1
|
Nakazawa T, Kawauchi M, Otsuka Y, Han J, Koshi D, Schiphof K, Ramírez L, Pisabarro AG, Honda Y. Pleurotus ostreatus as a model mushroom in genetics, cell biology, and material sciences. Appl Microbiol Biotechnol 2024; 108:217. [PMID: 38372792 PMCID: PMC10876731 DOI: 10.1007/s00253-024-13034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Pleurotus ostreatus, also known as the oyster mushroom, is a popular edible mushroom cultivated worldwide. This review aims to survey recent progress in the molecular genetics of this fungus and demonstrate its potential as a model mushroom for future research. The development of modern molecular genetic techniques and genome sequencing technologies has resulted in breakthroughs in mushroom science. With efficient transformation protocols and multiple selection markers, a powerful toolbox, including techniques such as gene knockout and genome editing, has been developed, and numerous new findings are accumulating in P. ostreatus. These include molecular mechanisms of wood component degradation, sexual development, protein secretion systems, and cell wall structure. Furthermore, these techniques enable the identification of new horizons in enzymology, biochemistry, cell biology, and material science through protein engineering, fluorescence microscopy, and molecular breeding. KEY POINTS: • Various genetic techniques are available in Pleurotus ostreatus. • P. ostreatus can be used as an alternative model mushroom in genetic analyses. • New frontiers in mushroom science are being developed using the fungus.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuitsu Otsuka
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Junxian Han
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Daishiro Koshi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Kim Schiphof
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
2
|
Kurebayashi K, Nakazawa T, Shivani, Higashitarumizu Y, Kawauchi M, Sakamoto M, Honda Y. Visualizing organelles with recombinant fluorescent proteins in the white-rot fungus Pleurotus ostreatus. Fungal Biol 2023; 127:1336-1344. [PMID: 37993245 DOI: 10.1016/j.funbio.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 11/24/2023]
Abstract
White-rot fungi secrete numerous enzymes involved in lignocellulose degradation. However, the secretory mechanisms or pathways, including protein synthesis, folding, modification, and traffic, have not been well studied. In the first place, few experimental tools for molecular cell biological studies have been developed. As the first step toward investigating the mechanisms underlying protein secretion, this study visualized organelles and transport vesicles involved in secretory mechanisms with fluorescent proteins in living cells of the white-rot fungus Pleurotus ostreatus (agaricomycete). To this end, each plasmid containing the expression cassette for fluorescent protein [enhanced green fluorescent protein (EGFP) or mCherry] fused with each protein that may be localized in the endoplasmic reticulum (ER), Golgi, or secretory vesicles (SVs) was introduced into P. ostreatus strain PC9. Fluorescent microscopic analyses of the obtained hygromycin-resistant transformants suggested that Sec13-EGFP and Sec24-EGFP visualize the ER; Sec24-EGFP, mCherry-Sed5, and mCherry-Rer1 visualize the compartment likely corresponding to early Golgi and/or the ER-Golgi intermediate compartment; EGFP/mCherry-pleckstrin homology (PH) visualizes possible late Golgi; and EGFP-Seg1 and mCherry-Rab11 visualize SVs. This study successfully visualized mitochondria and nuclei, thus providing useful tools for future molecular cell biological studies on lignocellulose degradation by P. ostreatus. Furthermore, some differences in the Golgi compartment or apparatus and the ER-Golgi intermediate of P. ostreatus compared to other fungi were also suggested.
Collapse
Affiliation(s)
- Kazuhiro Kurebayashi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shivani
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuta Higashitarumizu
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
3
|
Benatti ALT, Polizeli MDLTDM. Lignocellulolytic Biocatalysts: The Main Players Involved in Multiple Biotechnological Processes for Biomass Valorization. Microorganisms 2023; 11:microorganisms11010162. [PMID: 36677454 PMCID: PMC9864444 DOI: 10.3390/microorganisms11010162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
Human population growth, industrialization, and globalization have caused several pressures on the planet's natural resources, culminating in the severe climate and environmental crisis which we are facing. Aiming to remedy and mitigate the impact of human activities on the environment, the use of lignocellulolytic enzymes for biofuel production, food, bioremediation, and other various industries, is presented as a more sustainable alternative. These enzymes are characterized as a group of enzymes capable of breaking down lignocellulosic biomass into its different monomer units, making it accessible for bioconversion into various products and applications in the most diverse industries. Among all the organisms that produce lignocellulolytic enzymes, microorganisms are seen as the primary sources for obtaining them. Therefore, this review proposes to discuss the fundamental aspects of the enzymes forming lignocellulolytic systems and the main microorganisms used to obtain them. In addition, different possible industrial applications for these enzymes will be discussed, as well as information about their production modes and considerations about recent advances and future perspectives in research in pursuit of expanding lignocellulolytic enzyme uses at an industrial scale.
