1
|
Liang M, Feng D, Zhang J, Sun Y. Functional complementation of two splicing variants of Gustavus in Neocaridina denticulata sinensis during ovarian maturation. Sci Rep 2024; 14:20939. [PMID: 39251721 PMCID: PMC11383947 DOI: 10.1038/s41598-024-72080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
Gustavus, a positive regulator in arthropod reproduction, features a conserved SPRY and a C-terminal SOCS box domain and belongs to the SPSB protein family. The SPSB family, encompassing SPSB1 to SPSB4, plays pivotal roles in higher animals, including immune response, apoptosis, growth, and stress responses. In Neocaridina denticulata sinensis, alternative splicing yielded two NdGustavus isoforms, NdGusX1 and NdGusX2, with distinct expression patterns-high in ovaries and muscles, respectively, and across all ovarian germ cells. These isoforms showed similar expression dynamics during embryogenesis and significant upregulation post-copper ion exposure (P < 0.05). The in situ hybridization result elucidated that NdGusX1 and NdGusX2 were expressed across the germ cell spectrum in the ovary, with NdGusX1 showing enhanced expression in oogonia and primary oocytes. In addition, RNA interference revealed functional complementation in ovaries and potential functional differentiation in muscles. Knockdown of NdGusX1 and NdGusX2 potentially disrupted endogenous vitellogenin synthesis, regulating vitellogenesis and reducing mature oocyte volume, affecting follicular cavity occupation. This study provides a theoretical framework for understanding the biological functions of the SPSB family in crustacean ovarian maturation.
Collapse
Affiliation(s)
- Meiling Liang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
- Engineering Research Center of Microbial Breeding and Preservation, Hebei Province, Hebei University, Baoding, 071002, China
| | - Dandan Feng
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
- Engineering Research Center of Microbial Breeding and Preservation, Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
2
|
Post-transcriptional regulation of factors important for the germ line. Curr Top Dev Biol 2022; 146:49-78. [PMID: 35152986 DOI: 10.1016/bs.ctdb.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Echinoderms are a major model system for many general aspects of biology, including mechanisms of gene regulation. Analysis of transcriptional regulation (Gene regulatory networks, direct DNA-binding of proteins to specific cis-elements, and transgenesis) has contributed to our understanding of how an embryo works. This chapter looks at post-transcriptional gene regulation in the context of how the primordial germ cells are formed, and how the factors essential for this process are regulated. Important in echinoderms, as in many embryos, is that key steps of fate determination are made post-transcriptionally. This chapter highlights these steps uncovered in sea urchins and sea stars, and links them to a general theme of how the germ line may regulate its fate differently than many of the embryo's somatic cell lineages.
Collapse
|
3
|
Zhang T, Ning Z, Chen Y, Wen J, Jia Y, Wang L, Lv X, Yang W, Qu C, Li H, Wang H, Qu L. Understanding Transcriptomic and Serological Differences between Forced Molting and Natural Molting in Laying Hens. Genes (Basel) 2021; 13:genes13010089. [PMID: 35052428 PMCID: PMC8774386 DOI: 10.3390/genes13010089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 01/19/2023] Open
Abstract
Molting is natural adaptation to climate change in all birds, including chickens. Forced molting (FM) can rejuvenate and reactivate the reproductive potential of aged hens, but the effect of natural molting (NM) on older chickens is not clear. To explore why FM has a dramatically different effect on chickens compared with NM, the transcriptome analyses of the hypothalamus and ovary in forced molted and natural molted hens at two periods with feathers fallen and regrown were performed. Additionally, each experimental chicken was tested for serological indices. The results of serological indices showed that growth hormone, thyroid stimulating hormone, and thyroxine levels were significantly higher (p < 0.05) in forced molted hens than in natural molted hens, and calcitonin concentrations were lower in the forced molted than in the natural molted hens. Furthermore, the transcriptomic analysis revealed a large number of genes related to disease resistance and anti-aging in the two different FM and NM periods. These regulatory genes and serological indices promote reproductive function during FM. This study systematically revealed the transcriptomic and serological differences between FM and NM, which could broaden our understanding of aging, rejuvenation, egg production, and welfare issues related to FM in chickens.
Collapse
Affiliation(s)
- Tongyu Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
| | - Yu Chen
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Junhui Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Liang Wang
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Xueze Lv
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Weifang Yang
- Beijing Animal Husbandry and Veterinary Station, Beijing 100107, China; (Y.C.); (L.W.); (X.L.); (W.Y.)
| | - Changqing Qu
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang 236037, China;
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Huie Wang
- College of Animal Science, Tarim University, Alar 843300, China;
| | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (Z.N.); (J.W.)
