxicity, and Cytotoxicity for Therapeutic Applications. Cells 2024; 13:1118. [PMID: 38994970 PMCID: PMC11240332 DOI: 10.3390/cells13131118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
The escalating elderly population worldwide has prompted a surge of interest in longevity medicine. Its goal is to interfere with the speed of ageing by slowing it down or even reversing its accompanying effects. As a field, it is rapidly growing and spreading into different branches. One of these is the use of nutraceuticals as anti-ageing drugs. This field is gaining massive popularity nowadays, as people are shifting towards a more natural approach to life and seeking to use natural products as a source of medicine. The present article focuses on the cellular effect of Haberlea rhodopensis Friv. in vitro culture total ethanol extract (HRT), produced by a sustainable biotechnological approach. The extract showed a similar phytochemical profile to plant leaf extract and was rich in primary bioactive ingredients-caffeoyl phenylethanoid glycosides, myconoside, and paucifloside. This study examined the biosafety potential, cytotoxicity, genotoxicity, and mitochondrial activity of the extract using in vitro cultures. The results showed high cell survival rates and minimal cytotoxic effects on Lep3 cells, with no induction of reactive oxygen species nor genotoxicity. Additionally, the extract positively influenced mitochondrial activity, indicating potential benefits for cellular health. The results are promising and show the beneficial effect of HRT without the observation of any adverse effects, which sets the foundation for its further testing and potential therapeutic applications.
Collapse
Affiliation(s)
- Bela Vasileva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.V.); (P.I.); (G.M.)
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (K.H.-P.)
| | - Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (K.H.-P.)
| | - Penyo Ivanov
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.V.); (P.I.); (G.M.)
| | - George Miloshev
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.V.); (P.I.); (G.M.)
| | - Atanas Pavlov
- Laboratory of Cell Biosystems, Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria;
- Department of Analytical Chemistry and Physical Chemistry, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Vasil Georgiev
- Laboratory of Cell Biosystems, Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria;
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.V.); (P.I.); (G.M.)
| |
Collapse
|
2
|
Djilianov D, Moyankova D, Mladenov P, Topouzova-Hristova T, Kostadinova A, Staneva G, Zasheva D, Berkov S, Simova-Stoilova L. Resurrection Plants-A Valuable Source of Natural Bioactive Compounds: From Word-of-Mouth to Scientifically Proven Sustainable Use. Metabolites 2024; 14:113. [PMID: 38393005 PMCID: PMC10890500 DOI: 10.3390/metabo14020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Resurrection plant species are a group of higher plants whose vegetative tissues are able to withstand long periods of almost full desiccation and recover quickly upon rewatering. Apart from being a model system for studying desiccation tolerance, resurrection plant species appear to be a valuable source of metabolites, with various areas of application. A significant number of papers have been published in recent years with respect to the extraction and application of bioactive compounds from higher resurrection plant species in various test systems. Promising results have been obtained with respect to antioxidative and antiaging effects in various test systems, particularly regarding valuable anticancer effects in human cell lines. Here, we review the latest advances in the field and propose potential mechanisms of action of myconoside-a predominant secondary compound in the European members of the Gesneriaceae family. In addition, we shed light on the possibilities for the sustainable use of natural products derived from resurrection plants.
