1
|
Yao N, Sun S. Hydrophilic Glyceryl Ferulates Preparation Catalyzed by Free Lipase B from Candida antartica. J Oleo Sci 2020; 69:43-53. [PMID: 31902894 DOI: 10.5650/jos.ess19283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ferulic acid (FA), 4-hydroxyl-3-methoxy-2-benzylacrylic acid, has antioxidant, anticancer and ultraviolet absorption activities. However, the low hydrophilicity of FA has limited its application. Glyceryl ferulate (FG), which is an all-natural hydrophilic derivative of FA, can be used as an antioxidant and UV filter in food and cosmetic formulations. However, the applications of FG in these fields are limited due to its low content in nature. In this work, free liquid lipase was firstly used as a catalyst for FG preparation. Several different free liquid lipases (Candida antartica lipase-B, Candida antartica lipase-A, Thermomyces lanuginosus (Lipozyme TL 100L)) were screened and compared. The effects of the transesterification parameters (time, temperature, enzyme load and substrate ratio) were optimized and evaluated by response surface methodology. A reaction thermodynamic investigation was also performed. The results showed that, among the tested free lipases, the maximum FG yield (84.8±1.5%) was achieved using free Candida antartica lipase-B. Under the optimized conditions (an atmospheric system, an enzyme load of 11.1% and a 20:1 molar ratio of glycerol to EF at 70°C for 39.5 h), the FG yield and EF conversion were 84.8±1.5% and 95.7±1.2%, respectively. The activation energies of FG formation and EF conversion were 56.4 and 58.0kJ/mol, respectively.
Collapse
Affiliation(s)
- Ning Yao
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology
| | - Shangde Sun
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology
| |
Collapse
|
2
|
Enhanced synthesis of feruloylated acylglycerols by the lipase-catalyzed transesterification of glyceryl monoferulate with different acyl donors using ionic liquids as reaction solvents. J Biotechnol 2018; 280:31-37. [DOI: 10.1016/j.jbiotec.2018.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 11/18/2022]
|
3
|
Sun S, Hou X, Zhou W. Effect of ionic liquids on enzymatic preparation of lipophilic feruloylated structured lipids using distearin as feruloylated acceptor and kinetic analysis. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Sankar K, Achary A. Synthesis of Feruloyl Ester Using Bacillus subtilis AKL 13 Lipase Immobilized on Celite® 545. Food Technol Biotechnol 2018. [PMID: 29540988 DOI: 10.17113/ftb.55.04.17.5331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The lipophilic antioxidants, glyceryl ferulate and feruloyl glyceryl linoleate, were synthesized using lipase from Bacillus subtilis AKL 13. The extracellular lipase was produced by cultivation of the strain in modified minimal medium and the enzyme was recovered by fractionation at 80% ammonium salt saturation. The concentrated enzyme with the specific activity of (4647±66) U/mg was immobilized on Celite® 545 and crosslinked using glutaraldehyde. The prepared enzyme catalyst was used for esterification of ferulic and linoleic acids with glycerol separately in hexane butane solvent system at 50 °C and 3.144×g agitation. The maximum ester conversion of 94% of feruloyl glyceryl linoleate was achieved at 48 h, whereas only 35% of glyceryl ferulate was synthesized. The reaction products were characterized using RP-HPLC, FTIR, 1H NMR, 13C NMR and fluorescence spectrophotometry. The kinetic parameters of esterification reaction were determined according to ping-pong bi-bi model. The Km and υmax were found to be 69.37 and 3.46 mmol, and 0.387 and 1.02 mmol/(min·g) for glyceryl ferulate and feruloyl glyceryl linoleate, respectively. The kinetic parameters were simulated in MATLAB and the experimental data were in good agreement. Furthermore, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of the blend of feruloyl ester and palm oil was higher than of the plain palm oil and was closer to α-tocopherol.