Collapse
|
4
|
Lübeck M, Lübeck PS. Fungal Cell Factories for Efficient and Sustainable Production of Proteins and Peptides. Microorganisms 2022; 10:753. [PMID: 35456803 PMCID: PMC9025306 DOI: 10.3390/microorganisms10040753] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 01/12/2023] Open
Abstract
Filamentous fungi are a large and diverse taxonomically group of microorganisms found in all habitats worldwide. They grow as a network of cells called hyphae. Since filamentous fungi live in very diverse habitats, they produce different enzymes to degrade material for their living, for example hydrolytic enzymes to degrade various kinds of biomasses. Moreover, they produce defense proteins (antimicrobial peptides) and proteins for attaching surfaces (hydrophobins). Many of them are easy to cultivate in different known setups (submerged fermentation and solid-state fermentation) and their secretion of proteins and enzymes are often much larger than what is seen from yeast and bacteria. Therefore, filamentous fungi are in many industries the preferred production hosts of different proteins and enzymes. Edible fungi have traditionally been used as food, such as mushrooms or in fermented foods. New trends are to use edible fungi to produce myco-protein enriched foods. This review gives an overview of the different kinds of proteins, enzymes, and peptides produced by the most well-known fungi used as cell factories for different purposes and applications. Moreover, we describe some of the challenges that are important to consider when filamentous fungi are optimized as efficient cell factories.
Collapse
Affiliation(s)
- Mette Lübeck
- Department of Chemistry and Bioscience, Aalborg University, DK-9100 Aalborg, Denmark;
| | | |
Collapse
|
5
|
Yan S, Xu Y, Yu XW. From induction to secretion: a complicated route for cellulase production in Trichoderma reesei. BIORESOUR BIOPROCESS 2021; 8:107. [PMID: 38650205 PMCID: PMC10991602 DOI: 10.1186/s40643-021-00461-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
The filamentous fungus Trichoderma reesei has been widely used for cellulase production that has extensive applications in green and sustainable development. Increasing costs and depletion of fossil fuels provoke the demand for hyper-cellulase production in this cellulolytic fungus. To better manipulate T. reesei for enhanced cellulase production and to lower the cost for large-scale fermentation, it is wise to have a comprehensive understanding of the crucial factors and complicated biological network of cellulase production that could provide new perspectives for further exploration and modification. In this review, we summarize recent progress and give an overview of the cellular process of cellulase production in T. reesei, including the carbon source-dependent cellulase induction, complicated transcriptional regulation network, and efficient protein assembly and trafficking. Among that, the key factors involved in cellulase production were emphasized, shedding light on potential perspectives for further engineering.
Collapse
Affiliation(s)
- Su Yan
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiao-Wei Yu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
6
|
Sukumaran RK, Christopher M, Kooloth-Valappil P, Sreeja-Raju A, Mathew RM, Sankar M, Puthiyamadam A, Adarsh VP, Aswathi A, Rebinro V, Abraham A, Pandey A. Addressing challenges in production of cellulases for biomass hydrolysis: Targeted interventions into the genetics of cellulase producing fungi. BIORESOURCE TECHNOLOGY 2021; 329:124746. [PMID: 33610429 DOI: 10.1016/j.biortech.2021.124746] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic materials are the favoured feedstock for biorefineries due to their abundant availability and non-completion with food. Biobased technologies for refining these materials are limited mainly by the cost of biomass hydrolyzing enzymes, typically sourced from filamentous fungi. Therefore, considerable efforts have been directed at improving the quantity and quality of secreted lignocellulose degrading enzymes from fungi in order to attain overall economic viability. Process improvements and media engineering probably have reached their thresholds and further production enhancements require modifying the fungal metabolism to improve production and secretion of these enzymes. This review focusses on the types and mechanisms of action of known fungal biomass degrading enzymes, our current understanding of the genetic control exerted on their expression, and possible routes for intervention, especially on modulating catabolite repression, transcriptional regulators, signal transduction, secretion pathways etc., in order to improve enzyme productivity, activity and stability.
Collapse
Affiliation(s)
- Rajeev K Sukumaran
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Meera Christopher
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Prajeesh Kooloth-Valappil
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - AthiraRaj Sreeja-Raju
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Reshma M Mathew
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Meena Sankar
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anoop Puthiyamadam
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Velayudhanpillai-Prasannakumari Adarsh
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Aswathi Aswathi
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Valan Rebinro
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Amith Abraham
- Department of Chemical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
7
|
Kilaru S, Schuster M, Cannon S, Steinberg G. Optimised red- and green-fluorescent proteins for live cell imaging in the industrial enzyme-producing fungus Trichoderma reesei. Fungal Genet Biol 2020; 138:103366. [PMID: 32173466 DOI: 10.1016/j.fgb.2020.103366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 11/30/2022]
Abstract
The filamentous fungus Trichoderma reesei is a major source of cellulolytic enzymes in biofuel production. Despite its economic relevance, our understanding of its secretory pathways is fragmentary. A major challenge is to visualise the dynamic behaviour of secretory vesicles in living cells. To this end, we establish a location juxtaposing the succinate dehydrogenase locus as a "soft-landing" site for controlled expression of 4 green-fluorescent and 5 red-fluorescent protein-encoding genes (GFPs, RFPs). Quantitative and comparative analysis of their fluorescent signals in living cells demonstrates that codon-optimised monomeric superfolder GFP (TrmsGFP) and codon-optimised mCherry (TrmCherry) combine highest signal intensity with significantly improved signal-to-noise ratios. Finally, we show that integration of plasmid near the sdi1 locus does not affect secretion of cellulase activity in RUT-C30. The molecular and live cell imaging tools generated in this study will help our understanding the secretory pathway in the industrial fungus T. reesei.
