1
|
Yadav C, Yadav R, Nanda S, Ranga S, Ahuja P, Tanwar M. Role of HOX genes in cancer progression and their therapeutical aspects. Gene 2024; 919:148501. [PMID: 38670395 DOI: 10.1016/j.gene.2024.148501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
HOX genes constitute a family of evolutionarily conserved transcription factors that play pivotal roles in embryonic development, tissue patterning, and cell differentiation. These genes are essential for the precise spatial and temporal control of body axis formation in vertebrates. In addition to their developmental functions, HOX genes have garnered significant attention for their involvement in various diseases, including cancer. Deregulation of HOX gene expression has been observed in numerous malignancies, where they can influence tumorigenesis, progression, and therapeutic responses. This review provides an overview of the diverse roles of HOX genes in development, disease, and potential therapeutic targets, highlighting their significance in understanding biological processes and their potential clinical implications.
Collapse
Affiliation(s)
- Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India.
| | - Smiti Nanda
- Retd. Senior Professor and Head, Department of Gynaecology and Obstetrics, Pt. B.D. Sharma University of Health Sciences, Rohtak 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
2
|
Magalhães F, Andrade C, Simões B, Brigham F, Valente R, Martinez P, Rino J, Sugni M, Coelho AV. Regeneration of starfish radial nerve cord restores animal mobility and unveils a new coelomocyte population. Cell Tissue Res 2023; 394:293-308. [PMID: 37606764 PMCID: PMC10638123 DOI: 10.1007/s00441-023-03818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/21/2023] [Indexed: 08/23/2023]
Abstract
The potential to regenerate a damaged body part is expressed to a different extent in animals. Echinoderms, in particular starfish, are known for their outstanding regenerating potential. Differently, humans have restricted abilities to restore organ systems being dependent on limited sources of stem cells. In particular, the potential to regenerate the central nervous system is extremely limited, explaining the lack of natural mechanisms that could overcome the development of neurodegenerative diseases and the occurrence of trauma. Therefore, understanding the molecular and cellular mechanisms of regeneration in starfish could help the development of new therapeutic approaches in humans. In this study, we tackle the problem of starfish central nervous system regeneration by examining the external and internal anatomical and behavioral traits, the dynamics of coelomocyte populations, and neuronal tissue architecture after radial nerve cord (RNC) partial ablation. We noticed that the removal of part of RNC generated several anatomic anomalies and induced behavioral modifications (injured arm could not be used anymore to lead the starfish movement). Those alterations seem to be related to defense mechanisms and protection of the wound. In particular, histology showed that tissue patterns during regeneration resemble those described in holothurians and in starfish arm tip regeneration. Flow cytometry coupled with imaging flow cytometry unveiled a new coelomocyte population during the late phase of the regeneration process. Morphotypes of these and previously characterized coelomocyte populations were described based on IFC data. Further studies of this new coelomocyte population might provide insights on their involvement in radial nerve cord regeneration.
Collapse
Affiliation(s)
- Filipe Magalhães
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Claúdia Andrade
- NOVA Medical School/Faculdade de Ciências Médicas, Lisbon, Portugal
| | - Beatriz Simões
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Fredi Brigham
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ruben Valente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- ICREA (Institut Català de Recerca i Estudis Avancats), Barcelona, Spain
| | - José Rino
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
3
|
Crespi-Abril AC, Rubilar T. Ethical Considerations for Echinoderms: New Initiatives in Welfare. Animals (Basel) 2023; 13:3377. [PMID: 37958130 PMCID: PMC10647474 DOI: 10.3390/ani13213377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
This paper explores the ethical considerations surrounding research on echinoderms, a group of invertebrates that has recently garnered attention in the scientific community. The importance of responsible animal handling and the need for an ethical framework that encompasses echinoderms are emphasized. The 3Rs principle, advocating for the replacement of conscious living vertebrates with non-sentient material in research, is discussed as a guiding tool in current animal research practices. As invertebrates are generally classified as non-sentient animals, the replacement dimension tends to favor them as prevalent models in experimental research. While it currently lacks the means to assess the mental states of invertebrates, there is undeniable evidence of social behavior in many species, suggesting that a lack of interactions with these organisms could potentially adversely affect their wellbeing. In the last few years, considerable progress has been made in developing an ethical framework that takes invertebrates into account, particularly cephalopods, crustaceans, and echinoderms. In this context, we discuss the development of a broader conceptual framework of 5Rs that includes responsibility and respect, which may guide practices ensuring welfare in echinoderms, even in the absence of any particular normative.