Collapse
Affiliation(s)
- Karthikumar Sankar
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology,
S.P.G.C. Nagar, 625701 K. Vellakulam, Near Virudhunagar, Madurai District, Tamil Nadu, India
| | - Anant Achary
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology,
S.P.G.C. Nagar, 625701 K. Vellakulam, Near Virudhunagar, Madurai District, Tamil Nadu, India
| |
Collapse
|
5
|
Antonopoulou I, Varriale S, Topakas E, Rova U, Christakopoulos P, Faraco V. Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application. Appl Microbiol Biotechnol 2016; 100:6519-6543. [PMID: 27276911 PMCID: PMC4939304 DOI: 10.1007/s00253-016-7647-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
Cosmeceuticals are cosmetic products containing biologically active ingredients purporting to offer a pharmaceutical therapeutic benefit. The active ingredients can be extracted and purified from natural sources (botanicals, herbal extracts, or animals) but can also be obtained biotechnologically by fermentation and cell cultures or by enzymatic synthesis and modification of natural compounds. A cosmeceutical ingredient should possess an attractive property such as anti-oxidant, anti-inflammatory, skin whitening, anti-aging, anti-wrinkling, or photoprotective activity, among others. During the past years, there has been an increased interest on the enzymatic synthesis of bioactive esters and glycosides based on (trans)esterification, (trans)glycosylation, or oxidation reactions. Natural bioactive compounds with exceptional theurapeutic properties and low toxicity may offer a new insight into the design and development of potent and beneficial cosmetics. This review gives an overview of the enzymatic modifications which are performed currently for the synthesis of products with attractive properties for the cosmeceutical industry.
Collapse
Affiliation(s)
- Io Antonopoulou
- Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Simona Varriale
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Evangelos Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 15700, Athens, Greece
| | - Ulrika Rova
- Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Paul Christakopoulos
- Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
6
|
Sun S, Hu B, Qin F, Bi Y. Comparative Study of Soybean Oil and the Mixed Fatty Acids as Acyl Donors for Enzymatic Preparation of Feruloylated Acylglycerols in Ionic Liquids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7261-7269. [PMID: 26194470 DOI: 10.1021/acs.jafc.5b03479] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Feruloylated acylglycerols (FAGs) are the lipophilic derivatives of ferulic acid. In this work, soybean oil (SBO) and the mixed fatty acids (MFA) were selected as fatty acyl donors, and reacted with glyceryl monoferulate (GMF) to prepare FAGs in ionic liquids (ILs). Effect of various reaction parameters (time, temperature, enzyme concentration, and substrate ratio) and ILs on the GMF conversion and the reaction selectivity for FAGs formation were investigated. Response surface methodology (RSM) based on a 3-level-4-factor Box-Behnken experimental design was employed to evaluate the inactive effect of reaction parameters. For the esterification of GMF with MFA, the maximum GMF conversion (98.9 ± 0.9%) and FAG yield (88.9 ± 0.6%) were achieved in [C10mim]PF6. However, for the transesterification of GMF with SBO, the maximum GMF conversion (94.3 ± 0.7%) and FAG yield (83.8 ± 1.0%) were obtained in [C12mim]PF6. High FAG selectivities (∼0.90) were also obtained using SBO or MFA as acyl donors.
