1
|
Rensner J, Kim H, Park K, Cahoon EB, Lee YJ. OzMALDI: A Gas-Phase, In-Source Ozonolysis Reaction for Efficient Double-Bond Assignment in Mass Spectrometry Imaging with Matrix-Assisted Laser Desorption/Ionization. Anal Chem 2025; 97:7447-7455. [PMID: 40162600 PMCID: PMC11983363 DOI: 10.1021/acs.analchem.5c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Lipids make up an important class of biomolecules with diverse structures and varied chemical functions. This diversity is a major challenge in chemical analysis and limits our understanding of biological functions and regulation. A major way lipid isomers differ is by double-bond (db) position, and analyzing db-isomers is especially challenging for mass spectrometry imaging (MSI). Ozonolysis can be used to determine the db-position and has been paired with MSI before. However, previous techniques require increased analysis time to allow for gas-phase reactions within an ion trap or ion mobility cell or additional sample preparation time to allow for offline ozonation. Here, we introduce a new ozonolysis method inside the matrix-assisted laser desorption-ionization (MALDI) source, termed OzMALDI, that simultaneously produces ozonides from all unsaturated lipids. This allows us to determine db-positions without adding additional reaction time while maintaining the high mass resolution provided by Orbitrap MS. This new technique is especially effective at determining multiple db-positions in lipids containing polyunsaturated fatty acids, which is a limitation of many previous techniques. OzMALDI-MSI was applied to the analysis of rat brain and genetically engineered Camelina and soybean seed samples, demonstrating the utility of this method and uncovering novel biological information.
Collapse
Affiliation(s)
- Josiah
J. Rensner
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Hyojin Kim
- Center
for Plant Science and Innovation, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Kiyoul Park
- Center
for Plant Science and Innovation, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Edgar B. Cahoon
- Center
for Plant Science and Innovation, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Young Jin Lee
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Li W, Schomakers BV, van Weeghel M, Grevendonk L, Vaz FM, Salomons GS, Schrauwen P, Hoeks J, Gao AW, Houtkooper RH, Janssens GE. Plasma triacylglycerol length and saturation level mark healthy aging groups in humans. GeroScience 2025; 47:2567-2580. [PMID: 39601998 PMCID: PMC11979014 DOI: 10.1007/s11357-024-01453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Complex lipids, essential components in biological processes, exhibit conserved age-related changes that alter membrane properties and cellular functions and are implicated as biomarkers and contributors to longevity and age-related diseases. While physical activity alleviates age-related comorbidities and physical impairments, comprehensive exploration of the underlying biological mechanisms, particularly at the level of complex lipids, remains limited. However, clinical studies suggest that physical activity may counteract these age-related lipidomic changes, presenting a promising avenue for intervention. We performed lipidomic profiling of plasma from an extensively characterized cohort of young and aged individuals. Annotating 1446 unique lipid species across 24 lipid classes, we found the most prominent difference in older adults was an accumulation of triacylglycerols (TGs), with lower physical activity levels associated with higher TG levels in plasma and reduced physical functionality. Remarkably, lipid species in the TG class did not accumulate uniformly. Rather, our study unveiled a negative correlation between higher physical activity levels and TGs with shorter chain lengths and more double bonds in this demographic. Overall, our research highlights that plasma TG length and saturation level can help mark healthy aging groups in humans. These findings deepen our understanding of how aging affects complex lipids and the influence of physical activity on this process.