Collapse
Affiliation(s)
- Augusto César Crespi-Abril
- Instituto Patagónico del Mar (IPaM), Universidad Nacional del a Patagonia San Juan Bosco (UNPSJB), Boulevard Brown 2915, Puerto Madryn 9120, Argentina
- Laboratorio de Oceanografía Biológica (LOBio), Centro Para el Estudio de Sistemas Marinos (CESIMAR–CONICET), Boulevard Brown 2915, Puerto Madryn 9120, Argentina;
| | - Tamara Rubilar
- Laboratorio de Oceanografía Biológica (LOBio), Centro Para el Estudio de Sistemas Marinos (CESIMAR–CONICET), Boulevard Brown 2915, Puerto Madryn 9120, Argentina;
- Laboratorio de Química de Organismos Marinos (LabQuiOM), Instituto Patagónico del Mar (IPAM), Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown 2930, Puerto Madryn 9120, Argentina
| |
Collapse
|
4
|
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Golob-Schwarzl N, Mumberg D, Henderson D, Győrffy B, Regenbrecht CR, Keilholz U, Schäfer R, Lange M. Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience 2022; 25:104498. [PMID: 35720265 PMCID: PMC9204726 DOI: 10.1016/j.isci.2022.104498] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
Recent evidence demonstrates that colon cancer stem cells (CSCs) can generate neurons that synapse with tumor innervating fibers required for tumorigenesis and disease progression. Greater understanding of the mechanisms that regulate CSC driven tumor neurogenesis may therefore lead to more effective treatments. RNA-sequencing analyses of ALDHPositive CSCs from colon cancer patient-derived organoids (PDOs) and xenografts (PDXs) showed CSCs to be enriched for neural development genes. Functional analyses of genes differentially expressed in CSCs from PDO and PDX models demonstrated the neural crest stem cell (NCSC) regulator EGR2 to be required for tumor growth and to control expression of homebox superfamily embryonic master transcriptional regulator HOX genes and the neural stem cell and master cell fate regulator SOX2. These data support CSCs as the source of tumor neurogenesis and suggest that targeting EGR2 may provide a therapeutic differentiation strategy to eliminate CSCs and block nervous system driven disease progression.
Collapse
Affiliation(s)
- Joseph L. Regan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Dirk Schumacher
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Stephanie Staudte
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Joern Toedling
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Thibaud Jourdan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Nicole Golob-Schwarzl
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Dominik Mumberg
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - David Henderson
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Bayer AG, Business Development and Licensing and Open Innovation, Pharmaceuticals, 13342 Berlin, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christian R.A. Regenbrecht
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- CELLphenomics GmbH, 13125 Berlin, Germany
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Reinhold Schäfer
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Martin Lange
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| |
Collapse
|
5
|
Allievi A, Canavesi M, Ferrario C, Sugni M, Bonasoro F. An evo-devo perspective on the regeneration patterns of continuous arm structures in stellate echinoderms. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2039309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- A. Allievi
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - M. Canavesi
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - C. Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - M. Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - F. Bonasoro
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Wilczyński JR. Cancer Stem Cells: An Ever-Hiding Foe. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:219-251. [PMID: 35165866 DOI: 10.1007/978-3-030-91311-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer stem cells are a population of cells enable to reproduce the original phenotype of the tumor and capable to self-renewal, which is crucial for tumor proliferation, differentiation, recurrence, and metastasis, as well as chemoresistance. Therefore, the cancer stem cells (CSCs) have become one of the main targets for anticancer therapy and many ongoing clinical trials test anti-CSCs efficacy of plenty of drugs. This chapter describes CSCs starting from general description of this cell population, through CSCs markers, signaling pathways, genetic and epigenetic regulation, role of epithelial-mesenchymal transition (EMT) transition and autophagy, cooperation with microenvironment (CSCs niche), and finally role of CSCs in escaping host immunosurveillance against cancer.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
7
|
