1
|
Bi M, Li M, Wei J, Meng Z, Wang Z, Ying M, Yang X, Huang L. Genome-scale cis-acting catabolite-responsive element editing confers Bacillus pumilus LG3145 plant-beneficial functions. iScience 2024; 27:108983. [PMID: 38357660 PMCID: PMC10864199 DOI: 10.1016/j.isci.2024.108983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Rhizosphere dwelling microorganism such as Bacillus spp. are helpful for crop growth. However, these functions are adversely affected by long-term synthetic fertilizer application. We developed a modified CRISPR/Cas9 system using non-specific single-guide RNAs to disrupt the genome-wide cis-acting catabolite-responsive elements (cres) in a wild-type Bacillus pumilus strain, which conferred dual plant-benefit properties. Most of the mutations occurred around imperfectly matched cis-acting elements (cre-like sites) in genes that are mainly involved in carbon and secondary metabolism pathways. The comparative metabolomics and transcriptome results revealed that carbon is likely transferred to some pigments, such as riboflavin, carotenoid, and lycopene, or non-ribosomal peptides, such as siderophore, surfactin, myxochelin, and bacilysin, through the pentose phosphate and amino acid metabolism pathways. Collectively, these findings suggested that the mutation of global cre-like sequences in the genome might alter carbon flow, thereby allowing beneficial biological interactions between the rhizobacteria and plants.
Collapse
Affiliation(s)
- Meiying Bi
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Mingkun Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Jiaxun Wei
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Ziwen Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Zhaoyang Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Ming Ying
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Xiurong Yang
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300384, People’s Republic of China
| | - Lei Huang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| |
Collapse
|
2
|
Solanki MK, Joshi NC, Singh PK, Singh SK, Santoyo G, Basilio de Azevedo LC, Kumar A. From concept to reality: Transforming agriculture through innovative rhizosphere engineering for plant health and productivity. Microbiol Res 2024; 279:127553. [PMID: 38007891 DOI: 10.1016/j.micres.2023.127553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
The plant rhizosphere is regarded as a microbial hotspot due to a wide array of root exudates. These root exudates comprise diverse organic compounds such as phenolic, polysaccharides, flavonoids, fatty acids, and amino acids that showed chemotactic responses towards microbial communities and mediate significant roles in root colonization. The rhizospheric microbiome is a crucial driver of plant growth and productivity, contributing directly or indirectly by facilitating nutrient acquisition, phytohormone modulation, and phosphate solubilization under normal and stressful conditions. Moreover, these microbial candidates protect plants from pathogen invasion by secreting antimicrobial and volatile organic compounds. To enhance plant fitness and yield, rhizospheric microbes are frequently employed as microbial inoculants. However, recent developments have shifted towards targeted rhizosphere engineering or microbial recruitments as a practical approach to constructing desired plant rhizospheres for specific outcomes. The rhizosphere, composed of plants, microbes, and soil, can be modified in several ways to improve inoculant efficiency. Rhizosphere engineering is achieved through three essential mechanisms: a) plant-mediated modifications involving genetic engineering, transgenics, and gene editing of plants; b) microbe-mediated modifications involving genetic alterations of microbes through upstream or downstream methodologies; and c) soil amendments. These mechanisms shape the rhizospheric microbiome, making plants more productive and resilient under different stress conditions. This review paper comprehensively summarizes the various aspects of rhizosphere engineering and their potential applications in maintaining plant health and achieving optimum agricultural productivity.
Collapse
Affiliation(s)
- Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Pachhunga University College Campus, Mizoram University (A Central University), Aizawl 796001, India
| | - Sandeep Kumar Singh
- Department of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Lucas Carvalho Basilio de Azevedo
- Instituto de Ciências Agrárias, Campus Glória-Bloco CCG, Universidade Federal de Uberlândia, RodoviaBR-050, KM 78, S/N, Uberlândia CEP 38410-337, Brazil
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
3
|
Singh VS, Dubey BK, Rai S, Singh SP, Tripathi AK. Engineering D-glucose utilization in Azospirillum brasilense Sp7 promotes rice root colonization. Appl Microbiol Biotechnol 2022; 106:7891-7903. [DOI: 10.1007/s00253-022-12250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022]
|
4
|
An Evaluation of Aluminum Tolerant Pseudomonas aeruginosa A7 for In Vivo Suppression of Fusarium Wilt of Chickpea Caused by Fusarium oxysporum f. sp. ciceris and Growth Promotion of Chickpea. Microorganisms 2022; 10:microorganisms10030568. [PMID: 35336143 PMCID: PMC8950562 DOI: 10.3390/microorganisms10030568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Chickpea wilt, caused by Fusarium oxysporum f. sp. ciceris, is a disease that decreases chickpea productivity and quality and can reduce its yield by as much as 15%. A newly isolated, moss rhizoid-associated Pseudomonas aeruginosa strain A7, demonstrated strong inhibition of Fusarium oxysporum f. sp. ciceris growth. An in vitro antimicrobial assay revealed A7 to suppress the growth of several fungal and bacterial plant pathogens by secreting secondary metabolites and by producing volatile compounds. In an in vivo pot experiment with Fusarium wilt infection in chickpea, the antagonist A7 exhibited a disease reduction by 77 ± 1.5%, and significantly reduced the disease incidence and severity indexes. Furthermore, A7 promoted chickpea growth in terms of root and shoot length and dry biomass during pot assay. The strain exhibited several traits associated with plant growth promotion, extracellular enzymatic production, and stress tolerance. Under aluminum stress conditions, in vitro growth of chickpea plants by A7 resulted in a significant increase in root length and plant biomass production. Additionally, hallmark genes for antibiotics production were identified in A7. The methanol extract of strain A7 demonstrated antimicrobial activity, leading to the identification of various antimicrobial compounds based on retention time and molecular weight. These findings strongly suggest that the strain’s significant biocontrol potential and plant growth enhancement could be a potential environmentally friendly process in agricultural crop production.
