1
|
Xu L, Xie X, Shi X, Zhang P, Liu A, Wang J, Zhang B. Potential application of genomic profiling for the diagnosis and treatment of patients with sarcoma. Oncol Lett 2021; 21:353. [PMID: 33747210 PMCID: PMC7967939 DOI: 10.3892/ol.2021.12614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/14/2020] [Indexed: 01/13/2023] Open
Abstract
Sarcomas represent a heterogeneous group of mesenchymal malignancies arising at various locations in the soft tissue and bone. Though a rare disease, sarcoma affects ~200,000 patients worldwide every year. The prognosis of patients with sarcoma is poor, and targeted therapy options are limited; therefore, accurate diagnosis and classification are essential for effective treatment. Sarcoma samples were acquired from 199 patients, in which TP53 (39.70%, 79/199), CDKN2A (19.10%, 38/199), CDKN2B (15.08%, 30/199), KIT (14.07%, 28/199), ATRX (10.05%, 20/199) and RB1 (10.05%, 20/199) were identified as the most commonly mutated genes (>10% incidence). Among 64 soft-tissue sarcomas that were unclassified by immunohistochemistry, 15 (23.44%, 15/64) were subsequently classified using next-generation sequencing (NGS). For the most part, the sarcoma subtypes were evenly distributed between male and female patients, while a significant association with sex was detected in leiomyosarcomas. Statistical analysis showed that osteosarcoma, Ewing's sarcoma, gastrointestinal stromal tumors and liposarcoma were all significantly associated with the patient age, and that angiosarcoma was significantly associated with high tumor mutational burden. Furthermore, serially mutated genes associated with myxofibrosarcoma, gastrointestinal stromal tumor, osteosarcoma, liposarcoma, leiomyosarcoma, synovial sarcoma and Ewing's sarcoma were identified, as well as neurotrophic tropomyosin-related kinase (NTRK) fusions of IRF2BP2-NTRK1, MEF2A-NTRK3 and ITFG1-NTRK3. Collectively, the results of the present study suggest that NGS-targeting provides potential new biomarkers for sarcoma diagnosis, and may guide more precise therapeutic strategies for patients with bone and soft-tissue sarcomas.
Collapse
Affiliation(s)
- Libin Xu
- Department of Orthopedic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat Sen University, Guangzhou, Guangdong 510080, P.R. China
| | | | - Peng Zhang
- OrigiMed Co. Ltd., Shanghai 201114, P.R. China
| | - Angen Liu
- OrigiMed Co. Ltd., Shanghai 201114, P.R. China
| | - Jian Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Bo Zhang
- Department of Pathology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
2
|
Shi J, Huang D, Zhang G, Zhao F, Yang L. A DNA methylation-associated nomogram predicts the overall survival of osteosarcoma. Medicine (Baltimore) 2020; 99:e23772. [PMID: 33371144 PMCID: PMC7748315 DOI: 10.1097/md.0000000000023772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022] Open
Abstract
Numerous reports have demonstrated that DNA methylation may be underlying prognostic biomarkers of cancer. However, few studies indicated that DNA methylation was independent biomarker for osteosarcoma prognosis. We aimed to discover and validate a novel DNA methylation signature for prediction of osteosarcoma patients' overall survival (OS).The DNA methylation data of osteosarcoma patients was researched from The Cancer Genome Atlas (TCGA) database. Overall, 80 samples with 485,577 DNA methylation sites were enrolled in our study. The 80 samples were randomly allocated into training dataset (first two-thirds) and validation dataset (remaining one-third). Initially, the univariate Cox proportional hazard analysis was performed in the training dataset to determine methylation sites significantly (P < .05) relevant to osteosarcoma patients' OS as underlying indicators. Subsequently, the underlying indicators were employed to carry out the least absolute shrinkage and selection operator (LASSO) Cox regression analysis for further selecting the candidate methylation sites. Then, the selected candidate methylation sites were employed as covariates to perform multivariate Cox proportional hazard model for identifying the predictor of OS in osteosarcoma patients. The validation dataset was used to validate the predictive accuracy by receiver operating characteristic (ROC) analysis and Kaplan-Meier survival analysis.We discovered a 7-DNA methylation signature closely relevant to OS of osteosarcoma patients. AUC at 1, 3, 5 years in training dataset (0.951, 0.922, 0.925, respectively), testing dataset (0.952, 0.918, 0.925, respectively), and entire dataset (0.952, 0.968, 0.968, respectively). Suggesting high predictive values for OS of osteosarcoma patients. In addition, a methylation-associated nomogram suggested good predictive value and clinical application.We discovered and validated a novel 7-DNA methylation-associated nomogram for predicting OS of osteosarcoma patients.
