1
|
Mustafa MI, Mohammed A. Nanobodies: A Game-Changer in Cell-Mediated Immunotherapy for Cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:358-364. [PMID: 37634615 DOI: 10.1016/j.slasd.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Nanobodies are small, single-domain antibodies that have emerged as a promising tool in cancer immunotherapy. These molecules can target specific antigens on cancer cells and trigger an immune response against them. In this mini-review article, we highlight the potential of nanobodies in cell-mediated immunotherapy for cancer treatment. We discuss the advantages of nanobodies over conventional antibodies, their ability to penetrate solid tumors, and their potential to enhance the efficacy of other immunotherapeutic agents. We also provide an overview of recent preclinical and clinical studies that have demonstrated the effectiveness of nanobody-based immunotherapy in various types of cancer.
Collapse
Affiliation(s)
- Mujahed I Mustafa
- Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan.
| | - Ahmed Mohammed
- Department of Biotechnology, School of Life Sciences and Technology, Omdurman Islamic University, Omdurman, Sudan
| |
Collapse
|
2
|
Jędrusiak A, Fortuna W, Majewska J, Górski A, Jończyk-Matysiak E. Phage Interactions with the Nervous System in Health and Disease. Cells 2023; 12:1720. [PMID: 37443756 PMCID: PMC10341288 DOI: 10.3390/cells12131720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The central nervous system manages all of our activities (e.g., direct thinking and decision-making processes). It receives information from the environment and responds to environmental stimuli. Bacterial viruses (bacteriophages, phages) are the most numerous structures occurring in the biosphere and are also found in the human organism. Therefore, understanding how phages may influence this system is of great importance and is the purpose of this review. We have focused on the effect of natural bacteriophages in the central nervous system, linking them to those present in the gut microbiota, creating the gut-brain axis network, as well as their interdependence. Importantly, based on the current knowledge in the field of phage application (e.g., intranasal) in the treatment of bacterial diseases associated with the brain and nervous system, bacteriophages may have significant therapeutic potential. Moreover, it was indicated that bacteriophages may influence cognitive processing. In addition, phages (via phage display technology) appear promising as a targeted therapeutic tool in the treatment of, among other things, brain cancers. The information collected and reviewed in this work indicates that phages and their impact on the nervous system is a fascinating and, so far, underexplored field. Therefore, the aim of this review is not only to summarize currently available information on the association of phages with the nervous system, but also to stimulate future studies that could pave the way for novel therapeutic approaches potentially useful in treating bacterial and non-bacterial neural diseases.
Collapse
Affiliation(s)
- Adam Jędrusiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
| | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213, 54-427 Wroclaw, Poland;
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Joanna Majewska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
| |
Collapse
|
3
|
Maali A, Gholizadeh M, Feghhi-Najafabadi S, Noei A, Seyed-Motahari SS, Mansoori S, Sharifzadeh Z. Nanobodies in cell-mediated immunotherapy: On the road to fight cancer. Front Immunol 2023; 14:1012841. [PMID: 36761751 PMCID: PMC9905824 DOI: 10.3389/fimmu.2023.1012841] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The immune system is essential in recognizing and eliminating tumor cells. The unique characteristics of the tumor microenvironment (TME), such as heterogeneity, reduced blood flow, hypoxia, and acidity, can reduce the efficacy of cell-mediated immunity. The primary goal of cancer immunotherapy is to modify the immune cells or the TME to enable the immune system to eliminate malignancies successfully. Nanobodies, known as single-domain antibodies, are light chain-free antibody fragments produced from Camelidae antibodies. The unique properties of nanobodies, including high stability, reduced immunogenicity, enhanced infiltration into the TME of solid tumors and facile genetic engineering have led to their promising application in cell-mediated immunotherapy. They can promote the cancer therapy either directly by bridging between tumor cells and immune cells and by targeting cancer cells using immune cell-bound nanobodies or indirectly by blocking the inhibitory ligands/receptors. The T-cell activation can be engaged through anti-CD3 and anti-4-1BB nanobodies in the bispecific (bispecific T-cell engagers (BiTEs)) and trispecific (trispecific T-cell engager (TriTEs)) manners. Also, nanobodies can be used as natural killer (NK) cell engagers (BiKEs, TriKEs, and TetraKEs) to create an immune synapse between the tumor and NK cells. Nanobodies can redirect immune cells to attack tumor cells through a chimeric antigen receptor (CAR) incorporating a nanobody against the target antigen. Various cancer antigens have been targeted by nanobody-based CAR-T and CAR-NK cells for treating both hematological and solid malignancies. They can also cause the continuation of immune surveillance against tumor cells by stopping inappropriate inhibition of immune checkpoints. Other roles of nanobodies in cell-mediated cancer immunotherapy include reprogramming macrophages to reduce metastasis and angiogenesis, as well as preventing the severe side effects occurring in cell-mediated immunotherapy. Here, we highlight the critical functions of various immune cells, including T cells, NK cells, and macrophages in the TME, and discuss newly developed immunotherapy methods based on the targeted manipulation of immune cells and TME with nanobodies.