- Correspondence:
| |
Collapse
|
4
|
Wang M, Liu C, Wang W, Dong M, Zhang P, Liu Y, Wang L, Song L. A SPRY domain-containing SOCS box protein 3 (SPSB3) involved in the regulation of cytokine production in granulocytes of Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 95:28-37. [PMID: 30711451 DOI: 10.1016/j.dci.2019.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
The sp1A/ryanodine receptor (SPRY) family members have been reported to involve in important biological pathways, including innate immune signaling, cytokine signaling suppression, development, cell growth, and retroviral restriction. In the present study, a SPRY domain-containing SOCS box protein (named as CgSPSB3) was identified and characterized from oyster Crassostrea gigas. The open reading frame of CgSPSB3 gene was of 699 bp, encoding a polypeptide of 232 amino acid residues with a central SPRY domain and a C-terminal SOCS box motif. CgSPSB3 mRNA transcripts could be detected in all the examined tissues with the highest level in hemocytes, which was about 82.72-fold (p < 0.05) of that in gonad. Furthermore, the expression level of CgSPSB3 mRNA in granulocytes was significantly higher than that in semi-granulocytes and agranulocytes, which was about 2.04-fold (p < 0.05) of the average level of hemocytes. Immunofluorescence assay further revealed that CgSPSB3 protein was mainly distributed in the cytoplasm of granulocytes. The mRNA expression of CgSPSB3 in hemocytes was up-regulated after lipopolysaccharide (LPS) and Vibrio splendidus stimulations. The mRNA expression of CgIFNLP, CgIL17-5 and CgTNF-1 decreased significantly (p < 0.05) at 24 h after the CgSPSB3 mRNA was knocked down by RNAi. These results collectively indicated that CgSPSB3 might play an important role in regulating cytokines production in granulocytes of C. gigas.
Collapse
Affiliation(s)
- Min Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Disease Control and Prevention of Aquaculture Animals, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Disease Control and Prevention of Aquaculture Animals, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Peng Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Disease Control and Prevention of Aquaculture Animals, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
5
|
Identification and expression analysis of a Spsb gene in planarian Dugesia japonica. Gene 2015; 564:168-75. [DOI: 10.1016/j.gene.2015.03.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/02/2015] [Accepted: 03/14/2015] [Indexed: 11/22/2022]
|
6
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
7
|
Guerrero-Estévez S, Moreno-Mendoza N. Gonadal morphogenesis and sex differentiation in the viviparous fish Chapalichthys encaustus (Teleostei, Cyprinodontiformes, Goodeidae). JOURNAL OF FISH BIOLOGY 2012; 80:572-594. [PMID: 22380554 DOI: 10.1111/j.1095-8649.2011.03196.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study describes the structural and ultrastructural characteristics of gonadal sex differentiation and expression of Vasa, a germline marker, in different developmental stages of embryos and newborn fry of the barred splitfin Chapalichthys encaustus, a viviparous freshwater teleost endemic to Mexico. In stage 2 embryos, the gonadal crest was established; gonadal primordia were located on the coelomic epithelium, formed by scarce germ and somatic cells. At stage 3, the undifferentiated gonad appeared suspended from the mesentery of the developing swimbladder and contained a larger number of germ and somatic cells. At stages 4 and 5, the gonads had groups of meiotic and non-meiotic germ cells surrounded by somatic cells; meiosis was evident from the presence of synaptonemal complexes. These stages constituted a transition towards differentiation. At stage 6 and at birth, the gonad was morphologically differentiated into an ovary or a testis. Ovarian differentiation was revealed by the presence of follicles containing meiotic oocytes, and testicular differentiation by the development of testicular lobules containing spermatogonia in mitotic arrest, surrounded by Sertoli cells. Nuage, electron-dense material associated with mitochondria, was observed in germ cells at all gonadal stages. The Vasa protein was detected in all of the previously described stages within the germ-cell cytoplasm. This is the first report on morphological characteristics and expression of the Vasa gene during sexual differentiation in viviparous species of the Goodeidae family. Chapalichthys encaustus may serve as a model to study processes of sexual differentiation in viviparous fishes and teleosts.
Collapse
Affiliation(s)
- S Guerrero-Estévez
- Department of Cell Biology and Physiology, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Apartado Postal 70228, Mexico DF 04510, Mexico
| | | |
Collapse
|
8
|
Leet JK, Gall HE, Sepúlveda MS. A review of studies on androgen and estrogen exposure in fish early life stages: effects on gene and hormonal control of sexual differentiation. J Appl Toxicol 2011; 31:379-98. [PMID: 21557264 DOI: 10.1002/jat.1682] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 11/09/2022]
Abstract
Teleost fish are unique among vertebrates in that phenotypic sex or onset of sex inversion can be easily manipulated by hormonal treatments. In recent years, researchers have begun reporting concentrations of synthetic and natural hormones in the environment. Although concentrations are very low (in the parts per trillion to low parts per billion), they are still of concern because of the high potency of synthetic hormones and the enhanced susceptibility of teleost fishes, especially early life stages, to hormonal exposures. In this review, we will focus on sex differentiation in teleost fishes and how these processes in fish early life stages may be impacted by environmental hormones which are known to contaminate aquatic environments. We will start by reviewing information on sources and concentrations of hormones in the environment and continue by summarizing the state of knowledge of sex differentiation in teleost gonochoristic fishes, including information on genes involved (e.g. cyp19, dmrt1, sox9 and foxl2). We will end our review with a summary of studies that have examined the effects of androgens and estrogens on fish sex differentiation after exposure of fish embryos and larvae and with ideas for future research.