Collapse
Affiliation(s)
- Sreedhar Kilaru
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Martin Schuster
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Stuart Cannon
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Gero Steinberg
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom.
| |
Collapse
|
8
|
Li C, Pang AP, Yang H, Lv R, Zhou Z, Wu FG, Lin F. Tracking localization and secretion of cellulase spatiotemporally and directly in living Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:200. [PMID: 31452681 PMCID: PMC6700804 DOI: 10.1186/s13068-019-1538-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/04/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Filamentous fungi secret hydrolytic enzymes like cellulase and hemicellulase outside the cells, serving as important scavengers of plant biomass in nature and workhorses in the enzyme industry. Unlike the extensive study on the mechanism of cellulase production in fungi, research on spatiotemporal distribution and secretion of cellulase in fungi is lacking, retarding the deeper understanding of the molecular mechanism behind the fungal cellulase production. RESULT Recombinant Trichoderma reesei strains RBGL, RCBH, and RCMC were successfully constructed from T. reesei RUT-C30, expressing red fluorescent protein DsRed-tagged versions of β-glucosidase (BGL), cellobiohydrolase (CBH), and endoglucanase (CMC), respectively. With the assistance of these strains, we found that all three cellulase components BGL, CBH, and CMC diffused throughout the whole fungal mycelium with major accumulation at the hyphal apexes. These enzymes located in ER, Golgi, vacuoles and cell membrane/wall, but not septum, and secreted abundantly into the culture medium. Moreover, the major secretion of CBH and CMC started more early than that of BGL. Brefeldin A (BFA) completely blocked cellulase expression and secretion in T. reesei. CONCLUSION Based on recombinant T. reesei RBGL, RCBH, and RCMC expressing DsRed-fused versions of BGL, CBH, and CMC, respectively, the distribution and secretion of cellulase production in T. reesei were first visualized directly in a dynamic way, preliminarily mapping the location and secretion of T. reesei cellulase and providing evidence for revealing the secretion pathways of cellulase in T. reesei. The obtained results suggest that cellulase excretion majorly occurs via the conventional ER-Golgi secretory pathway, and might be assisted through unconventional protein secretion pathways.
Collapse
Affiliation(s)
- Chengcheng Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 37 Jinxianghe Road, Xuanwu District, Nanjing, 210096 Jiangsu China
| | - Ai-Ping Pang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 37 Jinxianghe Road, Xuanwu District, Nanjing, 210096 Jiangsu China
| | - Hang Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 37 Jinxianghe Road, Xuanwu District, Nanjing, 210096 Jiangsu China
| | - Roujing Lv
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 37 Jinxianghe Road, Xuanwu District, Nanjing, 210096 Jiangsu China
| | - Zhihua Zhou
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 37 Jinxianghe Road, Xuanwu District, Nanjing, 210096 Jiangsu China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 37 Jinxianghe Road, Xuanwu District, Nanjing, 210096 Jiangsu China
| |
Collapse
|
9
|
Sun X, Su X. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi. World J Microbiol Biotechnol 2019; 35:54. [PMID: 30900052 DOI: 10.1007/s11274-019-2630-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
Filamentous fungi are important microorganisms used in industrial production of proteins and enzymes. Among these organisms, Trichoderma reesei, Aspergilli, and more recently Myceliophthora thermophile are the most widely used and promising ones which have powerful protein secretion capability. In recent years, there have been tremendous achievements in understanding the molecular mechanisms of the secretory pathways in filamentous fungi. The acquired pieces of knowledge can be harnessed to enhance protein production in filamentous fungi with assistance of state-of-the-art genetic engineering techniques.