Collapse
|
5
|
Tuppo L, Giangrieco I, Alessandri C, Ricciardi T, Rafaiani C, Ciancamerla M, Ferrara R, Zennaro D, Bernardi ML, Tamburrini M, Mari A, Ciardiello MA. Pomegranate chitinase III: Identification of a new allergen and analysis of sensitization patterns to chitinases. Mol Immunol 2018; 103:89-95. [PMID: 30241023 DOI: 10.1016/j.molimm.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Allergy to pomegranate is often associated with severe symptoms. Two allergens have previously been described: 9k-LTP Pun g 1 and pommaclein Pun g 7. This study describes the isolation of a chitinase III, identified by direct protein sequencing and mass spectrometry. It is a 29-kDa protein showing 69% sequence identity with the latex hevamine and IgE binding in dot blotting, immunoblotting and FABER®test. Chitinase-specific IgE were detected in 69 of 357 patients sensitized to one or more pomegranate allergenic preparations present on the FABER®test. Using this test, 19.2% of the patients sensitized to kiwifruit chitinase IV were also sensitized to pomegranate chitinase III, rather than to latex chitinase I (7.2%) with which it shares the N-terminal hevein-like domain. In conclusion, a new allergen has been identified, contributing to improving food allergy diagnosis. This study reveals the important role of chitinases III and IV as allergy sensitizers and prompts further investigations.
Collapse
Affiliation(s)
- Lisa Tuppo
- Institute of Biosciences and BioResources, CNR, I-80131 Naples, Italy; Allergy Data Laboratories s.r.l., Latina, Italy
| | - Ivana Giangrieco
- Institute of Biosciences and BioResources, CNR, I-80131 Naples, Italy; Allergy Data Laboratories s.r.l., Latina, Italy
| | - Claudia Alessandri
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | - Teresa Ricciardi
- Institute of Biosciences and BioResources, CNR, I-80131 Naples, Italy
| | - Chiara Rafaiani
- Allergy Data Laboratories s.r.l., Latina, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | | | - Rosetta Ferrara
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | - Danila Zennaro
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | - Maria Livia Bernardi
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | | | - Adriano Mari
- Allergy Data Laboratories s.r.l., Latina, Italy; Associated Centers for Molecular Allergology, Rome, Italy; Center for Molecular Allergology, IDI-IRCCS, Rome, Italy
| | | |
Collapse
|
6
|
Maksimov IV, Maksimova TI, Sarvarova ER, Blagova DK, Popov VO. Endophytic Bacteria as Effective Agents of New-Generation Biopesticides (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Fan H, Ru J, Zhang Y, Wang Q, Li Y. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol Res 2017; 199:89-97. [PMID: 28454713 DOI: 10.1016/j.micres.2017.03.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/21/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
Apple ring rot, caused by Botryosphaeria dothidea, is a serious apple disease in China. Bacillus subtilis 9407 was isolated from healthy apples and showed strong antifungal activity against B. dothidea. To identify the primary antifungal compound of B. subtilis 9407 and determine its role in controlling apple ring rot, a transposon mutant library was constructed using TnYLB-1, and a mutant completely defective in antifungal activity was obtained. The gene inactivated in the antifungal activity mutant had 98.5% similarity to ppsB in B. subtilis subsp. subtilis str. 168, which encodes one of the five synthetases responsible for synthesizing fengycin. A markerless ppsB deletion mutant was constructed. Compared with the wild-type strain, lipopeptide crude extracts from ΔppsB showed almost no inhibition of B. dothidea mycelial growth. Furthermore, fengycin-like lipopeptides (retention factor 0.1-0.2) that exhibited antifungal activity against B. dothidea were observed in the wild-type strain by thin-layer chromatography (TLC)-bioautography analysis, but not in ΔppsB. Semipreparative reverse-phase high performance liquid chromatography (RP-HPLC) detection revealed that ΔppsB lost the ability to synthesize fengycin. These results suggest that ppsB is responsible for synthesizing fengycin and that fengycin is the major antifungal compound produced by B. subtilis 9407 against B. dothidea. Moreover, a biocontrol assay showed that the control efficacy of ΔppsB was reduced by half compared with the wild-type strain, indicating that fengycin plays a major role in controlling apple ring rot disease. This is the first report on the use of a B. subtilis strain as a potential biological control agent to control apple ring rot disease by the production of fengycin.