Collapse
Affiliation(s)
- Jun Shi
- Department of Orthopeadic Surgery, People's Hospital of Dongxihu District, Wuhan, Hubei
| | - Daijuan Huang
- Department of Nuclear Medicine
- Hubei Province Key Laboratory of Molecular Imaging
| | - Gao Zhang
- Department of Oncology, General Hospital of Central Theater Command of Chinese People's Liberation Army
| | - Feng Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Yang
- Department of Orthopeadic Surgery, People's Hospital of Dongxihu District, Wuhan, Hubei
| |
Collapse
|
3
|
Cheng JP, Huang B, Duan JH, Yi KJ, Zhuang ZL. miR-4295 promotes cell proliferation, migration and invasion of osteosarcoma through targeting interferon regulatory factor 1. Oncol Lett 2020; 20:260. [PMID: 32989394 PMCID: PMC7517570 DOI: 10.3892/ol.2020.12123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/23/2020] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma (OS) is the most common form of primary malignant bone tumor. Despite encouraging progress in the treatment of OS, the survival rate for patients with OS has remained unchanged over the past 40 years. It has been established that miRNA plays a crucial regulatory role in the progression and development of OS. To explore the potential association of miRNAs with OS, bioinformatics techniques were used to screen for differentially expressed miRNA genes in OS in the Gene Expression Omnibus database. In the GSE70367 database, it was revealed that miR-4295 expression was abnormally elevated in the expression of OS cells. To characterize the potential function of miR-4295 in OS, the expression levels of miR-4295 in 30 samples of OS and adjacent normal tissues was examined. The results revealed that the expression of miR-4295 was significantly increased in OS tissues compared with the paired normal tissues. Moreover, the expression levels of miR-4295 in OS cell lines (MG-63 and Saos-2) were significantly higher compared with those in the normal human mesenchymal stem cells. In addition, miR-4295 was associated with OS cell proliferation, migration and invasion. Furthermore, it was demonstrated that the expression of interferon regulatory factor (IRF)1, a tumor suppressor, was regulated by miR-4295 directly in OS cells. Taken together, the present results revealed that miR-4295 may act as a tumor activator by targeting IRF1 during the progression of OS. Investigating miR-4295 may provide novel insight into the mechanisms of OS metastasis, and inhibition and targeting miR-4295 may be a novel therapeutic strategy for the treatment of OS.
Collapse
Affiliation(s)
- Jin Pei Cheng
- Department of Orthopaedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Bin Huang
- Department of Orthopaedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Jun Hu Duan
- Department of Orthopaedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Kai Jun Yi
- Department of Orthopaedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Zheng Ling Zhuang
- Department of Orthopaedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
4
|
Hosseini A, Mirzaei A, Salimi V, Jamshidi K, Babaheidarian P, Fallah S, Rampisheh Z, Khademian N, Abdolvahabi Z, Bahrabadi M, Ibrahimi M, Hosami F, Tavakoli-Yaraki M. The local and circulating SOX9 as a potential biomarker for the diagnosis of primary bone cancer. J Bone Oncol 2020; 23:100300. [PMID: 32551218 PMCID: PMC7292907 DOI: 10.1016/j.jbo.2020.100300] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/02/2023] Open
Abstract
The SOX9 expression increased in tumor tissues and peripheral blood of malignant and benign bone tumors. The protein level of SOX9 is enhanced in malignant bone tumor tissues. SOX9 over-expression correlated with tumor severity, grade, invasion feature, poor response to therapy, and recurrence.