Ferrario C, Ben Khadra Y, Sugni M, Candia Carnevali MD, Martinez P, Bonasoro F. Studying Echinodermata Arm Explant Regeneration Using Echinaster sepositus. Methods Mol Biol 2022; 2450:263-291. [PMID: 35359313 PMCID: PMC9761906 DOI: 10.1007/978-1-0716-2172-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Echinoderms are marine invertebrate deuterostomes known for their amazing regenerative abilities throughout all life stages. Though some species can undergo whole-body regeneration (WBR), others exhibit more restricted regenerative capabilities. Asteroidea (starfish) comprise one of the few echinoderm taxa capable of undergoing WBR. Indeed, some starfish species can restore all tissues and organs not only during larval stages, but also from arm fragments as adults. Arm explants have been used to study cells, tissues and genes involved in starfish regeneration. Here, we describe methods for obtaining and studying regeneration of arm explants in starfish, in particular animal collection and husbandry, preparation of arm explants, regeneration tests, microscopic anatomy techniques (including transmission electron microscopy, TEM) used to analyze the regenerating explant tissues and cells plus a downstream RNA extraction protocol needed for subsequent molecular investigations.
Collapse
Affiliation(s)
- Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Department of Physics, Center for Complexity and Biosystem, University of Milan, Milan, Italy
| | - Yousra Ben Khadra
- Laboratory of Genetics, Biodiversity, and Valorization of Bioresources, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy.
- Department of Physics, Center for Complexity and Biosystem, University of Milan, Milan, Italy.
- GAIA 2050, Department of Environmental Science and Policy, University of Milan, Milan, Italy.
| | - M Daniela Candia Carnevali
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- GAIA 2050, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Pedro Martinez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- GAIA 2050, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Medina-Feliciano JG, García-Arrarás JE. Regeneration in Echinoderms: Molecular Advancements. Front Cell Dev Biol 2021; 9:768641. [PMID: 34977019 PMCID: PMC8718600 DOI: 10.3389/fcell.2021.768641] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
Which genes and gene signaling pathways mediate regenerative processes? In recent years, multiple studies, using a variety of animal models, have aimed to answer this question. Some answers have been obtained from transcriptomic and genomic studies where possible gene and gene pathway candidates thought to be involved in tissue and organ regeneration have been identified. Several of these studies have been done in echinoderms, an animal group that forms part of the deuterostomes along with vertebrates. Echinoderms, with their outstanding regenerative abilities, can provide important insights into the molecular basis of regeneration. Here we review the available data to determine the genes and signaling pathways that have been proposed to be involved in regenerative processes. Our analyses provide a curated list of genes and gene signaling pathways and match them with the different cellular processes of the regenerative response. In this way, the molecular basis of echinoderm regenerative potential is revealed, and is available for comparisons with other animal taxa.
Collapse
|
9
|
Tsuruma K, Saito Y, Okuyoshi H, Yamaguchi A, Shimazawa M, Goldman D, Hara H. Granulin 1 Promotes Retinal Regeneration in Zebrafish. Invest Ophthalmol Vis Sci 2019; 59:6057-6066. [PMID: 30577041 PMCID: PMC6314112 DOI: 10.1167/iovs.18-24828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Purpose Retinal degenerative diseases can progress to severe reductions of vision. In general, the changes are permanent in higher vertebrates, including humans; however, retinal regeneration can occur in lower vertebrates, such as amphibians and teleost fish. Progranulin is a secreted growth factor that is involved in normal development and wound-healing processes. We have shown that progranulin promotes the proliferation of retinal precursor cells in mouse retinas. The purpose of this study was to investigate the role played by granulin 1 (grn1) in the retinal regeneration in zebrafish. Methods We injured the retina of zebrafish with needle puncturing, and the retinas were examined at different times after the injury. We also checked the proliferation and the expression of retinal regeneration–related genes after knockdown of grn1 by electroporation with morpholino oligonucleotides (MO) and intravitreal injection of recombinant grn1. Results Our results showed that the level of grn1 was highly increased after retinal injury, and it was expressed in various types of retinal cells. A knockdown of grn1 reduced the proliferation of Müller glial cells in zebrafish eyes undergoing retinal regeneration. The knockdown of grn1 also reduced the expression of achaete-scute homolog 1a (ascl1a), an important factor in retinal regeneration. An intravitreal injection of recombinant grn1 led to a proliferation of Müller glial cells and an increase in the expression of retinal regeneration–related genes, such as ascl1a and lin28. Conclusions These findings suggested that grn1 should be considered as a target for stimulating the dedifferentiation of Müller glial cells and retinal regeneration.
