1
|
Li H, Niu J, Wang X, Niu M, Liao C. The Contribution of Antimicrobial Peptides to Immune Cell Function: A Review of Recent Advances. Pharmaceutics 2023; 15:2278. [PMID: 37765247 PMCID: PMC10535326 DOI: 10.3390/pharmaceutics15092278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The development of novel antimicrobial agents to replace antibiotics has become urgent due to the emergence of multidrug-resistant microorganisms. Antimicrobial peptides (AMPs), widely distributed in all kingdoms of life, present strong antimicrobial activity against a variety of bacteria, fungi, parasites, and viruses. The potential of AMPs as new alternatives to antibiotics has gradually attracted considerable interest. In addition, AMPs exhibit strong anticancer potential as well as anti-inflammatory and immunomodulatory activity. Many studies have provided evidence that AMPs can recruit and activate immune cells, controlling inflammation. This review highlights the scientific literature focusing on evidence for the anti-inflammatory mechanisms of different AMPs in immune cells, including macrophages, monocytes, lymphocytes, mast cells, dendritic cells, neutrophils, and eosinophils. A variety of immunomodulatory characteristics, including the abilities to activate and differentiate immune cells, change the content and expression of inflammatory mediators, and regulate specific cellular functions and inflammation-related signaling pathways, are summarized and discussed in detail. This comprehensive review contributes to a better understanding of the role of AMPs in the regulation of the immune system and provides a reference for the use of AMPs as novel anti-inflammatory drugs for the treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Hanxiao Li
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| | - Junhui Niu
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| | - Xiaoli Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China;
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Chengshui Liao
- Luoyang Key Laboratory of Live Carrier Biomaterial and Anmal Disease Prevention and Control, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (H.L.); (J.N.)
| |
Collapse
|
2
|
Tripathi AK, Vishwanatha JK. Role of Anti-Cancer Peptides as Immunomodulatory Agents: Potential and Design Strategy. Pharmaceutics 2022; 14:pharmaceutics14122686. [PMID: 36559179 PMCID: PMC9781574 DOI: 10.3390/pharmaceutics14122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
The usage of peptide-based drugs to combat cancer is gaining significance in the pharmaceutical industry. The collateral damage caused to normal cells due to the use of chemotherapy, radiotherapy, etc. has given an impetus to the search for alternative methods of cancer treatment. For a long time, antimicrobial peptides (AMPs) have been shown to display anticancer activity. However, the immunomodulatory activity of anti-cancer peptides has not been researched very extensively. The interconnection of cancer and immune responses is well-known. Hence, a search and design of molecules that can show anti-cancer and immunomodulatory activity can be lead molecules in this field. A large number of anti-cancer peptides show good immunomodulatory activity by inhibiting the pro-inflammatory responses that assist cancer progression. Here, we thoroughly review both the naturally occurring and synthetic anti-cancer peptides that are reported to possess both anti-cancer and immunomodulatory activity. We also assess the structural and biophysical parameters that can be utilized to improve the activity. Both activities are mostly reported by different groups, however, we discuss them together to highlight their interconnection, which can be used in the future to design peptide drugs in the field of cancer therapeutics.
Collapse
|
3
|
Dong L, Yang H, Wang Z, Jiang N, Zhang A. Antimicrobial peptide CC34 attenuates intestinal inflammation via downregulation of the NF-κB signaling pathway. 3 Biotech 2021; 11:397. [PMID: 34422538 PMCID: PMC8339189 DOI: 10.1007/s13205-021-02948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022] Open
Abstract
The investigational drug CC34 is a cation peptide with multiple bioactivities. Here, we studied the anti-inflammatory effects of CC34 in lipopolysaccharide (LPS)-treated mouse monocyte-macrophage cells (RAW264.7) and in mice with LPS-induced intestinal inflammation. In vitro, CC34 treatment with less than 50 μg/mL for 24 h did not induce cytotoxicity in RAW264.7 cells. Furthermore, CC34 significantly lowered the levels of select inflammatory cytokines, including TNF-α, IL-1β, and IL-6. Intracellular levels of reactive oxygen species (ROS) were lower in RAW264.7 cells treated with CC34 + LPS than in cells treated with LPS alone. Additionally, CC34 treatment suppressed iNOS and COX-2 mRNA levels in LPS-treated cells. We also observed that CC34 exerted anti-inflammatory activity by suppressing the phosphorylation of IKKβ, IκBα, and NF-κB p65 in vitro. Moreover, CC34 downregulated the release of inflammatory cytokines (TNF-α, IL-1β, and IL-6) in the jejunum tissue and serum of LPS-treated mice. We also found that the myeloperoxidase (MPO) levels were decreased, and the pathological damages were effectively abated in the jejunum tissue of CC34 + LPS-treated mice. In summary, we demonstrated that CC34 exerted anti-inflammatory activities, associated with the neutralization of LPS, inhibition of ROS, inhibition the NF-κB signaling pathway, and down-regulating the secretion of inflammatory cytokines. Thus, CC34 may represent an effective therapeutic strategy for intestinal inflammation.