Collapse
Affiliation(s)
- Shangde Sun
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Lianhua Road, Zhengzhou 450001, Henan Province, P. R. China
| | - Bingxue Hu
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Lianhua Road, Zhengzhou 450001, Henan Province, P. R. China
| | - Fei Qin
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Lianhua Road, Zhengzhou 450001, Henan Province, P. R. China
| | - Yanlan Bi
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Lianhua Road, Zhengzhou 450001, Henan Province, P. R. China
| |
Collapse
|
7
|
Chemo-enzymatic Synthesis, Derivatizations, and Polymerizations of Renewable Phenolic Monomers Derived from Ferulic Acid and Biobased Polyols: An Access to Sustainable Copolyesters, Poly(ester-urethane)s, and Poly(ester-alkenamer)s. ACTA ACUST UNITED AC 2015. [DOI: 10.1021/bk-2015-1192.ch004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
8
|
Sun S, Hu B, Song F, Bi Y. Ionic liquids improve the selective synthesis of hydrophilic glyceryl ferulates by the enzymatic transesterification of ethyl ferulate with monostearin: Comparison with organic solvents. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shangde Sun
- Lipid Technology and Engineering; School of Food Science and Engineering; Henan University of Technology; Zhengzhou Henan Province P. R. China
| | - Bingxue Hu
- Lipid Technology and Engineering; School of Food Science and Engineering; Henan University of Technology; Zhengzhou Henan Province P. R. China
| | - Fanfan Song
- Lipid Technology and Engineering; School of Food Science and Engineering; Henan University of Technology; Zhengzhou Henan Province P. R. China
| | - Yanlan Bi
- Lipid Technology and Engineering; School of Food Science and Engineering; Henan University of Technology; Zhengzhou Henan Province P. R. China
| |
Collapse
|
9
|
Sun S, Zhu S, Bi Y. Solvent-free enzymatic synthesis of feruloylated structured lipids by the transesterification of ethyl ferulate with castor oil. Food Chem 2014; 158:292-5. [PMID: 24731344 DOI: 10.1016/j.foodchem.2014.02.146] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 01/21/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
A novel enzymatic route of feruloylated structured lipids synthesis by the transesterification of ethyl ferulate (EF) with castor oil, in solvent-free system, was investigated. The transesterification reactions were catalysed by Novozym 435, Lipozyme RMIM, and Lipozyme TLIM, among which Novozym 435 showed the best catalysis performance. Effects of feruloyl donors, reaction variables, and ethanol removal on the transesterification were also studied. High EF conversion (∼100%) was obtained under the following conditions: enzyme load 20% (w/w, relative to the weight of substrates), reaction temperature 90 °C, substrate molar ratio 1:1 (EF/castor oil), 72 h, vacuum pressure 10 mmHg, and 200 rpm. Under these conditions, the transesterification product consisted of 62.6% lipophilic feruloylated structured lipids and 37.3% hydrophilic feruloylated lipids.
Collapse
Affiliation(s)
- Shangde Sun
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Lianhua Road, Zhengzhou 450001, Henan Province, PR China.
| | - Sha Zhu
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Lianhua Road, Zhengzhou 450001, Henan Province, PR China
| | - Yanlan Bi
- Lipid Technology and Engineering, School of Food Science and Engineering, Henan University of Technology, Lianhua Road, Zhengzhou 450001, Henan Province, PR China
| |
Collapse
|
10
|
Sun S, Zhou W. Enhanced Enzymatic Preparation of Lipophilic Feruloylated Lipids Using Distearin as Feruloyl Acceptors: Optimization by Response Surface Methodology. J Oleo Sci 2014; 63:1011-8. [DOI: 10.5650/jos.ess14095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Solvent-free enzymatic transesterification of ethyl ferulate and monostearin: Optimized by response surface methodology. J Biotechnol 2013; 164:340-5. [DOI: 10.1016/j.jbiotec.2013.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 11/21/2022]
|
12
|
Pion F, Reano AF, Ducrot PH, Allais F. Chemo-enzymatic preparation of new bio-based bis- and trisphenols: new versatile building blocks for polymer chemistry. RSC Adv 2013. [DOI: 10.1039/c3ra41247d] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Zorin VV, Petukhova NI, Shakhmaev RN. Promising directions for utilization of glycerol-containing waste from biodiesel fuel production. RUSS J GEN CHEM+ 2012. [DOI: 10.1134/s1070363212050362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Kikugawa M, Tsuchiyama M, Kai K, Sakamoto T. Synthesis of highly water-soluble feruloyl diglycerols by esterification of an Aspergillus niger feruloyl esterase. Appl Microbiol Biotechnol 2012; 95:615-22. [PMID: 22526804 DOI: 10.1007/s00253-012-4056-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
Ferulic acid (FA) is a component of plant cell walls that has applications in food, cosmetic, and health products, but its applications are limited by its high insolubility. We synthesized water-soluble FA derivatives by esterification of FA with diglycerol (DG) using feruloyl esterase purified from a commercial enzyme preparation produced by Aspergillus niger. The major reaction product, FA-DG1, was determined to be γ-feruloyl-α,α'-DG by NMR and electrospray ionization mass spectrometry analyses. FA-DG1 is a sticky liquid whose water solubility (>980 mg/ml) is dramatically higher than that of FA (0.69 mg/ml). Suitable conditions for esterification of FA with DG were 100 mg of FA in the presence of 1 g of DG and 0.1 ml of 1 M phosphate buffer (pH 6.0) at 50 °C under reduced pressure. Under these conditions, 168 mg of feruloyl DGs (FA-DG1, 2, and 3) was obtained, corresponding to a 95 % conversion rate of FA. We also developed a batch method which resulted in synthesis of 729 mg of feruloyl DGs and 168 mg of diferuloyl DGs from 600 mg of FA and 1 g of DG (corresponding to conversion of 69 % of the FA to feruloyl DGs and 21 % of the FA to diferuloyl DGs). As an anti-oxidant, feruloyl DGs were essentially equal to FA and butyl hydroxytoluene in scavenging 1,1-diphenyl-2-picrylhydrazyl radicals. In contrast, the scavenging abilities of diferuloyl DGs were twice those of feruloyl DGs.