Collapse
Affiliation(s)
- Weisha Li
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Bauke V Schomakers
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Lotte Grevendonk
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Frédéric M Vaz
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Patrick Schrauwen
- Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Arwen W Gao
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Georges E Janssens
- Amsterdam UMC Location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology, Endocrinology and Metabolism Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Sheedy DB, Golder HM, Garcia SC, Liu Z, Moate P, Reddy P, Rochfort SJ, Pryce JE, Lean IJ. A large multisite lipidomic investigation of parity and aging in dairy cows. J Dairy Sci 2025; 108:2897-2913. [PMID: 39647623 DOI: 10.3168/jds.2024-25578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/04/2024] [Indexed: 12/10/2024]
Abstract
Efforts to optimize the longevity of dairy cows are hindered by the increased risk of adverse health events, culling, or dying on farm with increased parity. Lipidomics provides a platform to help identify important biomarkers and biological pathways associated with increased parity and associated aging. A large multisite (15 pasture-based, 15 TMR farms) cross-sectional study collected plasma samples from nonlactating, late pregnant, dry cows (n = 696, ∼27 d prepartum) and peak milk cows (n = 796, ∼58 DIM) in a disproportionate stratified random sampling frame (parity: 0, 1, 2, >2 for dry cows; 1, 2, 3, >3 for peak milk cows). A total of 185 lipid species, comprising the lipids classes of phospholipids, sphingomyelins (SM) and triacylglycerols, were quantified in a targeted, liquid chromatography-MS approach. Dry and peak milk cohorts were analyzed separately throughout. Variation in lipid profiles were mostly attributed to farm of origin (36%-41% of variation), with feeding system explaining 13% to 21% and parity explaining 6% to 9%, according to ANOVA simultaneous component analysis modeling. Multiple linear regression and orthogonal partial least squares (O-PLS) investigated the association of the lipid profile with age (d), whereas discriminant analysis compared first parity with >3 parity cows in O-PLS discriminant analysis, random forest, and support vector machine models. Rankings of the most important lipid species for each model type were compared. Phospholipids with 40 carbon atoms and 6 double bond equivalents (40:6) were consistently decreased with increasing parity and age across both dry and peak milk cohorts. These lipids most likely contained stearate (18:0) and docosahexaenoic acid (DHA, C22:6n-3), an n-3 fatty acid. Additionally, phospholipids with 40:5 and 38:6, lysophosphatidylcholine (17:0), SM(35:1), and SM(35:2) were commonly identified lipids that decreased in concentration with parity and age. Docosahexaenoic acid has been associated with improved cattle health, reproduction, and milk production and quality. This study raises the hypothesis that reduced DHA levels in older cows may be an important factor increasing susceptibility to adverse health events, reduced reproductive performance, and herd removal. Studies that supplement DHA or its precursors can test this hypothesis and may be important in optimizing longevity of cows.
Collapse
Affiliation(s)
- David B Sheedy
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales 2570, Australia; Scibus, Camden, New South Wales 2570, Australia.
| | - Helen M Golder
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales 2570, Australia; Scibus, Camden, New South Wales 2570, Australia
| | - Sergio C Garcia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales 2570, Australia
| | - Zhiqian Liu
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | | | - Priyanka Reddy
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe, Bundoora, Victoria 3083, Australia
| | - Simone J Rochfort
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe, Bundoora, Victoria 3083, Australia
| | - Jennie E Pryce
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe, Bundoora, Victoria 3083, Australia
| | - Ian J Lean
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales 2570, Australia; Scibus, Camden, New South Wales 2570, Australia
| |
Collapse
|
4
|
McKenzie B, Peloquin M, Graves JL, Chen F, Tovar A, Carttar TA, Tucker K, Vo K, Nelson M, Super KM, Austriaco J, Weber SY, Naka A, McCandless EE, Greenwood K, Juarez-Salinas D, Halioua-Haubold CL, Ratcliff ER. Changes in insulin, adiponectin and lipid concentrations with age are associated with frailty and reduced quality of life in dogs. Sci Rep 2025; 15:5380. [PMID: 39948141 PMCID: PMC11825863 DOI: 10.1038/s41598-025-89923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/10/2025] [Indexed: 02/16/2025] Open
Abstract
Declining metabolic function with aging is a conserved phenotype across many species. While aging-associated changes in metabolic status have been investigated rigorously in humans, less is known about metabolic aging in dogs. In this cross-sectional study, we aimed to examine changes in metabolic health with age, and any associations with frailty and quality of life, in a diverse population of companion dogs. This cross-sectional study enrolled 451 mature, adult companion dogs. Serum adiponectin, ALP, ALT, AST, cholesterol, insulin, IGF-1 and glucose levels were quantified. Additionally, plasma FFA, SFA, PA, OA and LA were quantified in a 61 dog subpopulation. All analytes were significantly associated with age, with the exception of AST. Elevated ALP, ALT, cholesterol, insulin, FFA, PA and OA were correlated with increased frailty scores, while higher levels of glucose and adiponectin were correlated with reduced frailty scores. The strength of these associations increased with age. Higher ALP, ALT and insulin were associated with lower HRQL scores after adjusting for covariates. Our findings establish novel associations between deleterious aging-associated metabolic changes and validated measures of clinical well-being in companion dogs. Future research should investigate the causality of these associations to inform therapeutic strategies targeting age-associated changes to frailty and quality of life.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kenny Vo
- Cellular Longevity Inc, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Heymann CJF, Mak AL, Holleboom AG, Verheij J, Shiri-Sverdlov R, van Mil SWC, Tushuizen ME, Koek GH, Grefhorst A. The plasma lipidome varies with the severity of metabolic dysfunction-associated steatotic liver disease. Lipids Health Dis 2024; 23:402. [PMID: 39696394 DOI: 10.1186/s12944-024-02380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is closely associated with many aspects of disturbed metabolic health. MASLD encompasses a wide spectrum of liver diseases, ranging from isolated steatosis to metabolic dysfunction-associated steatohepatitis (MASH), up to fibrosis, cirrhosis, and ultimately hepatocellular carcinoma. Limited noninvasive diagnostic tools are currently available to distinguish the various stages of MASLD and as such liver biopsy remains the gold standard for MASLD diagnostics. We aimed to explore whether the plasma lipidome and its variations can serve as a biomarker for MASLD stages. METHODS We investigated the plasma lipidome of 7 MASLD-free subjects and 32 individuals with MASLD, of whom 11 had MASH based on biopsy scoring. RESULTS Compared with the MASLD-free subjects, individuals with MASLD had higher plasma concentrations of sphingolipids, glycerolipids, and glycerophospholipids. Only plasma concentrations of ceramide-1-phosphate C1P(d45:1) and phosphatidylcholine PC(O-36:3), PC(O-38:3), and PC(36:2) differed significantly between presence of MASH in individuals with MASLD. Of these lipids, the first three have a very low relative plasma abundance, thus only PC(36:2) might serve as a biomarker with higher plasma concentrations in MASLD individuals without MASH compared to those with MASH. CONCLUSIONS Plasma lipids hold promise as biomarkers of MASLD stages, whereas plasma PC(36:2) concentrations would be able to distinguish individuals with MASH from those with MASLD without MASH.