Collapse
Affiliation(s)
- Kazuhiro Tsuruma
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan.,Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States
| | - Yuichi Saito
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroyuki Okuyoshi
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Akihiro Yamaguchi
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Daniel Goldman
- Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
10
|
A Case of Identity: HOX Genes in Normal and Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11040512. [PMID: 30974862 PMCID: PMC6521190 DOI: 10.3390/cancers11040512] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cells are undifferentiated cells that have the unique ability to self-renew and differentiate into many different cell types. Their function is controlled by core gene networks whose misregulation can result in aberrant stem cell function and defects of regeneration or neoplasia. HOX genes are master regulators of cell identity and cell fate during embryonic development. They play a crucial role in embryonic stem cell differentiation into specific lineages and their expression is maintained in adult stem cells along differentiation hierarchies. Aberrant HOX gene expression is found in several cancers where they can function as either oncogenes by sustaining cell proliferation or tumor-suppressor genes by controlling cell differentiation. Emerging evidence shows that abnormal expression of HOX genes is involved in the transformation of adult stem cells into cancer stem cells. Cancer stem cells have been identified in most malignancies and proved to be responsible for cancer initiation, recurrence, and metastasis. In this review, we consider the role of HOX genes in normal and cancer stem cells and discuss how the modulation of HOX gene function could lead to the development of novel therapeutic strategies that target cancer stem cells to halt tumor initiation, progression, and resistance to treatment.
Collapse
|
11
|
Cary GA, Wolff A, Zueva O, Pattinato J, Hinman VF. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa. BMC Biol 2019; 17:16. [PMID: 30795750 PMCID: PMC6385403 DOI: 10.1186/s12915-019-0633-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Background Metazoan lineages exhibit a wide range of regenerative capabilities that vary among developmental stage and tissue type. The most robust regenerative abilities are apparent in the phyla Cnidaria, Platyhelminthes, and Echinodermata, whose members are capable of whole-body regeneration (WBR). This phenomenon has been well characterized in planarian and hydra models, but the molecular mechanisms of WBR are less established within echinoderms, or any other deuterostome system. Thus, it is not clear to what degree aspects of this regenerative ability are shared among metazoa. Results We characterize regeneration in the larval stage of the Bat Star (Patiria miniata). Following bisection along the anterior-posterior axis, larvae progress through phases of wound healing and re-proportioning of larval tissues. The overall number of proliferating cells is reduced following bisection, and we find evidence for a re-deployment of genes with known roles in embryonic axial patterning. Following axial respecification, we observe a significant localization of proliferating cells to the wound region. Analyses of transcriptome data highlight the molecular signatures of functions that are common to regeneration, including specific signaling pathways and cell cycle controls. Notably, we find evidence for temporal similarities among orthologous genes involved in regeneration from published Platyhelminth and Cnidarian regeneration datasets. Conclusions These analyses show that sea star larval regeneration includes phases of wound response, axis respecification, and wound-proximal proliferation. Commonalities of the overall process of regeneration, as well as gene usage between this deuterostome and other species with divergent evolutionary origins reveal a deep similarity of whole-body regeneration among the metazoa. Electronic supplementary material The online version of this article (10.1186/s12915-019-0633-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gregory A Cary
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Andrew Wolff
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Olga Zueva
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Joseph Pattinato
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
12
|
Barton-Owen TB, Szabó R, Somorjai IML, Ferrier DEK. A Revised Spiralian Homeobox Gene Classification Incorporating New Polychaete Transcriptomes Reveals a Diverse TALE Class and a Divergent Hox Gene. Genome Biol Evol 2018; 10:2151-2167. [PMID: 29986009 PMCID: PMC6118893 DOI: 10.1093/gbe/evy144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Abstract