Collapse
Affiliation(s)
- Masaki Kikugawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | | | | | | |
Collapse
|
15
|
Jala RCR, Hu P, Yang T, Jiang Y, Zheng Y, Xu X. Lipases as biocatalysts for the synthesis of structured lipids. Methods Mol Biol 2012; 861:403-433. [PMID: 22426731 DOI: 10.1007/978-1-61779-600-5_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Structured lipids (SL) are broadly referred to as modified or synthetic oils and fats or lipids with functional or pharmaceutical applications. Some structured lipids, such as triglycerides that contain both long-chain (mainly essential) fatty acids and medium- or short-chain fatty acids and also artificial products that mimic the structure of natural materials, namely human milk fat substitutes and cocoa butter equivalents, have been discussed. Further, other modified or synthetic lipids, such as structured phospholipids and synthetic phenolic lipids are also included in this chapter. For all the products described in this chapter, enzymatic production in industry has been already conducted in one way or another. Cocoa butter equivalents, healthy oil containing medium-chain fatty acids, phosphatidyl serine, and phenol lipids from enzyme technology have been reported for commercial operation. As the demand for better quality functional lipids is increasing, the production of structured lipids becomes an interesting area. Thus, in this chapter we have discussed latest developments as well as present industrial situation of all commercially important structured lipids.
Collapse
|
16
|
Yu Y, Zheng Y, Quan J, Wu CY, Wang YJ, Branford-White C, Zhu LM. Enzymatic Synthesis of Feruloylated Lipids: Comparison of the Efficiency of Vinyl Ferulate and Ethyl Ferulate as Substrates. J AM OIL CHEM SOC 2010. [DOI: 10.1007/s11746-010-1636-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Chemoenzymatic synthesis of feruloylated monoacyl- and diacyl-glycerols in ionic liquids. Biotechnol Lett 2009; 31:1885-9. [DOI: 10.1007/s10529-009-0086-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/06/2009] [Accepted: 07/08/2009] [Indexed: 11/25/2022]
|
18
|
Zheng Y, Wu XM, Branford-White C, Quan J, Zhu LM. Dual response surface-optimized process for feruloylated diacylglycerols by selective lipase-catalyzed transesterification in solvent free system. BIORESOURCE TECHNOLOGY 2009; 100:2896-2901. [PMID: 19254838 DOI: 10.1016/j.biortech.2009.01.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/23/2009] [Accepted: 01/23/2009] [Indexed: 05/27/2023]
Abstract
Feruloylated diacylglycerol (FDAG) was synthesized using a selective lipase-catalyzed the transesterification between ethyl ferulate and triolein. To optimize the reaction conversion and purity of FDAG, dual response surface was applied to determine the effects of five-level-five-factors and their reciprocal interactions on product synthesis. A total of 32 individual experiments were performed to study reaction temperature, reaction time, substrate molar ratio, enzyme loading, and water activity. The highest reaction conversion and selectivity towards FDAG were 73.9% and 92.3%, respectively, at 55 degrees C, reaction time 5.3 day, enzyme loading 30.4 mg/ml, water activity 0.08, and a substrate molar ratio of 3.7. Moreover, predicted values showed good validation with the experimental values when experiments corresponding to selected points on the contour plots were carried out.