Purpose The status of the local and circulating SOX9, a master regulator of the tumor fate, and its relevance to tumor types, severity, invasion feature, response to therapy, and chemotherapy treatment were surveyed in bone cancer in the current study. Methods The SOX9 expression level was evaluated in tissue and peripheral blood mononuclear cells from patients with different types of malignant and benign bone tumors also tumor margin tissues using Real-Time PCR. The protein level of SOX9 was assessed using immunohistochemistry and western blot analysis. Also, the correlations of the SOX9 expression level with the patient’s clinical and pathological features were considered. Results The remarkable overexpression of SOX9 was detected in bone tumors compared to tumor margin tissues (P < 0.0001). Malignant bone tumors revealed a higher expression of SOX9 compared to benign tumors (P < 0.0001) while osteosarcoma tumors showed higher expression levels compared to Ewing sarcoma, and chondrosarcoma. Overexpression of SOX9 was observed in high grade, metastatic, recurrent tumors also tumors with poor response to therapy. Besides, the patients under the chemotherapy treatment demonstrated higher levels of SOX9 compared to the rest of malignant tumors (P = 0.02). The simultaneous up-regulation of circulating SOX9 in the patients with bone cancer was observed compared to healthy individuals (P < 0.0001) accompanying with overexpression of SOX9 in malignant tumors compared to benign tumors (P < 0.0001). The circulating SOX9 expression was up-regulated in the patients with malignant bone tumors who receive chemotherapy treatment also patients with high grade, metastatic, recurrent tumors. The protein level of SOX9 was in line with our data on the SOX9 gene expression. Conclusion The simultaneous overexpression of local and circulating SOX9 in bone cancer besides its positive correlation with tumor severity, malignancy, size, and chemotherapy may deserve receiving more attention in bone cancer diagnosis and therapy.
Collapse
Key Words
- Benign bone tumors
- Bone cancer
- CPP, C - reactive protein test
- CSC marker
- CSC, cancer stem cell
- DAB, 3, 3′-diaminobenzidine
- ESR, erythrocyte sedimentation rate
- FBS, fasting blood sugar
- FOXO1, Forkhead Box O1
- FOXO3, Forkhead Box O3
- GCT, giant cell tumor
- HB, memoglobin
- LDL, low-density lipoprotein
- MSC, multipotent stem cells
- Malignant bone tumors
- OCT, optimal cutting temperature
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate-buffered saline
- PMSF, phenylmethylsulfonyl fluoride
- PVDF, polyvinylidene difluoride
- RBC, red blood cell
- SEM, standard error mean
- SOX9
- SOX9, SRY-Box Transcription Factor 9
- WBC, white blood cells
Collapse
Affiliation(s)
- Ameinh Hosseini
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Khodamorad Jamshidi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Babaheidarian
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Rampisheh
- Preventive Medicine and Public Health Research Center, Department of Community Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Khademian
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Abdolvahabi
- Department of Biochemistry and Genetics, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehrdad Bahrabadi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Ibrahimi
- Department of Clinical Biochemistry, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Hosami
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ma C, Nie ZK, Guo HM, Kong Y. MiR-671-5p plays a promising role in restraining osteosarcoma cell characteristics through targeting TUFT1. J Biochem Mol Toxicol 2020; 34:e22490. [PMID: 32115852 DOI: 10.1002/jbt.22490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/14/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
The aim of our study was to explore the roles of miR-671-5p in mediating biological processes of osteosarcoma (OS) cells and clinical implications. On the basis of the OS samples acquired from the GEO database, the expression difference and overall survival analyses of miR-671-5p and TUFT1 were determined. The expression of MiR-671-5p was verified using OS cell lines. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound-healing, and Transwell assays were respectively carried out to probe whether miR-671-5p regulated OS cell vitality, migration, and invasion. The expression of miR-671-5p was downregulated in OS tissues and cell lines. High expression of MiR-671-5p blocked OS cell growth, migration, and invasion. TUFT1 was predicted and validated as the target of miR-671-5p in OS cells using in silico analysis and luciferase reporter assays. Forced expression of TUFT1 reversed the suppressive influence of miR-671-5p on cell viability, migration, and invasion of OS cells. Moreover, the low expression of miR-671-5p and the high expression of TUFT1 led to poor prognosis. Taken together, targeting miR-671-5p/TUFT1 may be a promising strategy for treating OS.