The diversity of mechanisms and capacity for regeneration across the Metazoa present an intriguing challenge in evolutionary biology, impacting on the burgeoning field of regenerative medicine. Broad taxonomic sampling is essential to improve our understanding of regeneration, and studies outside of the traditional model organisms have proved extremely informative. Within the historically understudied Spiralia, the Annelida have an impressive variety of tractable regenerative systems. The biomeralizing, blastema-less regeneration of the head appendage (operculum) of the serpulid polychaete keelworm Spirobranchus (formerly Pomatoceros) lamarcki is one such system. To profile potential regulatory mechanisms, we classified the homeobox gene content of opercular regeneration transcriptomes. As a result of retrieving several difficult-to-classify homeobox sequences, we performed an extensive search and phylogenetic analysis of the TALE and PRD-class homeobox gene content of a broad selection of lophotrochozoan genomes. These analyses contribute to our increasing understanding of the diversity, taxonomic extent, rapid evolution, and radical flexibility of these recently discovered homeobox gene radiations. Our expansion and integration of previous nomenclature systems helps to clarify their cryptic orthology. We also describe an unusual divergent S. lamarcki Antp gene, a previously unclassified lophotrochozoan orphan gene family (Lopx), and a number of novel Nk class orphan genes. The expression and potential involvement of many of these lineage- and clade-restricted homeobox genes in S. lamarcki operculum regeneration provides an example of diversity in regenerative mechanisms, as well as significantly improving our understanding of homeobox gene evolution.
Collapse
Affiliation(s)
- Thomas B Barton-Owen
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St. Andrews, United Kingdom
- The Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, United Kingdom
| | - Réka Szabó
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St. Andrews, United Kingdom
| | - Ildiko M L Somorjai
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St. Andrews, United Kingdom
- The Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, United Kingdom
| | - David E K Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St. Andrews, United Kingdom
| |
Collapse
|
13
|
Ben Khadra Y, Sugni M, Ferrario C, Bonasoro F, Oliveri P, Martinez P, Candia Carnevali MD. Regeneration in Stellate Echinoderms: Crinoidea, Asteroidea and Ophiuroidea. Results Probl Cell Differ 2018; 65:285-320. [PMID: 30083925 DOI: 10.1007/978-3-319-92486-1_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reparative regeneration is defined as the replacement of lost adult body parts and is a phenomenon widespread yet highly variable among animals. This raises the question of which key cellular and molecular mechanisms have to be implemented in order to efficiently and correctly replace entire body parts in any animal. To address this question, different studies using an integrated cellular and functional genomic approach to study regeneration in stellate echinoderms (crinoids, asteroids and ophiuroids) had been carried out over the last few years. The phylum Echinodermata is recognized for the striking regeneration potential shown by the members of its different clades. Indeed, stellate echinoderms are considered among the most useful and tractable experimental models for carrying comprehensive studies focused on ecological, developmental and evolutionary aspects. Moreover, most of them are tractable in the laboratory and, thus, should allow us to understand the underlying mechanisms, cellular and molecular, which are involved. Here, a comprehensive analysis of the cellular/histological components of the regenerative process in crinoids, asteroids and ophiuroids is described and compared. However, though this knowledge provided us with some clear insights into the global distribution of cell types at different times, it did not explain us how the recruited cells are specified (and from which precursors) over time and where are they located in the animal. The precise answer to these queries needs the incorporation of molecular approaches, both descriptive and functional. Yet, the molecular studies in stellate echinoderms are still limited to characterization of some gene families and protein factors involved in arm regeneration but, at present, have not shed light on most of the basic mechanisms. In this context, further studies are needed specifically to understand the role of regulatory factors and their spatio-temporal deployment in the growing arms. A focus on developing functional tools over the next few years should be of fundamental importance.
Collapse
Affiliation(s)
- Yousra Ben Khadra
- Laboratoire de Recherche, Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia.
| | - Michela Sugni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy.
- Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy.
| | - Cinzia Ferrario
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy
| | - Francesco Bonasoro
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Pedro Martinez
- Departament de Genètica, Microbiologia I Estadística, Universitat de Barcelona, Barcelona, Spain
- ICREA (Institut Català de Recerca i Estudis Avancats), Barcelona, Spain
| | | |
Collapse
|
14
|
An integrated view of asteroid regeneration: tissues, cells and molecules. Cell Tissue Res 2017; 370:13-28. [DOI: 10.1007/s00441-017-2589-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/08/2017] [Indexed: 01/11/2023]
|
15
|
de Jong DM, Seaver EC. A Stable Thoracic Hox Code and Epimorphosis Characterize Posterior Regeneration in Capitella teleta. PLoS One 2016; 11:e0149724. [PMID: 26894631 PMCID: PMC4764619 DOI: 10.1371/journal.pone.0149724] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/04/2016] [Indexed: 12/21/2022] Open
Abstract
Regeneration, the ability to replace lost tissues and body parts following traumatic injury, occurs widely throughout the animal tree of life. Regeneration occurs either by remodeling of pre-existing tissues, through addition of new cells by cell division, or a combination of both. We describe a staging system for posterior regeneration in the annelid, Capitella teleta, and use the C. teleta Hox gene code as markers of regional identity for regenerating tissue along the anterior-posterior axis. Following amputation of different posterior regions of the animal, a blastema forms and by two days, proliferating cells are detected by EdU incorporation, demonstrating that epimorphosis occurs during posterior regeneration of C. teleta. Neurites rapidly extend into the blastema, and gradually become organized into discrete nerves before new ganglia appear approximately seven days after amputation. In situ hybridization shows that seven of the ten Hox genes examined are expressed in the blastema, suggesting roles in patterning the newly forming tissue, although neither spatial nor temporal co-linearity was detected. We hypothesized that following amputation, Hox gene expression in pre-existing segments would be re-organized to scale, and the remaining fragment would express the complete suite of Hox genes. Surprisingly, most Hox genes display stable expression patterns in the ganglia of pre-existing tissue following amputation at multiple axial positions, indicating general stability of segmental identity. However, the three Hox genes, CapI-lox4, CapI-lox2 and CapI-Post2, each shift its anterior expression boundary by one segment, and each shift includes a subset of cells in the ganglia. This expression shift depends upon the axial position of the amputation. In C. teleta, thoracic segments exhibit stable positional identity with limited morphallaxis, in contrast with the extensive body remodeling that occurs during regeneration of some other annelids, planarians and acoel flatworms.
Collapse
Affiliation(s)
- Danielle M. de Jong
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
| | - Elaine C. Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
- * E-mail:
| |
Collapse
|
16
|
Byrne M, Martinez P, Morris V. Evolution of a pentameral body plan was not linked to translocation of anterior Hox genes: the echinoderm HOX cluster revisited. Evol Dev 2016; 18:137-43. [DOI: 10.1111/ede.12172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maria Byrne
- Schools of Medical and Biological SciencesThe University of SydneySydneyNSW2006Australia
| | - Pedro Martinez
- Departament de GenèticaUniversitat de BarcelonaAv. Diagonal, 643Barcelona08028Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys, 23Barcelona08010Spain
| | - Valerie Morris
- School of Biological SciencesThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
17
|
Ben Khadra Y, Ferrario C, Di Benedetto C, Said K, Bonasoro F, Carnevali MDC, Sugni M. Re-growth, morphogenesis, and differentiation during starfish arm regeneration. Wound Repair Regen 2015; 23:623-34. [PMID: 26111806 DOI: 10.1111/wrr.12336] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/19/2015] [Accepted: 06/17/2015] [Indexed: 11/30/2022]
Abstract