Collapse
Affiliation(s)
- Clément J F Heymann
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Anne Linde Mak
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Saskia W C van Mil
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ger H Koek
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Affeldt AM. [Journal Club]. Z Gerontol Geriatr 2024; 57:497-499. [PMID: 39210028 DOI: 10.1007/s00391-024-02349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Anna Maria Affeldt
- Klinik II für Innere Medizin, Uniklinik Köln, Kerpener Straße 62, 50937, Köln, Deutschland.
| |
Collapse
|
7
|
Ademowo OS, Wenk MR, Maier AB. Advances in clinical application of lipidomics in healthy ageing and healthy longevity medicine. Ageing Res Rev 2024; 100:102432. [PMID: 39029802 DOI: 10.1016/j.arr.2024.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
It is imperative to optimise health and healthspan across the lifespan. The accumulation of reactive oxygen species (ROS) has been implicated in the hallmarks of ageing and inhibiting ROS production can potentially delay ageing whilst increasing healthy longevity. Lipids and lipid mediators (derivatives of lipids) are becoming increasingly recognized as central molecule in tissue and cellular function and are susceptible to peroxidation; hence linked with ageing. Lipid classes implicated in the ageing process include sterols, glycerophospholipids, sphingolipids and the oxidation products of polyunsaturated fatty acids but these are not yet translated into the clinic. Further mechanistic studies are required for the understanding of lipid classes in the ageing process. Lipidomics, the system level characterisation of lipid species with respect to metabolism and function, might provide a significant and useful biological age profiling tool through longitudinal studies. Lipid profiles in different ages among healthy individuals could be harnessed as lipid biomarkers of healthy ageing with potential integration for the development of lipid-based ageing clock (lipid clock). The potential of a lipid clock includes the prediction of future morbidity or mortality, which will promote precision and healthy longevity medicine.
Collapse
Affiliation(s)
- Opeyemi Stella Ademowo
- Healthy Ageing and Mental Wellbeing Research Centre, Biomedical and Clinical Sciences, University of Derby, UK
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Andrea B Maier
- Healthy Longevity Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Conde-Torres D, Blanco-González A, Seco-González A, Suárez-Lestón F, Cabezón A, Antelo-Riveiro P, Piñeiro Á, García-Fandiño R. Unraveling lipid and inflammation interplay in cancer, aging and infection for novel theranostic approaches. Front Immunol 2024; 15:1320779. [PMID: 38361953 PMCID: PMC10867256 DOI: 10.3389/fimmu.2024.1320779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
The synergistic relationships between Cancer, Aging, and Infection, here referred to as the CAIn Triangle, are significant determinants in numerous health maladies and mortality rates. The CAIn-related pathologies exhibit close correlations with each other and share two common underlying factors: persistent inflammation and anomalous lipid concentration profiles in the membranes of affected cells. This study provides a comprehensive evaluation of the most pertinent interconnections within the CAIn Triangle, in addition to examining the relationship between chronic inflammation and specific lipidic compositions in cellular membranes. To tackle the CAIn-associated diseases, a suite of complementary strategies aimed at diagnosis, prevention, and treatment is proffered. Our holistic approach is expected to augment the understanding of the fundamental mechanisms underlying these diseases and highlight the potential of shared features to facilitate the development of novel theranostic strategies.