Collapse
Affiliation(s)
- Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Monireh Gholizadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Noei
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedeh Sheila Seyed-Motahari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Sharifzadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,*Correspondence: Zahra Sharifzadeh,
| |
Collapse
|
4
|
Nanobodies targeting ABCC3 for immunotargeted applications in glioblastoma. Sci Rep 2022; 12:22581. [PMID: 36585418 PMCID: PMC9803684 DOI: 10.1038/s41598-022-27161-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The cancer "omics" reveal many clinically relevant alterations that are transforming the molecular characterization of glioblastomas. However, many of these findings are not yet translated into clinical practice due, in part, to the lack of non-invasive biomarkers and the limitations imposed by the blood-brain barrier. Nanobodies, camelid single-domain antibody fragments, emerge as a promising tool for immunotargeted applications for diagnosing and treating glioblastomas. Performing agnostic bioinformatic analysis from glioblastoma patient datasets, we identified ATP Binding Cassette subfamily C member 3 (ABCC3) as a suitable target for immunotargeted applications. The expression of ABCC3 is associated with poor survival and impaired response to temozolomide. Importantly, high expression of ABCC3 is restricted to glioblastoma, with negligible levels in healthy brain tissue, and further correlates with tumor grade and stemness markers. We identified three immunogenic epitopes of ABCC3 which were used to isolate nanobodies from a glioblastoma-specific phage-display nanobody library. Two nanobodies targeting ABCC3 (NbA42 and NbA213) were further characterized and demonstrated in vivo selective recognition of ABCC3 in glioblastoma xenograft mouse models upon systemic administration. We designate NbA42 and NbA213 as new candidates to implement immunotargeted applications guiding a more personalized and precise diagnosis, monitoring, and treatment of glioblastoma patients.
Collapse
|
5
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Al-Baradie RS. Nanobodies as versatile tools: A focus on targeted tumor therapy, tumor imaging and diagnostics. Hum Antibodies 2021; 28:259-272. [PMID: 32831197 DOI: 10.3233/hab-200425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monoclonal antibodies and vaccines have widely been studied for the immunotherapy of cancer, though their large size appears to limit their functionality in solid tumors, in large part due to unique properties of tumor microenvironment. Smaller formats of antibodies have been developed to throw such restrictions. These small format antibodies include antigen binding fragments, single-chain variable fragments, single variable domain of camelid antibody (so-called nanobody (Nb) or VHH). Since their serendipitous discovery, nanobodies have been studies at length in the fields of research, diagnostics and therapy. These antigen binding fragments, originating from camelid heavy-chain antibodies, possess unusual hallmarks in terms of (small) size, stability, solubility and specificity, hence allowing cost-effective production and sometimes out performing monoclonal antibodies. In addition, these small camelid heavy-chain antibodies are highly adaptable tools for cancer research as they enable specific modulation of targets, enzymatic and non-enzymatic proteins alike. Molecular imaging studies benefit from the rapid, homogeneous tumor accumulation of nanobodies and their fast blood clearance, permitting previously unattainable fast tumor visualization. Moreover, they are endowed with considerable therapeutic potential as inhibitors of receptor-ligand pairs and deliverers of drugs or drug-loaded nanoparticles towards tumors. In this review, we shed light on the current status of nanobodies in diagnosis and imaging of tumor and exploiting nanobodies revert immunosuppressive events, modulation of immune checkpoints, and as deliverers of drugs for targeted tumor therapy.