Collapse
Affiliation(s)
- Xianhua Sun
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
10
|
Neu E, Debener T. Prediction of the Diplocarpon rosae secretome reveals candidate genes for effectors and virulence factors. Fungal Biol 2018; 123:231-239. [PMID: 30798878 DOI: 10.1016/j.funbio.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023]
Abstract
Rose black spot is one of the most severe diseases of field-grown roses. Though R-genes have been characterised, little information is known about the molecular details of the interaction between pathogen and host. Based on the recently published genome sequence of the black spot fungus, we analysed gene models with various bioinformatic tools utilising the expression data of infected host tissues, which led to the prediction of 827 secreted proteins. A significant proportion of the predicted secretome comprises enzymes for the degradation of cell wall components, several of which were highly expressed during the first infection stages. As the secretome comprises major factors determining the ability of the fungus to colonise its host, we focused our further analyses on predicted effector candidates. In total, 52 sequences of 251 effector candidates matched several bioinformatic criteria of effectors, contained a Y/F/WxC motif, and did not match annotated proteins from other fungi. Additional sequences were identified based on their high expression levels during the penetration/haustorium formation phase and/or by matching known effectors from other fungi. Several host genotypes that are resistant to the sequenced isolate but differ in the R-genes responsible for this resistance are available. The combination of these genotypes with functional studies of the identified candidate effectors will allow the mechanisms of the rose black spot interaction to be dissected.
Collapse
Affiliation(s)
- Enzo Neu
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, Herrenhaeuser Str. 2, Hannover 30419, Germany
| | - Thomas Debener
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, Herrenhaeuser Str. 2, Hannover 30419, Germany.
| |
Collapse
|
11
|
Alfaro M, Castanera R, Lavín JL, Grigoriev IV, Oguiza JA, Ramírez L, Pisabarro AG. Comparative and transcriptional analysis of the predicted secretome in the lignocellulose-degrading basidiomycete fungusPleurotus ostreatus. Environ Microbiol 2016; 18:4710-4726. [DOI: 10.1111/1462-2920.13360] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Alfaro
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| | - Raúl Castanera
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| | - José L. Lavín
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Bizkaia Technology Park; Derio 48160 Spain
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute; Walnut Creek CA 94598 USA
| | - José A. Oguiza
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| | - Lucía Ramírez
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| | - Antonio G. Pisabarro
- Department of Agrarian Production; Genetics and Microbiology Research Group, Public University of Navarre; Pamplona 31006 Spain
| |
Collapse
|
12
|
|
13
|
Life as a moving fluid: fate of cytoplasmic macromolecules in dynamic fungal syncytia. Curr Opin Microbiol 2015; 26:116-22. [PMID: 26226449 DOI: 10.1016/j.mib.2015.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/06/2015] [Indexed: 02/01/2023]
Abstract
In fungal syncytia dozens, or even millions of nuclei may coexist in a single connected cytoplasm. Recent discoveries have exposed some of the adaptations that enable fungi to marshall these nuclei to produce complex coordinated behaviors, including cell growth, nuclear division, secretion and communication. In addition to shedding light on the principles by which syncytia (including embryos and osteoplasts) are organized, fungal adaptations for dealing with internal genetic diversity and physically dynamic cytoplasm may provide mechanistic insights into how cells generally are carved into different functional compartments. In this review we focus on enumerating the physical constraints associated with maintaining macromolecular distributions within a fluctuating and often flowing cytoplasmic interior.
Collapse
|
14
|
Abstract
Koji mold, Aspergillus oryzae, has been used for the production of sake, miso, and soy sauce for more than one thousand years in Japan. Due to the importance, A. oryzae has been designated as the national micro-organism of Japan (Koku-kin). A. oryzae has been intensively studied in the past century, with most investigations focusing on breeding techniques and developing methods for Koji making for sake brewing. However, the understanding of fundamental biology of A. oryzae remains relatively limited compared with the yeast Saccharomyces cerevisiae. Therefore, we have focused on studying the cell biology including live cell imaging of organelles, protein vesicular trafficking, autophagy, and Woronin body functions using the available genomic information. In this review, I describe essential findings of cell biology of A. oryzae obtained in our study for a quarter of century. Understanding of the basic biology will be critical for not its biotechnological application, but also for an understanding of the fundamental biology of other filamentous fungi.