Collapse
Affiliation(s)
- Daniel Conde-Torres
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alexandre Blanco-González
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela, Spain
| | - Alejandro Seco-González
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fabián Suárez-Lestón
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela, Spain
| | - Alfonso Cabezón
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paula Antelo-Riveiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
9
|
Martins C, Magalhães S, Almeida I, Neto V, Rebelo S, Nunes A. Metabolomics to Study Human Aging: A Review. Curr Mol Med 2024; 24:457-477. [PMID: 37026499 DOI: 10.2174/1566524023666230407123727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 04/08/2023]
Abstract
In the last years, with the increase in the average life expectancy, the world's population is progressively aging, which entails social, health and economic problems. In this sense, the need to better understand the physiology of the aging process becomes an urgent need. Since the study of aging in humans is challenging, cellular and animal models are widely used as alternatives. Omics, namely metabolomics, have emerged in the study of aging, with the aim of biomarker discovering, which may help to uncomplicate this complex process. This paper aims to summarize different models used for aging studies with their advantages and limitations. Also, this review gathers the published articles referring to biomarkers of aging already discovered using metabolomics approaches, comparing the results obtained in the different studies. Finally, the most frequently used senescence biomarkers are described, along with their importance in understanding aging.
Collapse
Affiliation(s)
- Claudia Martins
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Sandra Magalhães
- Department of Surgery and Physiology, Faculty of Medicine, UnIC@RISE, Cardiovascular Research & Development Centre, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Idália Almeida
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
- CICECO: Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Vanessa Neto
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| | - Alexandra Nunes
- Department of Medical Sciences, iBiMED: Institute of Biomedicine, University of Aveiro, Agra do Crasto, Aveiro 3810-193, Portugal
| |
Collapse
|
10
|
Tian Q, Adam MG, Ozcariz E, Fantoni G, Shehadeh NM, Turek LM, Collingham VL, Kaileh M, Moaddel R, Ferrucci L. Human Metabolome Reference Database in a Biracial Cohort across the Adult Lifespan. Metabolites 2023; 13:metabo13050591. [PMID: 37233632 DOI: 10.3390/metabo13050591] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023] Open
Abstract
As one of the OMICS in systems biology, metabolomics defines the metabolome and simultaneously quantifies numerous metabolites that are final or intermediate products and effectors of upstream biological processes. Metabolomics provides accurate information that helps determine the physiological steady state and biochemical changes during the aging process. To date, reference values of metabolites across the adult lifespan, especially among ethnicity groups, are lacking. The "normal" reference values according to age, sex, and race allow the characterization of whether an individual or a group deviates metabolically from normal aging, encompass a fundamental element in any study aimed at understanding mechanisms at the interface between aging and diseases. In this study, we established a metabolomics reference database from 20-100 years of age from a biracial sample of community-dwelling healthy men and women and examined metabolite associations with age, sex, and race. Reference values from well-selected healthy individuals can contribute to clinical decision-making processes of metabolic or related diseases.
Collapse
Affiliation(s)
- Qu Tian
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21214, USA
| | | | | | - Giovanna Fantoni
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Nader M Shehadeh
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Lisa M Turek
- Clinical Research Unit, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD 21224, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21214, USA
| |
Collapse
|
11
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
12
|
Staab TA, McIntyre G, Wang L, Radeny J, Bettcher L, Guillen M, Peck MP, Kalil AP, Bromley SP, Raftery D, Chan JP. The lipidomes of C. elegans with mutations in asm-3/acid sphingomyelinase and hyl-2/ceramide synthase show distinct lipid profiles during aging. Aging (Albany NY) 2023; 15:650-674. [PMID: 36787434 PMCID: PMC9970312 DOI: 10.18632/aging.204515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Lipid metabolism affects cell and physiological functions that mediate animal healthspan and lifespan. Lipidomics approaches in model organisms have allowed us to better understand changes in lipid composition related to age and lifespan. Here, using the model C. elegans, we examine the lipidomes of mutants lacking enzymes critical for sphingolipid metabolism; specifically, we examine acid sphingomyelinase (asm-3), which breaks down sphingomyelin to ceramide, and ceramide synthase (hyl-2), which synthesizes ceramide from sphingosine. Worm asm-3 and hyl-2 mutants have been previously found to be long- and short-lived, respectively. We analyzed longitudinal lipid changes in wild type animals compared to mutants at 1-, 5-, and 10-days of age. We detected over 700 different lipids in several lipid classes. Results indicate that wildtype animals exhibit increased triacylglycerols (TAG) at 10-days compared to 1-day, and decreased lysophoshatidylcholines (LPC). We find that 10-day hyl-2 mutants have elevated total polyunsaturated fatty acids (PUFA) and increased LPCs compared to 10-day wildtype animals. These changes mirror another short-lived model, the daf-16/FOXO transcription factor that is downstream of the insulin-like signaling pathway. In addition, we find that hyl-2 mutants have poor oxidative stress response, supporting a model where mutants with elevated PUFAs may accumulate more oxidative damage. On the other hand, 10-day asm-3 mutants have fewer TAGs. Intriguingly, asm-3 mutants have a similar lipid composition as the long-lived, caloric restriction model eat-2/mAChR mutant. Together, these analyses highlight the utility of lipidomic analyses to characterize metabolic changes during aging in C. elegans.