Collapse
|
7
|
Aghamollaei H, Ghanei M, Rasaee MJ, Latifi AM, Bakherad H, Fasihi-Ramandi M, Taheri RA, Gargari SLM. Isolation and characterization of a novel nanobody for detection of GRP78 expressing cancer cells. Biotechnol Appl Biochem 2021; 68:239-246. [PMID: 32270531 DOI: 10.1002/bab.1916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/25/2020] [Indexed: 11/07/2022]
Abstract
Glucose-regulated protein 78 (GRP78) is an endoplasmic reticulum (ER) chaperone that has been shown that is overexpressed in cancer cells. Overexpression of GRP78 on cancer cells makes this molecule a suitable candidate for cancer detection and targeted therapy. VHH is the binding fragment of camelid heavy-chain antibodies also known as "nanobody." The aim of this study is to isolate and produce a new recombinant nanobody using phage display technique to detect cancer cells. Using the c-terminal domain of GRP78 (CGRP) as an antigen, four rounds of biopanning were performed, and high-affinity binders were selected by ELISA. Their affinity and functionality were characterized by surface plasmon resonance (SPR) cell ELISA and immunocytochemistry. A unique nanobody named V80 was purified. ELISA and SPR showed that this antibody had high specificity and affinity to the GRP78. Immunofluorescence analysis showed that V80 could specifically bind to the HepG2 and A549 cancer cell lines. This novel recombinant nanobody could bind to the cell surface of different cancer cells. After further evaluation, this nanobody can be used as a new tool for cancer detection and tumor therapy.
Collapse
Affiliation(s)
- Hossein Aghamollaei
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Mohammad Latifi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Verhaar ER, Woodham AW, Ploegh HL. Nanobodies in cancer. Semin Immunol 2020; 52:101425. [PMID: 33272897 DOI: 10.1016/j.smim.2020.101425] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/24/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
For treatment and diagnosis of cancer, antibodies have proven their value and now serve as a first line of therapy for certain cancers. A unique class of antibody fragments called nanobodies, derived from camelid heavy chain-only antibodies, are gaining increasing acceptance as diagnostic tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. The small size of nanobodies (∼15 kDa), their stability, ease of manufacture and modification for diverse formats, short circulatory half-life, and high tissue penetration, coupled with excellent specificity and affinity, account for their attractiveness. Here we review applications of nanobodies in the sphere of tumor biology.
Collapse
Affiliation(s)
- Elisha R Verhaar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Andrew W Woodham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
9
|
Yang EY, Shah K. Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics. Front Oncol 2020; 10:1182. [PMID: 32793488 PMCID: PMC7390931 DOI: 10.3389/fonc.2020.01182] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
The development of targeted medicine has greatly expanded treatment options and spurred new research avenues in cancer therapeutics, with monoclonal antibodies (mAbs) emerging as a prevalent treatment in recent years. With mixed clinical success, mAbs still hold significant shortcomings, as they possess limited tumor penetration, high manufacturing costs, and the potential to develop therapeutic resistance. However, the recent discovery of “nanobodies,” the smallest-known functional antibody fragment, has demonstrated significant translational potential in preclinical and clinical studies. This review highlights their various applications in cancer and analyzes their trajectory toward their translation into the clinic.
Collapse
Affiliation(s)
- Emily Y Yang
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| |
Collapse
|
10
|
|
11
|
Janoniene A, Petrikaite V. In Search of Advanced Tumor Diagnostics and Treatment: Achievements and Perspectives of Carbonic Anhydrase IX Targeted Delivery. Mol Pharm 2020; 17:1800-1815. [PMID: 32374612 DOI: 10.1021/acs.molpharmaceut.0c00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The research of how cells sense and adapt the oxygen deficiency has been recognized as worth winning a Nobel Prize in 2019. Understanding hypoxia-driven molecular machinery paved a path for novel strategies in fighting hypoxia-related diseases including cancer. The oxygen depletion inside the tumor provokes HIF-1 dependent gene and protein expression which helps the tumor to survive. For this reason, tumor related molecules are in the spotlight for scientists developing anticancer agents. One such target is carbonic anhydrase IX (CA IX)-a protein located on the outer cell membrane of most hypoxic tumor cells. This offers the opportunity to exploit it as a target for delivery of cytotoxic drugs, dyes, or radioisotopes to cancer cells. Therefore, researchers investigate CA IX specific small molecules and antibodies as tumor-targeting moieties in nanosystems and conjugates which are expected to overcome the limitations of some existing diagnostic and treatment strategies. This review covers the vast majority of CA IX-targeted systems (nanoparticle and conjugate based) for both therapeutic and imaging purposes published up to now. Furthermore, it shows their stage of development and gives an assessment of their clinical translation possibilities.