Collapse
Affiliation(s)
- Dimitar Djilianov
- Agrobioinstitute, Agricultural Academy, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Daniela Moyankova
- Agrobioinstitute, Agricultural Academy, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Petko Mladenov
- Agrobioinstitute, Agricultural Academy, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University 'St. Kliment Ohridski', 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 21, 1113 Sofia, Bulgaria
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 21, 1113 Sofia, Bulgaria
| | - Diana Zasheva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tsarigradsko Shosse, 73, 1113 Sofia, Bulgaria
| | - Strahil Berkov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 23 Acad. Georgi Bonchev Street, 1113 Sofia, Bulgaria
| | - Lyudmila Simova-Stoilova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 21 Bldg. Acad. Georgi Bonchev Street, 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
Staneva D, Dimitrova N, Popov B, Alexandrova A, Georgieva M, Miloshev G. Haberlea rhodopensis Extract Tunes the Cellular Response to Stress by Modulating DNA Damage, Redox Components, and Gene Expression. Int J Mol Sci 2023; 24:15964. [PMID: 37958947 PMCID: PMC10647427 DOI: 10.3390/ijms242115964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Ionizing radiation (IR) and reactive oxygen species (ROS)-induced oxidative stress can cause damage to cellular biomolecules, including DNA, proteins, and lipids. These harmful effects can compromise essential cellular functions and significantly raise the risk of metabolic dysfunction, accumulation of harmful mutations, genome instability, cancer, accelerated cellular senescence, and even death. Here, we present an investigation of HeLa cancer cells' early response to gamma IR (γ-IR) and oxidative stress after preincubation of the cells with natural extracts of the resurrection plant Haberlea rhodopensis. In light of the superior protection offered by plant extracts against radiation and oxidative stress, we investigated the cellular defence mechanisms involved in such protection. Specifically, we sought to evaluate the molecular effects of H. rhodopensis extract (HRE) on cells subjected to genotoxic stress by examining the components of the redox pathway and quantifying the transcription levels of several critical genes associated with DNA repair, cell cycle regulation, and apoptosis. The influence of HRE on genome integrity and the cell cycle was also studied via comet assay and flow cytometry. Our findings demonstrate that HREs can effectively modulate the cellular response to genotoxic and oxidative stress within the first two hours following exposure, thereby reducing the severity of such stress. Furthermore, we observed the specificity of genoprotective HRE doses depending on the source of the applied genotoxic stress.
Collapse
Affiliation(s)
- Dessislava Staneva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.S.); (M.G.)
| | - Neli Dimitrova
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (N.D.); (B.P.)
| | - Borislav Popov
- Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, 6000 Stara Zagora, Bulgaria; (N.D.); (B.P.)
| | - Albena Alexandrova
- Laboratory of Free Radical Processes, Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Milena Georgieva
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.S.); (M.G.)
| | - George Miloshev
- Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.S.); (M.G.)
| |
Collapse
|
4
|
Hemagirri M, Sasidharan S. Evaluation of In Situ Antiaging Activity in Saccharomyces cerevisiae BY611 Yeast Cells Treated with Polyalthia longifolia Leaf Methanolic Extract (PLME) Using Different Microscopic Approaches: A Morphology-Based Evaluation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-13. [PMID: 35260222 DOI: 10.1017/s1431927622000393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyalthia longifolia is known for its anti-oxidative properties, which might contribute to the antiaging action. Hence, the current research was conducted to evaluate the antiaging activity of P. longifolia leaf methanolic extract (PLME) in a yeast model based on morphology using microscopic approaches. Saccharomyces cerevisiae BY611 strain yeast cells were treated with 1.00 mg/mL of PLME. The antiaging activity was assessed by determining the replicative lifespan, total lifespan, vacuole morphology by light microscopy, extra-morphology by scanning (SEM), and intra-morphology by transmission (TEM) electron microscopy. The findings demonstrated that PLME treatment significantly accelerated the replicative and total lifespan of the yeast cells. PLME treatment also delays the formation of large apoptotic-like type 3 yeast cell vacuoles. The untreated yeast cells demonstrated aging morphology via SEM analysis, such as shrinking, regional invaginations, and wrinkled cell surface. The TEM analysis revealed the quintessential aging intracellular morphology such as swollen, wrinkled, or damaged vacuole formation of the circular endoplasmic reticulum, a rupture in the nuclear membrane, fragmentation of the nucleus, and complete damaged cytoplasm. Decisively, the present study revealed the vital role of PLME in the induction of antiaging activity in a yeast model using three microscopic approaches—SEM, TEM, and bright-field light microscope.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| |
Collapse
|
5
|
Georgiev YN, Ognyanov MH, Denev PN. The ancient Thracian endemic plant Haberlea rhodopensis Friv. and related species: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112359. [PMID: 31676402 DOI: 10.1016/j.jep.2019.112359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Haberlea rhodopensis (HR) use dates back to the Thracian and Roman periods. Bulgarians call it Orpheus flower and exploit its leaves for making tea and extracts with detoxifying, tonic, restorative and rejuvenating effects. HR was traditionally applied in wound healing and treatment of cattle diseases. AIM OF THE STUDY The general aim of the review was to analyze the progress of phytochemical and pharmacological studies on HR, focusing on its radioprotective and immunomodulating effects. MATERIALS AND METHODS The main source material for the review was collected using several global search engines with the phrase: Haberlea rhodopensis, as well as Bulgarian books and dissertations. RESULTS HR metabolite profile includes large amounts of free sugars, polyols, polysaccharides (PS), flavonoids, phenolic acids and carotenoids. The radioprotective effect of 70% ethanolic leaf extract (70HREE) is explained by preservation of lymphocytes, other blood cells and testicular tissue from aberration under γ-radiation via stimulation of antioxidant enzymes and neutralization of free radicals. The extract immunomodulating activity results from raised antibody response, stem and neutrophil cell count, complement system activation, anti-tumour and anti-inflammatory effects. The detoxifying, restorative, rejuvenating and wound healing plant properties known to ethnomedicine were supported by radioprotective and immunomodulating studies. CONCLUSIONS Metabolites of phenolic origin involved in HR resurrection are supposed to contribute to its radioprotective, immunomodulatory, anti-mutagenic and anti-aging effects. However, there is no chemical characterization of 70HREE in the investigations with humans and animals. Structure-activity relationship studies on HR immunomodulating and radioprotective compounds, and on their mode of action are required. They should include not only phenols but PS and other unexplored molecules. The metabolic activity of phagocytes, platelets and lymphocytes triggered by HR extracts has to be examined to elucidate their immunostimulatory potential. HR formulations can be tested in cosmetic, food and medical products as adjuvants to treat infectious, chronic inflammatory and tumour diseases, and especially in patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Yordan Nikolaev Georgiev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria.