Collapse
Affiliation(s)
- Trisha A. Staab
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Grace McIntyre
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joycelyn Radeny
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | - Lisa Bettcher
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98195, USA
| | - Melissa Guillen
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Margaret P. Peck
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | - Azia P. Kalil
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | | | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98195, USA
| | - Jason P. Chan
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| |
Collapse
|
13
|
Poulsen W, Christensen K, Dalgård C. Dietary patterns and survival to 100 + years: an empty systematic review of cohort and case–control studies. Arch Public Health 2022; 80:161. [PMID: 35768834 PMCID: PMC9241213 DOI: 10.1186/s13690-022-00914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Centenarians are used as a model of healthy ageing and longevity. Diet is a factor known to affect mortality in middle aged adults and elderly. However, it is unknown whether diet has an impact on survival to 100 + years. The aims of this systematic review were to summarize the evidence on (i) the association between dietary patterns in late adult life and survival to 100 + years and (ii) the common characteristics across dietary patterns that are shown to be positively associated with survival to 100 + years.
Methods
We performed a systematic literature search in MEDLINE and EMBASE, and a hand search at four longevity projects homepages up to 4 June 2021. We searched for cohort and case–control studies investigating the association between dietary patterns and all-cause mortality among individuals aged ≥ 65 years at enrolment regardless of their health status and residence. Studies were excluded if follow-up was performed too soon to allow the population or a subgroup of it to have become 100 + years of age.
Results
Of 3,685 identified records 108 reports were retrieved and full text screened. No studies met our inclusion criteria, thus the review process resulted in no eligible studies found. Hence, no risk of bias assessment and no synthesis of data was performed.
Conclusions
No studies have investigated dietary patterns in late adult life in relation to survival to 100 + years of age. We have observed that as of June 2021 published cohort studies exist investigating all-cause mortality risk from different dietary patterns among the oldest old, but follow-up has been performed before the cohort could have reached 100 years of age. However, cohorts do exist where data on dietary habits in adult life has been collected decades ago and where follow-up in 2022 will allow the participants to have become 100 + years old.
Registration
The review protocol is published at University of Southern Denmark’s Research Portal (Poulsen et al. Dietary Patterns and Survival to 100 + Years: Protocol for a Systematic Review of cohort and case–control studies University of Southern Denmark's Research Portal: University of Southern Denmark, 2021) available at https://portal.findresearcher.sdu.dk/en/publications/kostm%C3%B8nstre-og-overlevelse-til-100-%C3%A5r-protokol-for-en-systematisk. We have specified aim (i) of our research question in this report compared to the protocol, by adding “late” to “adult life”.
Collapse
|
14
|
Rojas-Montesino E, Méndez D, Espinosa-Parrilla Y, Fuentes E, Palomo I. Analysis of Scientometric Indicators in Publications Associated with Healthy Aging in the World, Period 2011-2020. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8988. [PMID: 35897359 PMCID: PMC9329745 DOI: 10.3390/ijerph19158988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
Today, the world population is aging at a fast rate. This scenario of the accelerated aging of human populations entails increased concern for healthy aging that is associated with a rise in scientific production related to the topic. In this study, the Scopus database from Elsevier was used, with a final search carried out on 5 January 2022, and various bibliometric indicators were obtained from SciVal. The study was fundamentally intended to characterize, determine trends, and understand the evolution and current state of research on the concept of "healthy aging" in the last decade. We found that there has been proportionally greater and more accelerated growth in the subject with respect to the general productivity of the world and that countries with high life expectancies tend to have made more effort to investigate this topic. The "hottest" research areas were found to be related to the cognitive aspect and the biological mechanisms involved in aging.