The red starfish Echinaster sepositus is an excellent model for studying arm regeneration processes following traumatic amputation. The initial repair phase was described in a previous paper in terms of the early cicatrisation phenomena, and tissue and cell involvement. In this work, we attempt to provide a further comprehensive description of the later regenerative stages in this species. Here, we present the results of a detailed microscopic and submicroscopic investigation of the long regenerative phase, which can be subdivided into two subphases: early and advanced regenerative phases. The early regenerative phase (1-6 weeks p.a.) is characterized by tissue rearrangement, morphogenetic processes and initial differentiation events (mainly neurogenesis and skeletogenesis). The advanced regenerative phase (after 6 weeks p.a.) is characterized by further differentiation processes (early myogenesis), and obvious morphogenesis and re-growth of the regenerate. As in other starfish, the regenerative process in E. sepositus is relatively slow in comparison with that of crinoids and many ophiuroids, which is usually interpreted as resulting mainly from size-related aspects and of the more conspicuous involvement of morphallactic processes. Light and electron microscopy analyses suggest that some of the amputated structures, such as muscles, are not able to replace their missing parts by directly re-growing them from the remaining tissues, whereas others tissues, such as the skeleton and the radial nerve cord, appear to undergo direct re-growth. The overall process is in agreement with the distalization-intercalation model proposed by Agata and co-workers. Further experiments are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Yousra Ben Khadra
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | - Cinzia Ferrario
- Department of Biosciences, University of Milan, Milan, Italy
| | - Cristiano Di Benedetto
- Department of Biosciences, University of Milan, Milan, Italy.,Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Khaled Said
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | | | | | - Michela Sugni
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Ben Khadra Y, Ferrario C, Di Benedetto C, Said K, Bonasoro F, Carnevali MDC, Sugni M. Wound repair during arm regeneration in the red starfish Echinaster sepositus. Wound Repair Regen 2015; 23:611-22. [PMID: 26111373 DOI: 10.1111/wrr.12333] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022]
Abstract
Starfish can regenerate entire arms following their loss by both autotomic and traumatic amputation. Although the overall regenerative process has been studied several times in different asteroid species, there is still a considerable gap of knowledge as far as the detailed aspects of the repair phase at tissue and cellular level are concerned, particularly in post-traumatic regeneration. The present work is focused on the arm regeneration model in the Mediterranean red starfish Echinaster sepositus; to describe the early cellular mechanisms of arm regeneration following traumatic amputation, different microscopy techniques were employed. In E. sepositus, the repair phase was characterized by prompt wound healing by a syncytial network of phagocytes and re-epithelialisation followed by a localized subepidermal oedematous area formation. Scattered and apparently undifferentiated cells, intermixed with numerous phagocytes, were frequently found in the wound area during these first stages of regeneration and extensive dedifferentiation phenomena were seen at the level of the stump, particularly in the muscle bundles. A true localized blastema did not form. Our results confirm that regeneration in asteroids mainly relies on morphallactic processes, consisting in extensive rearrangement of the existing tissues which contribute to the new tissues through cell dedifferentiation, redifferentiation, and/or migration.
Collapse
Affiliation(s)
- Yousra Ben Khadra
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | - Cinzia Ferrario
- Department of Biosciences, University of Milan, Milan, Italy
| | - Cristiano Di Benedetto
- Department of Biosciences, University of Milan, Milan, Italy.,King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Khaled Said
- Laboratory of Genetics, Biodiversity and Valorization of Bioresources, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | | | | | - Michela Sugni
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Baughman KW, McDougall C, Cummins SF, Hall M, Degnan BM, Satoh N, Shoguchi E. Genomic organization of Hox and ParaHox clusters in the echinoderm, Acanthaster planci. Genesis 2014; 52:952-8. [PMID: 25394327 DOI: 10.1002/dvg.22840] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 11/05/2022]
Abstract
The organization of echinoderm Hox clusters is of interest due to the role that Hox genes play in deuterostome development and body plan organization, and the unique gene order of the Hox complex in the sea urchin Strongylocentrotus purpuratus, which has been linked to the unique development of the axial region. Here, it has been reported that the Hox and ParaHox clusters of Acanthaster planci, a corallivorous starfish found in the Pacific and Indian oceans, generally resembles the chordate and hemichordate clusters. The A. planci Hox cluster shared with sea urchins the loss of one of the medial Hox genes, even-skipped (Evx) at the anterior of the cluster, as well as organization of the posterior Hox genes.
Collapse
Affiliation(s)
- Kenneth W Baughman
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | | | | | | | | | | | | |
Collapse
|