Collapse
Affiliation(s)
- Jessica K Leet
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
9
|
cDNA cloning and expression analysis of gustavus gene in the oriental river prawn Macrobrachium nipponense. PLoS One 2011; 6:e17170. [PMID: 21359189 PMCID: PMC3040231 DOI: 10.1371/journal.pone.0017170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/22/2011] [Indexed: 11/28/2022] Open
Abstract
The gustavus gene is required for localizing pole plasm and specifying germ cells. Research on gustavus gene expression will advance our understanding of the biological function of gustavus in animals. A cDNA encoding gustavus protein was identified and termed MnGus in the oriental river prawn Macrobrachium nipponense. Bioinformatic analyses showed that this gene encoded a protein of 262 amino acids and the protein belongs to the Spsb1 family. Real-time quantitative PCR analyses revealed that the expression level of MnGus in prawn embryos was slightly higher at the cleavage stage than at the blastula stage, and reached the maximum level during the zoea stage of embryos. The minimum level of MnGus expression occurred during the perinucleolus stage in the ovary, while the maximum was at the oil globule stage, and then the level of MnGus expression gradually decreased with the advancement of ovarian development. The expression level of MnGus in muscle was much higher than that in other tissues in mature prawn. The gustavus cDNA sequence was firstly cloned from the oriental river prawn and the pattern of gene expression was described during oocyte maturation, embryonic development, and in other tissues. The differential expression patterns of MnGus in the embryo, ovary and other somatic tissues suggest that the gustavus gene performs multiple physiological functions in the oriental river prawn.
Collapse
|
10
|
Ewen-Campen B, Schwager EE, Extavour CGM. The molecular machinery of germ line specification. Mol Reprod Dev 2010; 77:3-18. [PMID: 19790240 DOI: 10.1002/mrd.21091] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germ cells occupy a unique position in animal reproduction, development, and evolution. In sexually reproducing animals, only they can produce gametes and contribute genetically to subsequent generations. Nonetheless, germ line specification during embryogenesis is conceptually the same as the specification of any somatic cell type: germ cells must activate a specific gene regulatory network in order to differentiate and go through gametogenesis. While many genes with critical roles in the germ line have been characterized with respect to expression pattern and genetic interactions, it is the molecular interactions of the relevant gene products that are ultimately responsible for germ cell differentiation. This review summarizes the current state of knowledge on the molecular functions and biochemical connections between germ line gene products. We find that homologous genes often interact physically with the same conserved molecular partners across the metazoans. We also point out cases of nonhomologous genes from different species whose gene products play analogous biological roles in the germ line. We suggest a preliminary molecular definition of an ancestral "pluripotency module" that could have been modified during metazoan evolution to become specific to the germ line.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
11
|
Regulation of Drosophila vasa in vivo through paralogous cullin-RING E3 ligase specificity receptors. Mol Cell Biol 2010; 30:1769-82. [PMID: 20123973 DOI: 10.1128/mcb.01100-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Drosophila species, molecular asymmetries guiding embryonic development are established maternally. Vasa, a DEAD-box RNA helicase, accumulates in the posterior pole plasm, where it is required for embryonic germ cell specification. Maintenance of Vasa at the posterior pole requires the deubiquitinating enzyme Fat facets, which protects Vasa from degradation. Here, we found that Gustavus (Gus) and Fsn, two ubiquitin Cullin-RING E3 ligase specificity receptors, bind to the same motif on Vasa through their paralogous B30.2/SPRY domains. Both Gus and Fsn accumulate in the pole plasm in a Vasa-dependent manner. Posterior Vasa accumulation is precocious in Fsn mutant oocytes; Fsn overexpression reduces ovarian Vasa levels, and embryos from Fsn-overexpressing females form fewer primordial germ cells (PGCs); thus, Fsn destabilizes Vasa. In contrast, endogenous Gus may promote Vasa activity in the pole plasm, as gus females produce embryos with fewer PGCs, and posterior accumulation of Vas is delayed in gus mutant oocytes that also lack one copy of cullin-5. We propose that Fsn- and Gus-containing E3 ligase complexes contribute to establishing a fine-tuned steady state of Vasa ubiquitination that influences the kinetics of posterior Vasa deployment.
Collapse
|