Collapse
Affiliation(s)
- Eric Rojas-Montesino
- Departamento de Cienciometría, Dirección de Investigación, Vicerrectoría Académica, Universidad de Talca, Talca 3460000, Chile;
| | - Diego Méndez
- Thrombosis Research Center, Interuniversity Center for Healthy Aging, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile;
| | - Yolanda Espinosa-Parrilla
- Escuela de Medicina, Universidad de Magallanes, Punta Arenas 6200000, Chile;
- Genómica Evolutiva y Médica de Magallanes (GEMMa), Centro Asistencial, Docente y de Investigación (CADI-UMAG), Punta Arenas 6200000, Chile
- Interuniversity Center for Healthy Aging, Punta Arenas 6200000, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Interuniversity Center for Healthy Aging, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile;
| | - Iván Palomo
- Departamento de Cienciometría, Dirección de Investigación, Vicerrectoría Académica, Universidad de Talca, Talca 3460000, Chile;
- Thrombosis Research Center, Interuniversity Center for Healthy Aging, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile;
| |
Collapse
|
15
|
Gille B, Galuska CE, Fuchs B, Peleg S. Recent Advances in Studying Age-Associated Lipids Alterations and Dietary Interventions in Mammals. FRONTIERS IN AGING 2022; 2:773795. [PMID: 35822042 PMCID: PMC9261446 DOI: 10.3389/fragi.2021.773795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Lipids are involved in a broad spectrum of canonical biological functions, from energy supply and storage by triacylglycerols to membrane formation by sphingolipids, phospholipids and glycolipids. Because of this wide range of functions, there is an overlap between age-associated processes and lipid pathways. Lipidome analysis revealed age-related changes in the lipid composition of various tissues in mice and humans, which were also influenced by diet and gender. Some changes in the lipid profile can be linked to the onset of age-related neurodegenerative diseases like Alzheimer’s disease. Furthermore, the excessive accumulation of lipid storage organelles, lipid droplets, has significant implications for the development of inflammaging and non-communicable age-related diseases. Dietary interventions such as caloric restriction, time-restrictive eating, and lipid supplementation have been shown to improve pertinent health metrics or even extend life span and thus modulate aging processes.
Collapse
Affiliation(s)
- Benedikt Gille
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Christina E Galuska
- Core Facility Metabolomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Beate Fuchs
- Core Facility Metabolomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Shahaf Peleg
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Cui Z, Li J, Zhen Y, Fan P, Du G. The Effect of Whole-Grain Diet on the Gut Microbiota of the Elderly Individuals. Front Nutr 2022; 9:919838. [PMID: 35832054 PMCID: PMC9273149 DOI: 10.3389/fnut.2022.919838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
A whole-grain (WG) diet affects human health in multiple ways. However, the effect of WG on the gut microbiota of the elderly individuals is still largely unknown. In this study, WG did not affect the microbial α-diversity but had a profound impact on the microbes' abundance in the elderly individuals. WG increased the abundance of Verrucomicrobia and decreased the abundance of Firmicutes. The prediction of microbial function showed that glucose metabolism and lipid metabolism were inhibited. In addition, the effects of WG on the gut microbiota of normal-weight (NW) and overweight (OW) individuals were different. WG increased Verrucomicrobia in the NW group and decreased Firmicutes in the OW group. Meanwhile, the effect of WG on gut microbiota showed gender characteristics, Firmicutes/Bacteroidetes ratio was decreased in women, while Verrucomicrobia abundance was increased in men. The use of WG could improve the microbial composition and promote the growth of beneficial microbes, which may be beneficial to the health of the elderly individuals.
Collapse
Affiliation(s)
- Zeying Cui
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
| | - Jingtai Li
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuting Zhen
- Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
| | - Pingming Fan
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Pingming Fan
| | - Guankui Du
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Molecular Biology, Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
- Biotechnology and Biochemistry Laboratory, Hainan Medical University, Haikou, China
- *Correspondence: Guankui Du
| |
Collapse
|
17
|
Magalhães S, Almeida I, Pereira CD, Rebelo S, Goodfellow BJ, Nunes A. The Long-Term Culture of Human Fibroblasts Reveals a Spectroscopic Signature of Senescence. Int J Mol Sci 2022; 23:ijms23105830. [PMID: 35628639 PMCID: PMC9146002 DOI: 10.3390/ijms23105830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Aging is a complex process which leads to progressive loss of fitness/capability/ability, increasing susceptibility to disease and, ultimately, death. Regardless of the organism, there are some features common to aging, namely, the loss of proteostasis and cell senescence. Mammalian cell lines have been used as models to study the aging process, in particular, cell senescence. Thus, the aim of this study was to characterize the senescence-associated metabolic profile of a long-term culture of human fibroblasts using Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopy. We sub-cultivated fibroblasts from a newborn donor from passage 4 to passage 17 and the results showed deep changes in the spectroscopic profile of cells over time. Late passage cells were characterized by a decrease in the length of fatty acid chains, triglycerides and cholesterol and an increase in lipid unsaturation. We also found an increase in the content of intermolecular β-sheets, possibly indicating an increase in protein aggregation levels in cells of later passages. Metabolic profiling by NMR showed increased levels of extracellular lactate, phosphocholine and glycine in cells at later passages. This study suggests that spectroscopy approaches can be successfully used to study changes concomitant with cell senescence and validate the use of human fibroblasts as a model to monitor the aging process.