Collapse
Affiliation(s)
- Agne Janoniene
- Vilnius University Life Science Center, Institute of Biotechnology, LT-10257 Vilnius, Lithuania
| | - Vilma Petrikaite
- Vilnius University Life Science Center, Institute of Biotechnology, LT-10257 Vilnius, Lithuania.,Lithuanian University of Health Sciences, Institute of Cardiology, LT-50162 Kaunas, Lithuania
| |
Collapse
|
12
|
Melis C, Distinto S, Bianco G, Meleddu R, Cottiglia F, Fois B, Taverna D, Angius R, Alcaro S, Ortuso F, Gaspari M, Angeli A, Del Prete S, Capasso C, Supuran CT, Maccioni E. Targeting Tumor Associated Carbonic Anhydrases IX and XII: Highly Isozyme Selective Coumarin and Psoralen Inhibitors. ACS Med Chem Lett 2018; 9:725-729. [PMID: 30034608 DOI: 10.1021/acsmedchemlett.8b00170] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/06/2018] [Indexed: 01/03/2023] Open
Abstract
A small library of psoralen carboxylic acids and their corresponding benzenesulfonamide derivatives were designed and synthesized to evaluate their activity and selectivity toward tumor associated human carbonic anhydrase (hCA) isoforms IX and XII. Both psoralen acids and sulfonamides exhibited potent inhibition of IX and XII isozymes in the nanomolar concentration range. However, psoralen acids resulted as the most selective in comparison with the corresponding benzenesulfonamide derivatives. Our data indicate that the psoralen scaffold is a promising starting point for the design of highly selective tumor associated hCA inhibitors.
Collapse
Affiliation(s)
- Claudia Melis
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Giulia Bianco
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Benedetta Fois
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Domenico Taverna
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, Campus ‘S. Venuta’, Viale Europa, 88100 Catanzaro, Italy
| | - Rossella Angius
- Laboratorio NMR e Tecnologie Bioanalitiche, Sardegna Ricerche, 09010 Pula, Cagliari, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Campus ‘S. Venuta’, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Campus ‘S. Venuta’, Viale Europa, 88100 Catanzaro, Italy
| | - Marco Gaspari
- Department of Experimental and Clinical Medicine, “Magna Græcia” University of Catanzaro, Campus ‘S. Venuta’, Viale Europa, 88100 Catanzaro, Italy
| | - Andrea Angeli
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Claudiu T. Supuran
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
13
|
Bannas P, Hambach J, Koch-Nolte F. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics. Front Immunol 2017; 8:1603. [PMID: 29213270 PMCID: PMC5702627 DOI: 10.3389/fimmu.2017.01603] [Citation(s) in RCA: 398] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Monoclonal antibodies have revolutionized cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. The minimal target recognition module of a conventional antibody is composed of two non-covalently associated variable domains (VH and VL). The proper orientation of these domains is mediated by their hydrophobic interface and is stabilized by their linkage to disulfide-linked constant domains (CH1 and CL). VH and VL domains can be fused via a genetic linker into a single-chain variable fragment (scFv). scFv modules in turn can be fused to one another, e.g., to generate a bispecific T-cell engager, or they can be fused in various orientations to antibody hinge and Fc domains to generate bi- and multispecific antibodies. However, the inherent hydrophobic interaction of VH and VL domains limits the stability and solubility of engineered antibodies, often causing aggregation and/or mispairing of V-domains. Nanobodies (15 kDa) and nanobody-based human heavy chain antibodies (75 kDa) can overcome these limitations. Camelids naturally produce antibodies composed only of heavy chains in which the target recognition module is composed of a single variable domain (VHH or Nb). Advantageous features of nanobodies include their small size, high solubility, high stability, and excellent tissue penetration in vivo. Nanobodies can readily be linked genetically to Fc-domains, other nanobodies, peptide tags, or toxins and can be conjugated chemically at a specific site to drugs, radionuclides, photosensitizers, and nanoparticles. These properties make them particularly suited for specific and efficient targeting of tumors in vivo. Chimeric nanobody-heavy chain antibodies combine advantageous features of nanobodies and human Fc domains in about half the size of a conventional antibody. In this review, we discuss recent developments and perspectives for applications of nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics.