Collapse
Affiliation(s)
- Katsuhiko Kitamoto
- a Department of Biotechnology , The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| |
Collapse
|
15
|
Compositions of fungal secretomes indicate a greater impact of phylogenetic history than lifestyle adaptation. BMC Genomics 2014; 15:722. [PMID: 25159997 PMCID: PMC4161775 DOI: 10.1186/1471-2164-15-722] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022] Open
Abstract
Background Since the first fungal genome sequences became available, investigators have been employing comparative genomics to understand how fungi have evolved to occupy diverse ecological niches. The secretome, i.e. the entirety of all proteins secreted by an organism, is of particular importance, as by these proteins fungi acquire nutrients and communicate with their surroundings. Results It is generally assumed that fungi with similar nutritional lifestyles have similar secretome compositions. In this study, we test this hypothesis by annotating and comparing the soluble secretomes, defined as the sets of proteins containing classical signal peptides but lacking transmembrane domains of fungi representing a broad diversity of nutritional lifestyles. Secretome size correlates with phylogeny and to a lesser extent with lifestyle. Plant pathogens and saprophytes have larger secretomes than animal pathogens. Small secreted cysteine-rich proteins (SSCPs), which may comprise many effectors important for the interaction of plant pathogens with their hosts, are defined here to have a mature length of ≤ 300 aa residues, at least four cysteines, and a total cysteine content of ≥5%. SSCPs are found enriched in the secretomes of the Pezizomycotina and Basidiomycota in comparison to Saccharomycotina. Relative SSCP content is noticeably higher in plant pathogens than in animal pathogens, while saprophytes were in between and closer to plant pathogens. Expansions and contractions of gene families and in the number of occurrences of functional domains are largely lineage specific, e.g. contraction of glycoside hydrolases in Saccharomycotina, and are only weakly correlated with lifestyle. However, within a given lifestyle a few general trends exist, such as the expansion of secreted family M14 metallopeptidases and chitin-binding proteins in plant pathogenic Pezizomycotina. Conclusions While the secretomes of fungi with similar lifestyles share certain characteristics, the expansion and contraction of gene families is largely lineage specific, and not shared among all fungi of a given lifestyle. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-722) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Shoji JY, Kikuma T, Kitamoto K. Vesicle trafficking, organelle functions, and unconventional secretion in fungal physiology and pathogenicity. Curr Opin Microbiol 2014; 20:1-9. [PMID: 24835421 DOI: 10.1016/j.mib.2014.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/11/2014] [Indexed: 12/21/2022]
Abstract
Specific localization of appropriate sets of proteins and lipids is central to functions and integrity of organelles, which in turn underlie cellular activities of eukaryotes. Vesicle trafficking is a conserved mechanism of intracellular transport, which ensures such a specific localization to a subset of organelles. In this review article, we summarize recent advances in our understanding of how vesicle trafficking and related organelles support physiology and pathogenicity of filamentous fungi. Examples include a link between Golgi organization and polarity maintenance during hyphal tip growth, a new role of early endosomes in transport of translational machinery, involvement of endosomal/vacuolar compartments in secondary metabolite synthesis, and functions of vacuoles and autophagy in fungal development, nutrient recycling and allocation. Accumulating evidence showing the importance of unconventional secretion in fungal pathogenicity is also summarized.
Collapse
Affiliation(s)
- Jun-ya Shoji
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Kikuma
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Katsuhiko Kitamoto
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
17
|
Comparative analysis of secretomes in basidiomycete fungi. J Proteomics 2014; 102:28-43. [DOI: 10.1016/j.jprot.2014.03.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/19/2014] [Accepted: 03/03/2014] [Indexed: 12/29/2022]
|
18
|
Kawauchi M, Iwashita K. Functional analysis of histone deacetylase and its role in stress response, drug resistance and solid-state cultivation in Aspergillus oryzae. J Biosci Bioeng 2014; 118:172-6. [PMID: 24613105 DOI: 10.1016/j.jbiosc.2014.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/17/2014] [Accepted: 02/03/2014] [Indexed: 01/03/2023]
Abstract
In the eukaryotic cell, histone deacetylases (HDACs) play key roles in the regulation of fundamental cellular process such as development regulation, stress response, secondary metabolism and genome integrity. Here, we provide a comprehensive phenotypic analysis using HDAC disruptants in Aspergillus oryzae. Our study revealed that four HDACs, hdaA/Aohda1, hdaB/Aorpd3, hdaD/Aohos2 and hst4/AohstD were involved in stress response, cell wall synthesis and chromatin integrity in A. oryzae. Osmotic stress sensitivity of HDAC disruptants differed between plate cultures and liquid cultures, suggesting that HDACs adapt to the difference environmental conditions. Using a common A. oryzae fermentation medium, rice-koji, we also characterized HDACs related to growth and enzyme production to investigate which HDACs will be required for adaptation to environmental conditions and stress resistances. Because HDACs are widely conserved, our study has broad applications and may inform work with filamentous fungi and other eukaryote.
Collapse
Affiliation(s)
- Moriyuki Kawauchi
- Department of Molecular Biotechnology, Graduate School of Advanced Science of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8530, Japan; National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Kazuhiro Iwashita
- Department of Molecular Biotechnology, Graduate School of Advanced Science of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8530, Japan; National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-0046, Japan.
| |
Collapse
|
19
|
Kubicek CP, Starr TL, Glass NL. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:427-51. [PMID: 25001456 DOI: 10.1146/annurev-phyto-102313-045831] [Citation(s) in RCA: 471] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Approximately a tenth of all described fungal species can cause diseases in plants. A common feature of this process is the necessity to pass through the plant cell wall, an important barrier against pathogen attack. To this end, fungi possess a diverse array of secreted enzymes to depolymerize the main structural polysaccharide components of the plant cell wall, i.e., cellulose, hemicellulose, and pectin. Recent advances in genomic and systems-level studies have begun to unravel this diversity and have pinpointed cell wall-degrading enzyme (CWDE) families that are specifically present or enhanced in plant-pathogenic fungi. In this review, we discuss differences between the CWDE arsenal of plant-pathogenic and non-plant-pathogenic fungi, highlight the importance of individual enzyme families for pathogenesis, illustrate the secretory pathway that transports CWDEs out of the fungal cell, and report the transcriptional regulation of expression of CWDE genes in both saprophytic and phytopathogenic fungi.