Collapse
Affiliation(s)
- Sandra Magalhães
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Idália Almeida
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Cátia D. Pereira
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
| | - Sandra Rebelo
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
| | - Brian J. Goodfellow
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Alexandra Nunes
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
- Correspondence: ; Tel.: +351-234-324-435
| |
Collapse
|
18
|
Li H, Ren M, He Q, Gao J, Li Q. Revealing the Longevity Code of Humans with up to Extreme Longevity in Guangxi Based on Physical Examination Indicators and Personalized Biomarkers of Aging. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2810379. [PMID: 35607300 PMCID: PMC9124135 DOI: 10.1155/2022/2810379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Background The pursuit of health and longevity is the eternal theme of humanity. Guangxi has a remarkable phenomenon of longevity in long-lived regions and ranks with the highest number of longevity villages in China, thus providing a natural advantage for health longevity research. Methods In this study, we selected 117 natives of a longevity area in Guangxi, covering a large age range (38-118 years old) as subjects to measure peripheral leukocyte telomere length (LTL). Nineteen physical examination indicators and two inflammatory factor levels were measured. Results Pearson's analysis revealed a significant negative correlation between age and LTL (r = -0.3694, p = 0.003), as well as alanine aminotransferase, albumin, total bilirubin, direct bilirubin, γ-glutamyltransferase, triglycerides, Interleukin-10, and tumor necrosis factor type-α. Systolic blood pressure and blood urea nitrogen were positively correlated with age. In addition, LTL decreased in people aged 38-89 years, and an upward trend was observed in people aged older than 90 years. Conclusions Longevity individuals have characteristics, such as longer LTL, good hepatic function, and lower triglycerides and inflammation levels.
Collapse
Affiliation(s)
- He Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Minhong Ren
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Qianzu He
- Guangxi University Hospital, Guangxi University, Nanning, China
| | - Jie Gao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Quanyang Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
19
|
Gao F, Tom E, Skowronska-Krawczyk D. Dynamic Progress in Technological Advances to Study Lipids in Aging: Challenges and Future Directions. FRONTIERS IN AGING 2022; 3:851073. [PMID: 35821837 PMCID: PMC9261449 DOI: 10.3389/fragi.2022.851073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Lipids participate in all cellular processes. Diverse methods have been developed to investigate lipid composition and distribution in biological samples to understand the effect of lipids across an organism’s lifespan. Here, we summarize the advanced techniques for studying lipids, including mass spectrometry-based lipidomics, lipid imaging, chemical-based lipid analysis and lipid engineering and their advantages. We further discuss the limitation of the current methods to gain an in-depth knowledge of the role of lipids in aging, and the possibility of lipid-based therapy in aging-related diseases.
Collapse
Affiliation(s)
- Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Emily Tom
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- *Correspondence: Dorota Skowronska-Krawczyk,
| |
Collapse
|
20
|
Noren Hooten N, Pacheco NL, Smith JT, Evans MK. The accelerated aging phenotype: The role of race and social determinants of health on aging. Ageing Res Rev 2022; 73:101536. [PMID: 34883202 PMCID: PMC10862389 DOI: 10.1016/j.arr.2021.101536] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
The pursuit to discover the fundamental biology and mechanisms of aging within the context of the physical and social environment is critical to designing interventions to prevent and treat its complex phenotypes. Aging research is critically linked to understanding health disparities because these inequities shape minority aging, which may proceed on a different trajectory than the overall population. Health disparities are characteristically seen in commonly occurring age-associated diseases such as cardiovascular and cerebrovascular disease as well as diabetes mellitus and cancer. The early appearance and increased severity of age-associated disease among African American and low socioeconomic status (SES) individuals suggests that the factors contributing to the emergence of health disparities may also induce a phenotype of 'premature aging' or 'accelerated aging' or 'weathering'. In marginalized and low SES populations with high rates of early onset age-associated disease the interaction of biologic, psychosocial, socioeconomic and environmental factors may result in a phenotype of accelerated aging biologically similar to premature aging syndromes with increased susceptibility to oxidative stress, premature accumulation of oxidative DNA damage, defects in DNA repair and higher levels of biomarkers of oxidative stress and inflammation. Health disparities, therefore, may be the end product of this complex interaction in populations at high risk. This review will examine the factors that drive both health disparities and the accelerated aging phenotype that ultimately contributes to premature mortality.