| | - Manol Hristov Ognyanov
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria.
| | - Petko Nedyalkov Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria.
| |
Collapse
|
6
|
Protective Effect of the Hexanic Extract of Eryngium carlinae Inflorescences In Vitro, in Yeast, and in Streptozotocin-Induced Diabetic Male Rats. Antioxidants (Basel) 2019; 8:antiox8030073. [PMID: 30917540 PMCID: PMC6466845 DOI: 10.3390/antiox8030073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 01/14/2023] Open
Abstract
In the present study, we investigated the composition and antioxidant activity of the hexanic extract of Eryngium carlinae inflorescences by employing in vitro assays to measure antioxidant capacity and 2,2-diphenyl-1-picrylhydrazyl scavenging activity. We also applied the hexanic extract to Saccharomyces cerevisiae, under hydrogen peroxide-induced stress. Finally, we tested the extract in male Wistar rats with and without streptozotocin-induced diabetes. The compounds in the hexanic extract were analyzed by gas-chromatography-mass spectrometry, which revealed mainly terpenes and sesquiterpenes, including (Z)β-farnesene (38.79%), β-pinene (17.53%), calamene (13.3%), and α-farnesene (10.38%). In vitro and in S. cerevisiae, the extract possessed antioxidant activity at different concentrations, compared to ascorbic acid (positive control). In normoglycemic and hyperglycemic rats, oral administration of 30 mg/kg of the extract reduced blood glucose levels; lipid peroxidation in liver, kidney and brain; protein carbonylation; and reactive oxygen species (ROS) production. It also increased catalase activity in the brain, kidneys and liver. These findings show that this hexanic extract of E. carlinae inflorescences possessed antioxidant properties.
Collapse
|
7
|
Stirpe M, Palermo V, Bianchi MM, Silvestri R, Falcone C, Tenore G, Novellino E, Mazzoni C. Annurca apple (M. pumila Miller cv Annurca) extracts act against stress and ageing in S. cerevisiae yeast cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:200. [PMID: 28381226 PMCID: PMC5381082 DOI: 10.1186/s12906-017-1666-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/06/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND During the past years, a number of studies have demonstrated the positive effect of apple on ageing and different diseases such as cancer, degenerative and cardiovascular diseases. The unicellular yeast Saccharomyces cerevisiae represents a simple eukaryotic model to study the effects of different compounds on lifespan. We previously demonstrated that apple extracts have anti-ageing effects in this organism because of their antioxidant properties. In particular, the effect is related to the presence in this fruit of polyphenols, which give a large contribution to the antioxidant activity of apples. METHODS We we used a clonogenic assay to assess the viability and the resistance to oxidative stress of S. cerevisiae cells in the presence of Annurca apple extracts. The production of ROS and the aberrant morphology of nuclei were detected by cell staining with the fluorescent dies Dihydrorhodamine 123 and DAPI, respectively. Mitochondrial morphology was analyzed by following the localization of the mito-GFP protein into the mitochondrial matrix. RESULTS In this study, we show that apple extracts can increase yeast lifespan, reduce the levels of reactive oxygen species and cell sensitivity to oxidative stress, and prevent nuclei and mitochondria fragmentation protecting cells from regulated cell death. CONCLUSIONS In this paper, by using the yeast S. cerevisiae as a model, we have demonstrated that Annurca extracts possess antioxidant properties thanks to which the extracts can reduce the intracellular ROS levels and have anti-apoptotic functions thus prolonging cell lifespan. These results contribute to knowledge on the effects of natural compounds on ageing and support the use of yeast as a model organism for the development of simple tests to assess the effectiveness of bioactive substances from natural sources.