Collapse
Affiliation(s)
- Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Hamburg, Germany
| | - Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Hu Y, Liu C, Muyldermans S. Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy. Front Immunol 2017; 8:1442. [PMID: 29163515 PMCID: PMC5673844 DOI: 10.3389/fimmu.2017.01442] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/17/2017] [Indexed: 01/01/2023] Open
Abstract
The development of innovative targeted therapeutic approaches are expected to surpass the efficacy of current forms of treatments and cause less damage to healthy cells surrounding the tumor site. Since the first development of targeting agents from hybridoma’s, monoclonal antibodies (mAbs) have been employed to inhibit tumor growth and proliferation directly or to deliver effector molecules to tumor cells. However, the full potential of such a delivery strategy is hampered by the size of mAbs, which will obstruct the targeted delivery system to access the tumor tissue. By serendipity, a new kind of functional homodimeric antibody format was discovered in camelidae, known as heavy-chain antibodies (HCAbs). The cloning of the variable domain of HCAbs produces an attractive minimal-sized alternative for mAbs, referred to as VHH or nanobodies (Nbs). Apart from their dimensions in the single digit nanometer range, the unique characteristics of Nbs combine a high stability and solubility, low immunogenicity and excellent affinity and specificity against all possible targets including tumor markers. This stimulated the development of tumor-targeted therapeutic strategies. Some autonomous Nbs have been shown to act as antagonistic drugs, but more importantly, the targeting capacity of Nbs has been exploited to create drug delivery systems. Obviously, Nb-based targeted cancer therapy is mainly focused toward extracellular tumor markers, since the membrane barrier prevents antibodies to reach the most promising intracellular tumor markers. Potential strategies, such as lentiviral vectors and bacterial type 3 secretion system, are proposed to deliver target-specific Nbs into tumor cells and to block tumor markers intracellularly. Simultaneously, Nbs have also been employed for in vivo molecular imaging to diagnose diseased tissues and to monitor the treatment effects. Here, we review the state of the art and focus on recent developments with Nbs as targeting moieties for drug delivery systems in cancer therapy and cancer imaging.
Collapse
Affiliation(s)
- Yaozhong Hu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Changxiao Liu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
15
|
van Brussel ASA, Adams A, Oliveira S, Dorresteijn B, El Khattabi M, Vermeulen JF, van der Wall E, Mali WPTM, Derksen PWB, van Diest PJ, van Bergen En Henegouwen PMP. Hypoxia-Targeting Fluorescent Nanobodies for Optical Molecular Imaging of Pre-Invasive Breast Cancer. Mol Imaging Biol 2017; 18:535-44. [PMID: 26589824 PMCID: PMC4927611 DOI: 10.1007/s11307-015-0909-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE The aim of this work was to develop a CAIX-specific nanobody conjugated to IRDye800CW for molecular imaging of pre-invasive breast cancer. PROCEDURES CAIX-specific nanobodies were selected using a modified phage display technology, conjugated site-specifically to IRDye800CW and evaluated in a xenograft breast cancer mouse model using ductal carcinoma in situ cells (DCIS). RESULTS Specific anti-CAIX nanobodies were obtained. Administration of a CAIX-specific nanobody into mice with DCIS xenografts overexpressing CAIX showed after 2 h a mean tumor-to-normal tissue ratio (TNR) of 4.3 ± 0.6, compared to a TNR of 1.4 ± 0.2 in mice injected with the negative control nanobody R2-IR. In DCIS mice, a TNR of 1.8 ± 0.1 was obtained. Biodistribution studies demonstrated an uptake of 14.0 ± 1.1 %I.D./g in DCIS + CAIX tumors, 4.6 ± 0.8 %I.D./g in DCIS tumors, while 2.0 ± 0.2 %I.D./g was obtained with R2-IR. CONCLUSIONS These results demonstrate the successful generation of a CAIX-specific nanobody-IRDye800CW conjugate that can be used for rapid imaging of (pre-)invasive breast cancer.