Collapse
Affiliation(s)
- Liqiang Dong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163316 China
- School of Food and Pharmaceutical Engineering, Suihua University, Suihua, 152061 China
| | - Huan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163316 China
| | - Zhao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163316 China
| | - Ning Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163316 China
| | - Aizhong Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163316 China
| |
Collapse
|
4
|
Kim IW, Lee JH, Seo M, Lee HJ, Baek M, Kim MA, Shin YP, Kim SH, Kim I, Hwang JS. Anti-Inflammatory Activity of Antimicrobial Peptide Periplanetasin-5 Derived from the Cockroach Periplaneta americana. J Microbiol Biotechnol 2020; 30:1282-1289. [PMID: 32522957 PMCID: PMC9728328 DOI: 10.4014/jmb.2004.04046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
Previously, we performed an in silico analysis of the Periplaneta americana transcriptome. Antimicrobial peptide candidates were selected using an in silico antimicrobial peptide prediction method. It was found that periplanetasin-5 had antimicrobial activity against yeast and grampositive and gram-negative bacteria. In the present study, we demonstrated the anti-inflammatory activities of periplanetasin-5 in mouse macrophage Raw264.7 cells. No cytotoxicity was observed at 60 μg/ml periplanetasin-5, and treatment decreased nitric oxide production in Raw264.7 cells exposed to lipopolysaccharide (LPS). In addition, quantitative RT-PCR and enzyme-linked immunosorbent assay revealed that periplanetasin-5 reduced cytokine (tumor necrosis factor-α, interleukin-6) expression levels in the Raw264.7 cells. Periplanetasin-5 controlled inflammation by inhibiting phosphorylation of MAPKs, an inflammatory signaling element, and reducing the degradation of IκB. Through LAL assay, LPS toxicity was found to decrease in a periplanetasin-5 dose-dependent manner. Collectively, these data showed that periplanetasin-5 had antiinflammatory activities, exemplified in LPS-exposed Raw264.7 cells. Thus, we have provided a potentially useful antibacterial peptide candidate with anti-inflammatory activities.
Collapse
Affiliation(s)
- In-Woo Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea,College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joon Ha Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Minchul Seo
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hwa Jeong Lee
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Minhee Baek
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Mi-Ae Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yong Pyo Shin
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Sung Hyun Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Iksoo Kim
- College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea,Iksoo Kim E-mail:
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea,Corresponding author Jae Sam Hwang Phone: +82-63-238-2974 E-mail:
| |
Collapse
|
5
|
Schadich E, Mason D, Cole AL. Neutralization of bacterial endotoxins by frog antimicrobial peptides. Microbiol Immunol 2013; 57:159-61. [PMID: 23252916 DOI: 10.1111/1348-0421.12012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/11/2012] [Accepted: 11/25/2012] [Indexed: 01/27/2023]
Abstract
The ability of skin antimicrobial peptides of the southern bell frog, Litoria raniformis, to neutralize in vitro the endotoxin, proinflammatory lipopolysaccharide (LPS) complex, from two different gram-negative bacterial pathogens, human pathogen Escherichia coli (0111:B4) and frog pathogen Klebsiella pneumoniae, was investigated. The LPS neutralization activity of the natural mixture of skin antimicrobial peptides was measured using chromogenic Limulus amebocyte lysate assays. These skin antimicrobial peptides neutralized the LPSs from both pathogens at physiologically relevant concentrations (IC(50) < 100 µg/mL) showing their potential for non-specific LPS neutralization in vivo in the skin of infected frogs and for development of anti-endotoxin agents.
Collapse
Affiliation(s)
- Ermin Schadich
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | | | | |
Collapse
|
6
|
Hsu JC, Lin LC, Tzen JTC, Chen JY. Characteristics of the antitumor activities in tumor cells and modulation of the inflammatory response in RAW264.7 cells of a novel antimicrobial peptide, chrysophsin-1, from the red sea bream (Chrysophrys major). Peptides 2011; 32:900-10. [PMID: 21349308 DOI: 10.1016/j.peptides.2011.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 11/24/2022]
Abstract
The antimicrobial peptide, chrysophsin-1, exhibits antimicrobial activities with similar efficiencies for both gram-negative and gram-positive bacteria. In this study, we examined the antitumor activity and modulation of the inflammatory response of a synthetic chrysophsin-1 peptide. In vitro results showed that chrysophsin-1 had greater inhibitory effects against human fibrosarcoma (HT-1080), histiocytic lymphoma (U937), and epithelial carcinoma (HeLa) cells. LDH release by HeLa cells was comparable to that of an MTS assay after treatment with 1.5-3 μg/ml chrysophsin-1 for 24h. Under SEM and TEM observations, we found no intact cell membranes after chrysophsin-1 treatment of HeLa cells for 8h. The suggested mechanism of the cytotoxic activity of chrysophsin-1 was disruption of cancer cell membranes. In addition, we also examined caspase-3, -8, and -9 activities by Western blotting; the results excluded the participation of apoptosis in chrysophsin-1's effect on HeLa cells. Stimulation by lipopolysaccharide induced tumor necrosis factor (TNF)-α which was able to modulate chrysophsin-1 treatment of RAW264.7 cells and inhibited endogenous TNF-α release but did not block its secretion. With data from this study, we demonstrate that chrysophsin-1 has antimicrobial and antitumor activities and modulates the inflammatory response in RAW264.7 cells.
Collapse
Affiliation(s)
- Jung-Chieh Hsu
- Graduate Institute of Biotechnology, National Chung-Hsing University, 250 Kuo-Kuang Rd, Taichung 402, Taiwan
| | | | | | | |
Collapse
|
7
|
Anti-inflammatory properties of N-acetylcysteine on lipopolysaccharide-activated macrophages. Inflamm Res 2011; 60:695-704. [DOI: 10.1007/s00011-011-0323-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 02/11/2011] [Accepted: 02/28/2011] [Indexed: 11/25/2022] Open
|
8
|
Tang C, Shao X, Sun B, Huang W, Qiu F, Chen Y, Shi YK, Zhang EY, Wang C, Zhao X. Anticancer mechanism of peptide P18 in human leukemia K562 cells. Org Biomol Chem 2010; 8:984-7. [DOI: 10.1039/b920762g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|