Collapse
Affiliation(s)
- Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Natasha L Pacheco
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Jessica T Smith
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
21
|
Age-Related Changes in Lipidome of Rat Frontal Cortex and Cerebellum Are Partially Reversed by Methionine Restriction Applied in Old Age. Int J Mol Sci 2021; 22:ijms222212517. [PMID: 34830402 PMCID: PMC8623997 DOI: 10.3390/ijms222212517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Lipids are closely associated with brain structure and function. However, the potential changes in the lipidome induced by aging remain to be elucidated. In this study, we used chromatographic techniques and a mass spectrometry-based approach to evaluate age-associated changes in the lipidome of the frontal cortex and cerebellum obtained from adult male Wistar rats (8 months), aged male Wistar rats (26 months), and aged male Wistar rats submitted to a methionine restriction diet (MetR)—as an anti-aging intervention—for 8 weeks. The outcomes revealed that only small changes (about 10%) were observed in the lipidome profile in the cerebellum and frontal cortex during aging, and these changes differed, in some cases, between regions. Furthermore, a MetR diet partially reversed the effects of the aging process. Remarkably, the most affected lipid classes were ether-triacylglycerols, diacylglycerols, phosphatidylethanolamine N-methylated, plasmalogens, ceramides, and cholesterol esters. When the fatty acid profile was analyzed, we observed that the frontal cortex is highly preserved during aging and maintained under MetR, whereas in the cerebellum minor changes (increased monounsaturated and decreased polyunsaturated contents) were observed and not reversed by MetR. We conclude that the rat cerebellum and frontal cortex have efficient mechanisms to preserve the lipid profile of their cell membranes throughout their adult lifespan in order to maintain brain structure and function. A part of the small changes that take place during aging can be reversed with a MetR diet applied in old age.
Collapse
|
22
|
FTIR Spectroscopy as a Tool to Study Age-Related Changes in Cardiac and Skeletal Muscle of Female C57BL/6J Mice. Molecules 2021; 26:molecules26216410. [PMID: 34770818 PMCID: PMC8587752 DOI: 10.3390/molecules26216410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Studying aging is important to further understand the molecular mechanisms underlying this physiological process and, ideally, to identify a panel of aging biomarkers. Animals, in particular mice, are often used in aging studies, since they mimic important features of human aging, age quickly, and are easy to manipulate. The present work describes the use of Fourier Transform Infrared (FTIR) spectroscopy to identify an age-related spectroscopic profile of the cardiac and skeletal muscle tissues of C57BL/6J female mice. We acquired ATR-FTIR spectra of cardiac and skeletal muscle at four different ages: 6; 12; 17 and 24 months (10 samples at each age) and analyzed the data using multivariate statistical tools (PCA and PLS) and peak intensity analyses. The results suggest deep changes in protein secondary structure in 24-month-old mice compared to both tissues in 6-month-old mice. Oligomeric structures decreased with age in both tissues, while intermolecular β-sheet structures increased with aging in cardiac muscle but not in skeletal muscle. Despite FTIR spectroscopy being unable to identify the proteins responsible for these conformational changes, this study gives insights into the potential of FTIR to monitor the aging process and identify an age-specific spectroscopic signature.
Collapse
|
23
|
Yang S, Dong Y, Liu Y, Yan X, Sun G, Jia G, Li X, Liu H, Su H, Li Y. Application of lipidomics strategy to explore aging-related biomarkers and potential anti-aging mechanisms of ginseng. Biogerontology 2021; 22:589-602. [PMID: 34542790 DOI: 10.1007/s10522-021-09937-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022]
Abstract
Aging often leads to an increase risk of age-related diseases, and the development of anti-aging drugs have become the trend and focus of the current scientific research. In this experiment, serum samples from healthy people of different ages were analyzed based on clinical lipidomics, and a total of 10 potential biomarkers in middle-aged and youth group, 20 biomarkers in the youth and the elderly group were obtained. Furthermore, dhSph and dhCer involved above may affect the aging process through sphingolipid metabolic pathway. As the first and rate-limiting step of catalyzing de novo sphingolipid pathway, SPT may play a key role in human anti-aging, which is revealed by lipidomics liposome tracer analysis. The potential active components in ginseng on SPT was further verified by molecular docking virtual screening and atomic force microscope. Four ingredients of ginseng may reduce the levels of metabolites dhSph and dhCer by inhibiting the activity of SPT, and play an anti-aging effect by affecting the sphingolipid metabolism pathway.A clinical trials registration number: ChiCTR1900026836.
Collapse
Affiliation(s)
- Shenshen Yang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Yaqian Dong
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Yuechen Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Xingxu Yan
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Guijiang Sun
- Department of Kidney Disease and Blood Purification, The Second Hospital of Tianjin Medical University, No. 23 Pingjiang Street, Hexi District, Tianjin, 300211, China
| | - Guoxiang Jia
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Xiaokai Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Hui Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Haihua Su
- Department of Endocrinology and Nephrology, PKU Care CNOOC Hospital, Tianjin, China.
| | - Yubo Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|