Collapse
Affiliation(s)
- Aram S A van Brussel
- Division of Cell Biology, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arthur Adams
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabrina Oliveira
- Division of Cell Biology, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bram Dorresteijn
- Division of Cell Biology, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | - Jeroen F Vermeulen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elsken van der Wall
- Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Willem P Th M Mali
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul M P van Bergen En Henegouwen
- Division of Cell Biology, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Rashidi SK, Mousavi Gargari SL, Ebrahimizadeh W. Targeting Colorectal Cancer Cell Lines Using Nanobodies; AgSK1as a Potential Target. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:78-86. [PMID: 29845054 DOI: 10.15171/ijb.1472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 09/04/2016] [Accepted: 06/19/2017] [Indexed: 01/08/2023]
Abstract
Background: Colorectal cancer is the third most common type of aggressive cancers. Chemotherapy, surgery, and radiotherapy are the common therapeutic options for treating this cancer. Due to the adverse side-effects of these methods, immunotherapy is considered as an appropriate alternative therapeutic option. Treatment through the application of monoclonal antibodies is considered as a novel alternative therapeutic method for cancers. The variable fragments of the antibodies' heavy chain or VHHs have a wide application in molecular biology and biotechnology. VHHs are compatible with the phage display technology which allows rapid and high throughput screening for antibodies isolation. Objectives: We aimed to use naive VHH phage library to isolate a specific nanobody against colorectal tumor associated antigen; the AgSK1. Materials and Methods: In this research, naive VHH phage library was panned against two colorectal cell lines; Ls174T and HT29 expressing different levels of AgSK1 tumor associated marker. The high affinity binders were selected and subcloned for higher expression levels of the VHH. The affinity and specificity of the isolated VHH were tested using ELISA. The reactivity of the VHH toward cancer cells was analyzed by competitive ELISA applying sera isolated from colorectal cancer patients. Results: Results show that the isolated VHH recognizes and binds to the colorectal cancer cells with a high affinity. Moreover, the isolated nanobody is able to compete with the antibodies in the patient sera for the binding to the cancer cells. Conclusions: Results suggest that this nanobody has a specific reaction toward colorectal cells and can be used for further investigation on the tumor associated antigens or production of mimotopes useful for immunotherapy.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | | | - Walead Ebrahimizadeh
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| |
Collapse
|
17
|
Galán A, Comor L, Horvatić A, Kuleš J, Guillemin N, Mrljak V, Bhide M. Library-based display technologies: where do we stand? MOLECULAR BIOSYSTEMS 2017; 12:2342-58. [PMID: 27306919 DOI: 10.1039/c6mb00219f] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past two decades, library-based display technologies have been staggeringly optimized since their appearance in order to mimic the process of natural molecular evolution. Display technologies are essential for the isolation of specific high-affinity binding molecules (proteins, polypeptides, nucleic acids and others) for diagnostic and therapeutic applications in cancer, infectious diseases, autoimmune, neurodegenerative, inflammatory pathologies etc. Applications extend to other fields such as antibody and enzyme engineering, cell-free protein synthesis and the discovery of protein-protein interactions. Phage display technology is the most established of these methods but more recent fully in vitro alternatives, such as ribosome display, mRNA display, cis-activity based (CIS) display and covalent antibody display (CAD), as well as aptamer display and in vitro compartmentalization, offer advantages over phage in library size, speed and the display of unnatural amino acids and nucleotides. Altogether, they have produced several molecules currently approved or in diverse stages of clinical or preclinical testing and have provided researchers with tools to address some of the disadvantages of peptides and nucleotides such as their low affinity, low stability, high immunogenicity and difficulty to cross membranes. In this review we assess the fundamental technological features and point out some recent advances and applications of display technologies.
Collapse
Affiliation(s)
- Asier Galán
- ERA Chair FP7, Internal diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Lubos Comor
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Anita Horvatić
- ERA Chair FP7, Internal diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Josipa Kuleš
- ERA Chair FP7, Internal diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Nicolas Guillemin
- ERA Chair FP7, Internal diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Vladimir Mrljak
- ERA Chair FP7, Internal diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Mangesh Bhide
- ERA Chair FP7, Internal diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia. and Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia and Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
18
|
Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 2016; 21:1076-113. [DOI: 10.1016/j.drudis.2016.04.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/26/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022]
|
19
|
Van Audenhove I, Gettemans J. Nanobodies as Versatile Tools to Understand, Diagnose, Visualize and Treat Cancer. EBioMedicine 2016; 8:40-48. [PMID: 27428417 PMCID: PMC4919472 DOI: 10.1016/j.ebiom.2016.04.028] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/29/2022] Open
Abstract
Since their discovery, nanobodies have been used extensively in the fields of research, diagnostics and therapy. These antigen binding fragments, originating from Camelid heavy-chain antibodies, possess unusual hallmarks in terms of (small) size, stability, solubility and specificity, hence allowing cost-effective production and sometimes outperforming monoclonal antibodies. In this review, we evaluate the current status of nanobodies to study, diagnose, visualize or inhibit cancer-specific proteins and processes. Nanobodies are highly adaptable tools for cancer research as they enable specific modulation of targets, enzymatic and non-enzymatic proteins alike. Molecular imaging studies benefit from the rapid, homogeneous tumor accumulation of nanobodies and their fast blood clearance, permitting previously unattainable fast tumor visualization. Moreover, they are endowed with considerable therapeutic potential as inhibitors of receptor-ligand pairs and deliverers of drugs or drug-loaded nanoparticles towards tumors. More in vivo and clinical studies are however eagerly awaited to unleash their full potential.