Collapse
Affiliation(s)
- Cao Ma
- Department of Bone and Joint Surgery, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Zhi-Kui Nie
- Department of Bone and Joint Surgery, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Hong-Min Guo
- Department of Bone and Joint Surgery, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Yao Kong
- Department of Bone and Joint Surgery, Jining No. 1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
6
|
Yang W, Qi YB, Si M, Hou Y, Nie L. A comprehensive analysis for associations between multiple microRNAs and prognosis of osteosarcoma patients. PeerJ 2020; 8:e8389. [PMID: 31998559 PMCID: PMC6977468 DOI: 10.7717/peerj.8389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common malignant primary bone tumor occurring in children and young adults, which occupies the second important cause of tumor-associated deaths among children and young adults. Recent studies have demonstrated that many microRNAs (miRNAs) have abnormal expression in OS, and can function as prognostic factors of OS patients. However, no previous studies have comprehensively analyzed the relationship between multiple miRNAs and prognosis of OS patients. Methods A total of 63 OS patients were retrospectively enrolled. The clinical characteristics were collected, and the expression levels of miRNA-21, miRNA-30c, miRNA-34a, miRNA-101, miRNA-133a, miRNA-214, miRNA-218, miRNA-433 and miRNA-539 in tumor tissues were measured through quantitative real-time polymerasechain reaction. Kaplan–Meier analysis was used to perform univariate survival analysis, and Cox regression model was used to perform multivariate survival analysis which included the variables with P < 0.1 in univariate survival analysis. Results The cumulative survival for 1, 2 and 5 years was 90.48%, 68.25% and 38.10%, respectively, and mean survival time was (45.39 ± 3.60) months (95% CI [38.34–52.45]). Kaplan–Meier analysis demonstrated that TNM stage, metastasis or recurrence, miRNA-21, miRNA-214, miRNA-34a, miRNA-133a and miRNA-539 were correlated with cum survival, but gender, age, tumor diameter, differentiation, miRNA-30c, miRNA-433, miRNA-101 and miRNA-218 were not. Multivariate survival analysis demonstrated that miRNA-21 (hazard ratio (HR): 3.457, 95% CI [2.165–11.518]), miRNA (HR: 3.138, 95% CI [2.014–10.259]), miRNA-34a (HR: 0.452, 95% CI [0.202–0.915]), miRNA-133a (HR: 0.307, 95% CI [0.113–0.874]) and miRNA-539 (HR: 0.358, 95% CI [0.155–0.896]) were independent prognostic markers of OS patients after adjusting for TNM stage (HR: 2.893, 95% CI [1.496–8.125]), metastasis or recurrence (HR: 3.628, 95% CI [2.217–12.316]) and miRNA-30c (HR: 0.689, 95% CI [0.445–1.828]). Conclusions High expression of miRNA-21 and miRNA-214 and low expression of miRNA-34a, miRNA-133a and miRNA-539 were associated with poor prognosis of OS patients after adjusting for TNM stage, metastasis or recurrence and miRNA-30c.
Collapse
Affiliation(s)
- Wen Yang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.,Department of Spinal Surgery, Heze Municipal Hospital, Heze, Shandong Province, China
| | - Yu-Bin Qi
- Department of Orthopaedics, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
| | - Meng Si
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yong Hou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Lin Nie
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
7
|
Zhang C, Wan J, Long F, Liu Q, He H. Identification and validation of microRNAs and their targets expressed in osteosarcoma. Oncol Lett 2019; 18:5628-5636. [PMID: 31656545 DOI: 10.3892/ol.2019.10864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of bone cancer in children and adolescents, and has a poor prognosis. Previous studies have demonstrated that a number of microRNAs (miRNAs) were deregulated in OS, and that the expression of certain miRNAs was correlated with the stage of OS. Therefore, miRNAs may serve a role as a diagnostic and prognostic biomarker of OS. miRNA and mRNA integrated analysis of public expression profiles in the Gene Expression Omnibus database for OS was performed, and the regulated targets of miRNA in OS were predicted. Next, the regulatory network of miRNAs/genes was constructed and verified by reverse transcription-quantitative polymerase chain reaction in tissues and MG-63 cell lines. Two miRNA expression profiling studies and four eligible mRNA expression profiling studies were selected. Ten upregulated miRNAs, 5 downregulated miRNAs and 5 DGEs were identified in OS compared with normal tissues. hsa-miR-346 was inversely correlated with the target gene c-FLIP, which was consistent with the results of integrated analysis. In vitro, pre-miRNA-346 can downregulate the protein expression of c-FLIP, while not changing the mRNA level of c-FLIP. In the regulatory network, hsa-miR-346 and its target gene, c-FLIP, can be used as biomarkers for an earlier diagnosis of OS.