Collapse
Affiliation(s)
- Yan Zheng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | | | | | | | | |
Collapse
|
19
|
Compton DL, Laszlo JA. 1,3-Diferuloyl-sn-glycerol from the biocatalytic transesterification of ethyl 4-hydroxy-3-methoxy cinnamic acid (ethyl ferulate) and soybean oil. Biotechnol Lett 2009; 31:889-96. [PMID: 19238329 DOI: 10.1007/s10529-009-9952-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 02/06/2009] [Indexed: 11/24/2022]
Abstract
1,3-Diferuloyl-sn-glycerol is found ubiquitously throughout the plant kingdom, possessing ultraviolet adsorbing and antioxidant properties. Diferuloyl glycerol was synthesized and isolated as a byproduct in up to 5% yield from a pilot plant scale packed-bed, biocatalytic transesterification of ethyl ferulate with soybean oil or mono- and diacylglycerols from soybean oil. The yield of the diferuloyl glycerol byproduct was directly proportional to the overall water concentration of the bioreactor. The isolated diferuloyl glycerol exhibited good ultraviolet adsorbing properties, 280-360 nm with a lambda(max) 322 nm, and compared well to the efficacy of commercial sunscreen active ingredients. The antioxidant capacity of diferuloyl glycerol (0.25-2.5 mM) was determined by its ability to scavenge 2,2-diphenyl-1-picrylhydrazyl radicals and was comparable to that of ferulic acid. At current pilot plant scale production capacity, 120 kg diferuloyl glycerol byproduct could be isolated per year.
Collapse
Affiliation(s)
- David L Compton
- New Crops and Processing Technology Research Unit, Agricultural Research Service, National Center for Agricultural Utilization Research, US Department of Agriculture, 1815 N University St., Peoria, IL 61604, USA.
| | | |
Collapse
|
20
|
Sun S, Shan L, Liu Y, Jin Q, Song Y, Wang X. Solvent-free enzymatic synthesis of feruloylated diacylglycerols and kinetic study. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
|
22
|
Zheng Y, Quan J, Zhu LM, Jiang B, Nie HL. Optimization of Selective Lipase-Catalyzed Feruloylated Monoacylglycerols by Response Surface Methodology. J AM OIL CHEM SOC 2008. [DOI: 10.1007/s11746-008-1248-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Sun SD, Shan L, Liu YF, Jin QZ, Zhang LX, Wang XG. Solvent-free enzymatic preparation of feruloylated monoacylglycerols optimized by response surface methodology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:442-447. [PMID: 18092748 DOI: 10.1021/jf0728911] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The ability of immobilized lipase B from Candida antarctica (Novozym 435) to catalyze the direct esterification of glyceryl ferulate (FG) and oleic acid for feruloylated monoacylglycerols (FMAG) preparation in a solvent-free system was investigated. Enzyme screening and the effect of glycerol on the initial reaction rate of esterification were also investigated. Response surface methodology (RSM) was used to optimize the effects of the reaction temperature (55-65 degrees C), the enzyme load (8-14%; relative to the weight of total substrates), oleic acid/(FG + glycerol) (6:1-9:1; w/w), and the reaction time (1-2 h) on the conversion of FG and yield of FMAG. Validation of the RSM model was verified by the good agreement between the experimental and the predicted values of FG conversion and FMAG yield. The optimum preparation conditions were as follows: temperature, 60 degrees C; enzyme load, 8.2%; substrate ratio, 8.65:1 (oleic acid/(FG + glycerol), w/w); and reaction time, 1.8 h. Under these conditions, the conversion of FG and yield of FMAG are 96.7 +/- 1.0% and 87.6 +/- 1.2%, respectively.
Collapse
Affiliation(s)
- Shang-De Sun
- School of Food Science and Technology, Jiangnan University, State Key Laboratory of Food Science and Safety, 1800 Lihu Road, Wuxi 214122, Jiangsu Province, PR China
| | | | | | | | | | | |
Collapse
|