Collapse
|
20
|
Aguiar TQ, Maaheimo H, Heiskanen A, Wiebe MG, Penttilä M, Domingues L. Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathway. Carbohydr Res 2013; 381:19-27. [DOI: 10.1016/j.carres.2013.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/04/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
|
21
|
Higuchi Y, Arioka M, Kitamoto K. Endocytic recycling at the tip region in the filamentous fungus Aspergillus oryzae. Commun Integr Biol 2013; 2:327-8. [PMID: 19721880 DOI: 10.4161/cib.2.4.8385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 11/19/2022] Open
Abstract
Recent live cell imaging analyzing the components required for endocytosis has elucidated that endocytosis actively occurs at the hyphal tip region in filamentous fungi. To examine further the physiological roles of endocytosis we investigated a conditional mutant of endocytosis in Aspergillus oryzae. Endocytosis-deficient hyphae displayed retarded apical growth, abnormal hyphal morphology, mislocalization of a vesicle- SNARE, which is thought to undergo endocytic recycling to the tip region, and aberrant accumulation of cell wall components at large invaginated structures. These results suggest that endocytosis is crucial for apical growth and for recycling components, which should be re-transported to the tip region. In this report, we discuss the endocytic recycling pathway and present its possible mechanism in filamentous fungi.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Biotechnology; The University of Tokyo; Bunkyo-ku, Tokyo Japan
| | | | | |
Collapse
|
22
|
|
23
|
Zhang J, Zhang Y, Zhong Y, Qu Y, Wang T. Ras GTPases modulate morphogenesis, sporulation and cellulase gene expression in the cellulolytic fungus Trichoderma reesei. PLoS One 2012; 7:e48786. [PMID: 23152805 PMCID: PMC3494722 DOI: 10.1371/journal.pone.0048786] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
Background The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. Methodology/Principal Findings Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. Conclusions/Significance Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute to deciphering the powerful competitive ability of plant cell wall degrading fungi in nature.
Collapse
Affiliation(s)
| | | | | | - Yinbo Qu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
- * E-mail: (YQ); (TW)
| | - Tianhong Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
- * E-mail: (YQ); (TW)
| |
Collapse
|
24
|
Saloheimo M, Pakula TM. The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology (Reading) 2012; 158:46-57. [DOI: 10.1099/mic.0.053132-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Markku Saloheimo
- VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT, Finland
| | - Tiina M. Pakula
- VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT, Finland
| |
Collapse
|
25
|
Hayakawa Y, Ishikawa E, Shoji J, Nakano H, Kitamoto K. Septum‐directed secretion in the filamentous fungus
Aspergillus oryzae. Mol Microbiol 2011; 81:40-55. [DOI: 10.1111/j.1365-2958.2011.07700.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yugo Hayakawa
- Department of Biotechnology, The University of Tokyo, 1‐1‐1 Yayoi, Bunkyo‐ku, Tokyo 113‐8657, Japan
| | - Eri Ishikawa
- Department of Biotechnology, The University of Tokyo, 1‐1‐1 Yayoi, Bunkyo‐ku, Tokyo 113‐8657, Japan
| | | | - Hiroyuki Nakano
- Department of Biotechnology, The University of Tokyo, 1‐1‐1 Yayoi, Bunkyo‐ku, Tokyo 113‐8657, Japan
| | | |
Collapse
|
26
|
Abstract
Filamentous fungi have a high-capacity secretory system and are therefore widely exploited for the industrial production of native and heterologous proteins. However, in most cases, the yields of nonfungal proteins are significantly lower than those obtained for fungal proteins. One well-studied bottleneck appears to be the result of slow or aberrant folding of heterologous proteins in the ER during the early stages of secretion within the endoplasmic reticulum, leading to stress responses in the host, including the unfolded protein response (UPR). Most of the key elements constituting the signal transduction pathway of the UPR in Saccharomyces cerevisiae have been identified in filamentous fungi, including the central activation mechanism of the pathway, that is, the stress-induced splicing of an unconventional (nonspliceosomal) intron in orthologs of the HAC1 mRNA. This splicing event relieves a translational block in the HAC1 mRNA, allowing for the translation of the bZIP transcription factor Hac1p that regulates the expression of UPR target genes. The UPR is involved in regulating the folding, yield, and delivery of secretory proteins and that has consequences for fungal lifestyles, including virulence and biotechnology. The recent releases of genome sequences of several species of filamentous fungi and the availability of DNA arrays, GeneChips, and deep sequencing methodologies have provided an unprecedented resource for exploring expression profiles in response to secretion stresses. Furthermore, genome-wide investigation of translation profiles through polysome analyses is possible, and here, we outline methods for the use of such techniques with filamentous fungi and, principally, Aspergillus niger. We also describe methods for the batch and controlled cultivation of A. niger and for the replacement and study of its hacA gene, which provides either a UPR-deficient strain or a constitutively activated UPR strain for comparative analysis with its wild type. Although we focus on A. niger, the utility of the hacA-deletion strategy is also described for use in investigating the virulence of the plant pathogen Alternaria brassicicola.