Collapse
|
8
|
L-carnosine enhanced reproductive potential of the Saccharomyces cerevisiae yeast growing on medium containing glucose as a source of carbon. Biogerontology 2016; 17:737-47. [PMID: 27040824 PMCID: PMC4933726 DOI: 10.1007/s10522-016-9645-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/30/2016] [Indexed: 01/04/2023]
Abstract
Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine, which occurs in vertebrates, including humans. It has a number of favorable properties including buffering, chelating, antioxidant, anti-glycation and anti-aging activities. In our study we used the Saccharomyces cerevisiae yeast as a model organism to examine the impact of L-carnosine on the cell lifespan. We demonstrated that L-carnosine slowed down the growth and decreased the metabolic activity of cells as well as prolonged their generation time. On the other hand, it allowed for enhancement of the yeast reproductive potential and extended its reproductive lifespan. These changes may be a result of the reduced mitochondrial membrane potential and decreased ATP content in the yeast cells. However, due to reduction of the post-reproductive lifespan, L-carnosine did not have an influence on the total lifespan of yeast. In conclusion, L-carnosine does not extend the total lifespan of S. cerevisiae but rather it increases the yeast's reproductive capacity by increasing the number of daughter cells produced.
Collapse
|
9
|
Svenkrtova A, Belicova L, Volejnikova A, Sigler K, Jazwinski SM, Pichova A. Stratification of yeast cells during chronological aging by size points to the role of trehalose in cell vitality. Biogerontology 2016; 17:395-408. [PMID: 26614086 PMCID: PMC4808460 DOI: 10.1007/s10522-015-9625-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
Abstract
Cells of the budding yeast Saccharomyces cerevisiae undergo a process akin to differentiation during prolonged culture without medium replenishment. Various methods have been used to separate and determine the potential role and fate of the different cell species. We have stratified chronologically-aged yeast cultures into cells of different sizes, using centrifugal elutriation, and characterized these subpopulations physiologically. We distinguish two extreme cell types, very small (XS) and very large (L) cells. L cells display higher viability based on two separate criteria. They respire much more actively, but produce lower levels of reactive oxygen species (ROS). L cells are capable of dividing, albeit slowly, giving rise to XS cells which do not divide. L cells are more resistant to osmotic stress and they have higher trehalose content, a storage carbohydrate often connected to stress resistance. Depletion of trehalose by deletion of TPS2 does not affect the vital characteristics of L cells, but it improves some of these characteristics in XS cells. Therefore, we propose that the response of L and XS cells to the trehalose produced in the former differs in a way that lowers the vitality of the latter. We compare our XS- and L-fraction cell characteristics with those of cells isolated from stationary cultures by others based on density. This comparison suggests that the cells have some similarities but also differences that may prove useful in addressing whether it is the segregation or the response to trehalose that may play the predominant role in cell division from stationary culture.
Collapse
|
10
|
Molon M, Zadrag-Tecza R. Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae. Biogerontology 2015; 17:347-57. [PMID: 26481919 DOI: 10.1007/s10522-015-9619-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/09/2015] [Indexed: 11/28/2022]
Abstract
The use of the budding yeast Saccharomyces cerevisiae in gerontological studies was based on the assumption that the reproduction limit of a single cell (replicative aging) is a consequence of accumulation of a hypothetical universal "senescence factor" within the mother cell. However, some evidence suggests that molecules or structures proposed as the "aging factor", such as rDNA circles, oxidatively damaged proteins (with carbonyl groups) or mitochondria, have little effect on replicative lifespan of yeast cells. Our results also suggest that protein aggregates associated with Hsp104, treated as a marker of yeast aging, do not seem to affect the numeric value of replicative lifespan of yeast. What these results indicate, however, is the need for finding a different way of expressing age and longevity of yeast cells instead of the commonly used number of daughters produced over units of time, as in the case of other organisms. In this paper, we show that the temperature has a stronger influence on the time of life (the total lifespan) than on the reproductive potential of yeast cells.
Collapse
Affiliation(s)
- Mateusz Molon
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| |
Collapse
|