Collapse
Affiliation(s)
- Can Zhang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun Wan
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Feng Long
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Qing Liu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongbo He
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
8
|
Clinical significance of serum soluble B7-H3 in patients with osteosarcoma. Cancer Cell Int 2018; 18:115. [PMID: 30123093 PMCID: PMC6090643 DOI: 10.1186/s12935-018-0614-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/09/2018] [Indexed: 02/08/2023] Open
Abstract
Background Increasing data has indicated an association between increased soluble B7-H3 (sB7-H3) levels and unfavorable prognosis in patients with malignancies. However, the level of sB7-H3 and its clinical significance in osteosarcoma (OS) are not well known. In this present study, we investigated whether sB7-H3 levels in serum could be as a tool for differential diagnosis of OS patients. Methods Peripheral blood samples from healthy controls, benign bone tumors, and OS patients were collected. Levels of sB7-H3 in serum samples were measured by enzyme-linked immunosorbent assays. The correlation between OS-derived sB7-H3 and clinical features was analyzed, and prognostic significance of the sB7-H3 concentrations and tumor expressions of the biomarkers was then evaluated. Results sB7-H3 concentrations were significantly increased in patients with OS than in osteochondroma patients, bone fibrous dysplasia patients and healthy people (p < 0.05, respectively). Using 60.94 ng/mL as a cutoff value, the sensitivity and specificity of sB7-H3 was to differentiate between OS patients and other bone benign tumor patients were 75.7% and 83.8%, respectively. In addition, upregulated serum sB7-H3 in patients with OS associated with tumor differentiation, tumor stage, and metastasis status (p < 0.05, respectively). The area under the curve value for sB7-H3 (0.868) was markedly higher than those for ALP (0.713) and CA125 (0.789) for differentiating between OS patients and other begin bone tumor patients. Conclusions We demonstrated that enhanced sB7-H3 levels correlated with the clinical characteristics of OS patients, and B7-H3 might be a potential biomarker and associated with the pathogenesis of OS.
Collapse
|
9
|
Yuan G, Zhao Y, Wu D, Gao C, Jiao Z. miRNA-20a upregulates TAK1 and increases proliferation in osteosarcoma cells. Future Oncol 2018; 14:461-469. [PMID: 29327611 DOI: 10.2217/fon-2017-0490] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM The aim of this study is to explore the function of miR-20a in osteosarcoma. MATERIALS & METHODS miR-20a expression was measured by real-time PCR. miR-20a mimics, inhibitor and scramble siRNA were transfected into osteosarcoma cells to observe effects on colony formation and tumor growth. Moreover, relationships of miR-20a with TAK1 were investigated by western blot and luciferase activity. RESULTS We found that miR-20a was downregulated in osteosarcoma, and overexpression of miR-20a reduced colony formation and tumor growth. Furthermore, the data revealed that the function of miR-20a was probably exerted via targeting the TAK1 expression. Overexpression of miR-20a sensitizes the osteosarcoma cells to chemotherapeutic drugs. CONCLUSION Our data identify the role of miR-20a in osteosarcoma growth, indicating its potential application in chemotherapy.
Collapse
Affiliation(s)
- Guangke Yuan
- Department of Orthopedics, The Second Hospital of Shandong University, Shandong University, NO 247, Beiyuan Street, Jinan 250000, China.,Department of Orthopedics, Yidu Central Hospital of Weifang, South Linglongshan Road, NO 4138, Weifang 262500, China
| | - Yanqing Zhao
- Department of Orthopedics, Yidu Central Hospital of Weifang, South Linglongshan Road, NO 4138, Weifang 262500, China
| | - Dongjin Wu
- Department of Orthopedics, The Second Hospital of Shandong University, Shandong University, NO 247, Beiyuan Street, Jinan 250000, China
| | - Chunzheng Gao
- Department of Orthopedics, The Second Hospital of Shandong University, Shandong University, NO 247, Beiyuan Street, Jinan 250000, China
| | - Zhaode Jiao
- Department of Orthopedics, Yidu Central Hospital of Weifang, South Linglongshan Road, NO 4138, Weifang 262500, China
| |
Collapse
|