Collapse
|
27
|
Carvalho NDSP, Arentshorst M, Weenink XO, Punt PJ, van den Hondel CAMJJ, Ram AFJ. Functional YFP-tagging of the essential GDP-mannose transporter reveals an important role for the secretion related small GTPase SrgC protein in maintenance of Golgi bodies in Aspergillus niger. Fungal Biol 2010; 115:253-64. [PMID: 21354532 DOI: 10.1016/j.funbio.2010.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/08/2010] [Accepted: 12/19/2010] [Indexed: 11/26/2022]
Abstract
The addition of mannose residues to glycoproteins and glycolipids in the Golgi is carried out by mannosyltransferases. Their activity depends on the presence of GDP-mannose in the lumen of the Golgi. The transport of GDP-mannose (mannosyl donor) into the Golgi requires a specific nucleotide sugar transport present in the Golgi membrane. Here, we report the identification and functional characterization of the putative GDP-mannose transporter in Aspergillus niger, encoded by the gmtA gene (An17g02140). The single GDP-mannose transporter was identified in the A. niger genome and deletion analysis showed that gmtA is an essential gene. The lethal phenotype of the gmtA could be fully complemented by expressing an YFP-GmtA fusion protein from the endogenous gmtA promoter. Fluorescence studies revealed that, as in other fungal species, GmtA localized as punctate dots throughout the hyphal cytoplasm, representing Golgi bodies or Golgi equivalents. SrgC encodes a member of the Rab6/Ypt6 subfamily of secretion-related GTPases and is predicted to be required for the Golgi to vacuole transport. Loss of function of the srgC gene in A. niger resulted in strongly reduced growth and the inability to form conidiospores at 37°C and higher. Furthermore, the srgC disruption in the A. niger strain expressing the functional YFP-GmtA fusion protein led to an apparent 'disappearance' of the Golgi-like structures. The analysis suggests that SrgC has an important role in maintaining the integrity of Golgi-like structures in A. niger.
Collapse
Affiliation(s)
- Neuza D S P Carvalho
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
A possible role for exocytosis in aflatoxin export in Aspergillus parasiticus. EUKARYOTIC CELL 2010; 9:1724-7. [PMID: 20870882 DOI: 10.1128/ec.00118-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Filamentous fungi synthesize bioactive secondary metabolites with major human health and economic impacts. Little is known about the mechanisms that mediate the export of these metabolites to the cell exterior. Aspergillus parasiticus synthesizes aflatoxin, a secondary metabolite that is one of the most potent naturally occurring carcinogens known. We previously demonstrated that aflatoxin is synthesized and compartmentalized in specialized vesicles called aflatoxisomes and that these subcellular organelles also play a role in the export process. In the current study, we tested the hypothesis that aflatoxisomes fuse with the cytoplasmic membrane to facilitate the release of aflatoxin into the growth environment. Microscopic analysis of A. parasiticus grown under aflatoxin-inducing and non-aflatoxin-inducing conditions generated several lines of experimental evidence that supported the hypothesis. On the basis of the evidence, we propose that export of the mycotoxin aflatoxin in Aspergillus parasiticus occurs by exocytosis, and we present a model to illustrate this export mechanism.
Collapse
|
29
|
Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY, Czymmek K, Kang S, Valent B. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. THE PLANT CELL 2010; 22:1388-403. [PMID: 20435900 PMCID: PMC2879738 DOI: 10.1105/tpc.109.069666] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 03/11/2010] [Accepted: 04/14/2010] [Indexed: 05/17/2023]
Abstract
Knowledge remains limited about how fungal pathogens that colonize living plant cells translocate effector proteins inside host cells to regulate cellular processes and neutralize defense responses. To cause the globally important rice blast disease, specialized invasive hyphae (IH) invade successive living rice (Oryza sativa) cells while enclosed in host-derived extrainvasive hyphal membrane. Using live-cell imaging, we identified a highly localized structure, the biotrophic interfacial complex (BIC), which accumulates fluorescently labeled effectors secreted by IH. In each newly entered rice cell, effectors were first secreted into BICs at the tips of the initially filamentous hyphae in the cell. These tip BICs were left behind beside the first-differentiated bulbous IH cells as the fungus continued to colonize the host cell. Fluorescence recovery after photobleaching experiments showed that the effector protein PWL2 (for prevents pathogenicity toward weeping lovegrass [Eragrostis curvula]) continued to accumulate in BICs after IH were growing elsewhere. PWL2 and BAS1 (for biotrophy-associated secreted protein 1), BIC-localized secreted proteins, were translocated into the rice cytoplasm. By contrast, BAS4, which uniformly outlines the IH, was not translocated into the host cytoplasm. Fluorescent PWL2 and BAS1 proteins that reached the rice cytoplasm moved into uninvaded neighbors, presumably preparing host cells before invasion. We report robust assays for elucidating the molecular mechanisms that underpin effector secretion into BICs, translocation to the rice cytoplasm, and cell-to-cell movement in rice.