Collapse
Affiliation(s)
- Isabel Van Audenhove
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Jan Gettemans
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Belgium.
| |
Collapse
|
20
|
Kijanka M, Dorresteijn B, Oliveira S, van Bergen en Henegouwen PMP. Nanobody-based cancer therapy of solid tumors. Nanomedicine (Lond) 2015; 10:161-74. [PMID: 25597775 DOI: 10.2217/nnm.14.178] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The development of tumor-targeted therapies using monoclonal antibodies has been successful during the last 30 years. Nevertheless, the efficacy of antibody-based therapy is still limited and further improvements are eagerly awaited. One of the promising novel developments that may overcome the drawbacks of monoclonal antibody-based therapies is the employment of nanobodies. Current nanobody-based therapeutics can be divided into three different platforms with nanobodies functioning as: receptor antagonists; targeting moieties of effector domains; or targeting molecules on the surface of nanoparticles. In this article, we describe factors that affect their performance at three different stages: their systemic circulation upon intravenous injection; their extravasation and tumor penetration; and, finally, their interaction with target molecules.
Collapse
Affiliation(s)
- Marta Kijanka
- Division of Cell Biology, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
21
|
Production of Novel VHH Nanobody Inhibiting Angiogenesis by Targeting Binding Site of VEGF. Appl Biochem Biotechnol 2015; 176:1985-95. [DOI: 10.1007/s12010-015-1695-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 05/28/2015] [Indexed: 12/31/2022]
|
22
|
Sohi AN, Rajabibazl M, Rasaee MJ, Omidfar K. The use of camel antibodies in development of EGFRvIII enzyme-linked immunosorbent assay. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815030163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Li M, Zhu M, Zhang C, Liu X, Wan Y. Uniform orientation of biotinylated nanobody as an affinity binder for detection of Bacillus thuringiensis (Bt) Cry1Ac toxin. Toxins (Basel) 2014; 6:3208-22. [PMID: 25474492 PMCID: PMC4280530 DOI: 10.3390/toxins6123208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/10/2014] [Accepted: 11/17/2014] [Indexed: 12/26/2022] Open
Abstract
Nanobodies are the smallest natural fragments with useful properties such as high affinity, distinct paratope and high stability, which make them an ideal tool for detecting target antigens. In this study, we generated and characterized nanobodies against the Cry1Ac toxin and applied them in a biotin-streptavidin based double antibodies (nanobodies) sandwich-ELISA (DAS-ELISA) assay. After immunizing a camel with soluble Cry1Ac toxin, a phage displayed library was constructed to generate Nbs against the Cry1Ac toxin. Through successive rounds of affinity bio-panning, four nanobodies with greatest diversity in CDR3 sequences were obtained. After affinity determination and conjugating to HRP, two nanobodies with high affinity which can recognize different epitopes of the same antigen (Cry1Ac) were selected as capture antibody (Nb61) and detection antibody (Nb44). The capture antibody (Nb61) was biotinylated in vivo for directional immobilization on wells coated with streptavidin matrix. Both results of specificity analysis and thermal stability determination add support for reliability of the following DAS-ELISA with a minimum detection limit of 0.005 μg·mL-1 and a working range 0.010-1.0 μg·mL-1. The linear curve displayed an acceptable correlation coefficient of 0.9976. These results indicated promising applications of nanobodies for detection of Cry1Ac toxin with biotin-streptavidin based DAS-ELISA system.
Collapse
Affiliation(s)
- Min Li
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Sipailou NO. 2, Southeast University, Nanjing 210096, China.
| | - Min Zhu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Sipailou NO. 2, Southeast University, Nanjing 210096, China.
| | - Cunzheng Zhang
- Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Xianjin Liu
- Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yakun Wan
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Sipailou NO. 2, Southeast University, Nanjing 210096, China.
| |
Collapse
|