Collapse
Affiliation(s)
- Haiyan Fan
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Jinjiang Ru
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Yuanyuan Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
8
|
Dessaux Y, Grandclément C, Faure D. Engineering the Rhizosphere. TRENDS IN PLANT SCIENCE 2016; 21:266-278. [PMID: 26818718 DOI: 10.1016/j.tplants.2016.01.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/14/2015] [Accepted: 01/04/2016] [Indexed: 05/25/2023]
Abstract
All components of the rhizosphere can be engineered to promote plant health and growth, two features that strongly depend upon the interactions of living organisms with their environment. This review describes the progress in plant and microbial molecular genetics and ecology that has led to a wealth of potential applications. Recent efforts especially deal with the plant defense machinery that is instrumental in engineering plant resistance to biotic stresses. Another approach involves microbial population engineering rather than single strain engineering. More generally, the plants (and the associated microbes) are no longer seen as 'individual' but rather as a holobiont, in other words a unit of selection in evolution, a concept that holds great promise for future plant breeding programs.
Collapse
Affiliation(s)
- Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France.
| | - Catherine Grandclément
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette CEDEX, France
| |
Collapse
|
9
|
Haq IU, Zhang M, Yang P, van Elsas JD. The interactions of bacteria with fungi in soil: emerging concepts. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:185-215. [PMID: 25131403 DOI: 10.1016/b978-0-12-800259-9.00005-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this chapter, we review the existing literature on bacterial-fungal interactions in soil, exploring the role fungi may play for soil bacteria as providers of hospitable niches. A focus is placed on the mycosphere, i.e., the narrow zone of influence of fungal hyphae on the external soil milieu, in which hypha-associated bacterial cells dwell. Evidence is brought forward for the contention that the hyphae of both mycorrhizal and saprotrophic fungi serve as providers of ecological opportunities in a grossly carbon-limited soil, as a result of their release of carbonaceous compounds next to the provision of a colonizable surface. Soil bacteria of particular nature are postulated to have adapted to such selection pressures, evolving to the extent that they acquired capabilities that allow them to thrive in the novel habitat created by the emerging fungal hyphae. The mechanisms involved in the interactions and the modes of genetic adaptation of the mycosphere dwellers are discussed, with an emphasis on one key mycosphere-adapted bacterium, Burkholderia terrae BS001. In this discussion, we interrogate the positive interactions between soil fungi and bacteria, and refrain from considering negative interactions.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Miaozhi Zhang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Pu Yang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
10
|
Adrangi S, Faramarzi MA. From bacteria to human: a journey into the world of chitinases. Biotechnol Adv 2013; 31:1786-95. [PMID: 24095741 DOI: 10.1016/j.biotechadv.2013.09.012] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 12/28/2022]
Abstract
Chitinases, the enzymes responsible for the biological degradation of chitin, are found in a wide range of organisms from bacteria to higher plants and animals. They participate in numerous physiological processes such as nutrition, parasitism, morphogenesis and immunity. Many organisms, in addition to chitinases, produce inactive chitinase-like lectins that despite lacking enzymatic activity are involved in several regulatory functions. Most known chitinases belong to families 18 and 19 of glycosyl hydrolases, however a few chitinases that belong to families 23 and 48 have also been identified in recent years. In this review, different aspects of chitinases and chi-lectins from bacteria, fungi, insects, plants and mammals are discussed.
Collapse
Affiliation(s)
- Sina Adrangi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
11
|
Setten L, Soto G, Mozzicafreddo M, Fox AR, Lisi C, Cuccioloni M, Angeletti M, Pagano E, Díaz-Paleo A, Ayub ND. Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS One 2013; 8:e63666. [PMID: 23675499 PMCID: PMC3652814 DOI: 10.1371/journal.pone.0063666] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/06/2013] [Indexed: 11/18/2022] Open
Abstract
Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops.
Collapse
Affiliation(s)
- Lorena Setten
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, Buenos Aires, Argentina
| | - Gabriela Soto
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Argentina
| | - Matteo Mozzicafreddo
- School of Biosciences and Biotechnology, University of Camerino, Camerino (MC), Italy
| | - Ana Romina Fox
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Argentina
| | - Christian Lisi
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, Buenos Aires, Argentina
| | | | - Mauro Angeletti
- School of Biosciences and Biotechnology, University of Camerino, Camerino (MC), Italy
| | - Elba Pagano
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, Buenos Aires, Argentina
| | - Antonio Díaz-Paleo
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, Buenos Aires, Argentina
| | - Nicolás Daniel Ayub
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cuidad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|