Collapse
Affiliation(s)
- Chang Hyun Khang
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Romain Berruyer
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Martha C. Giraldo
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Prasanna Kankanala
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Sook-Young Park
- Department of Plant Pathology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kirk Czymmek
- Department of Biological Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Seogchan Kang
- Department of Plant Pathology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
30
|
Jørgensen TR, Goosen T, Hondel CAMJJVD, Ram AFJ, Iversen JJL. Transcriptomic comparison of Aspergillus niger growing on two different sugars reveals coordinated regulation of the secretory pathway. BMC Genomics 2009; 10:44. [PMID: 19166577 PMCID: PMC2639373 DOI: 10.1186/1471-2164-10-44] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 01/23/2009] [Indexed: 11/24/2022] Open
Abstract
Background The filamentous fungus, Aspergillus niger, responds to nutrient availability by modulating secretion of various substrate degrading hydrolases. This ability has made it an important organism in industrial production of secreted glycoproteins. The recent publication of the A. niger genome sequence and availability of microarrays allow high resolution studies of transcriptional regulation of basal cellular processes, like those of glycoprotein synthesis and secretion. It is known that the activities of certain secretory pathway enzymes involved N-glycosylation are elevated in response to carbon source induced secretion of the glycoprotein glucoamylase. We have investigated whether carbon source dependent enhancement of protein secretion can lead to upregulation of secretory pathway elements extending beyond those involved in N-glycosylation. Results This study compares the physiology and transcriptome of A. niger growing at the same specific growth rate (0.16 h-1) on xylose or maltose in carbon-limited chemostat cultures. Transcription profiles were obtained using Affymetrix GeneChip analysis of six replicate cultures for each of the two growth-limiting carbon sources. The production rate of extracellular proteins per gram dry mycelium was about three times higher on maltose compared to xylose. The defined culture conditions resulted in high reproducibility, discriminating even low-fold differences in transcription, which is characteristic of genes encoding basal cellular functions. This included elements in the secretory pathway and central metabolic pathways. Increased protein secretion on maltose was accompanied by induced transcription of > 90 genes related to protein secretion. The upregulated genes encode key elements in protein translocation to the endoplasmic reticulum (ER), folding, N-glycosylation, quality control, and vesicle packaging and transport between ER and Golgi. The induction effect of maltose resembles the unfolded protein response (UPR), which results from ER-stress and has previously been defined by treatment with chemicals interfering with folding of glycoproteins or by expression of heterologous proteins. Conclusion We show that upregulation of secretory pathway genes also occurs in conditions inducing secretion of endogenous glycoproteins – representing a more normal physiological state. Transcriptional regulation of protein synthesis and secretory pathway genes may thus reflect a general mechanism for modulation of secretion capacity in response to the conditional need for extracellular enzymes.
Collapse
Affiliation(s)
- Thomas R Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| | | | | | | | | |
Collapse
|
31
|
Endocytosis is crucial for cell polarity and apical membrane recycling in the filamentous fungus Aspergillus oryzae. EUKARYOTIC CELL 2008; 8:37-46. [PMID: 19028995 DOI: 10.1128/ec.00207-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Establishing the occurrence of endocytosis in filamentous fungi was elusive in the past mainly due to the lack of reliable indicators of endocytosis. Recently, however, it was shown that the fluorescent dye N-(3-triethylammoniumpropyl)-4-(p-diethyl-aminophenyl-hexatrienyl)pyridinium dibromide (FM4-64) and the plasma membrane protein AoUapC (Aspergillus oryzae UapC) fused to enhanced green fluorescent protein (EGFP) were internalized from the plasma membrane by endocytosis. Although the occurrence of endocytosis was clearly demonstrated, its physiological importance in filamentous fungi still remains largely unaddressed. We generated a strain in which A. oryzae end4 (Aoend4), the A. oryzae homolog of Saccharomyces cerevisiae END4/SLA2, was expressed from the Aoend4 locus under the control of a regulatable thiA promoter. The growth of this strain was severely impaired, and its hyphal morphology was altered in the Aoend4-repressed condition. Moreover, in the Aoend4-repressed condition, neither FM4-64 nor AoUapC-EGFP was internalized, indicating defective endocytosis. Furthermore, the localization of a secretory soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) was abnormal in the Aoend4-repressed condition. Aberrant accumulation of cell wall components was also observed by calcofluor white staining and transmission electron microscopy analysis, and several genes that encode cell wall-building enzymes were upregulated, indicating that the regulation of cell wall synthesis is abnormal in the Aoend4-repressed condition, whereas Aopil1 disruptants do not display the phenotype exhibited in the Aoend4-repressed condition. Our results strongly suggest that endocytosis is crucial for the hyphal tip growth in filamentous fungi.
Collapse
|