1
|
Yau AWN, Chu SYC, Yap WH, Wong CL, Chia AYY, Tang YQ. Phage display screening in breast cancer: From peptide discovery to clinical applications. Life Sci 2024; 357:123077. [PMID: 39332485 DOI: 10.1016/j.lfs.2024.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Breast cancer is known as the most common type of cancer found in women and a leading cause of cancer death in women, with the global incidence only increasing. Breast cancer in Malaysia is also unfortunately the most prevalent in Malaysian women. Many treatment options are available for breast cancer, but there is increasing resistance developed against treatment and increased recurrence risk, emphasizing the need for new treatment options. This review will focus on the applications of phage display screening in the context of breast cancer. Phage display screening can facilitate the drug discovery process by providing rapid screening and isolation of peptides that bind to targets of interest with high specificity. Peptides derived from phage display target various types of proteins involved in breast cancer, including HER2, C5AR1, p53 and PRDM14, either for therapeutic or diagnostic purposes. Different approaches were employed as well to produce potential peptides using radiolabelling and conjugation techniques. Promising results were reported for in vitro and in vivo studies utilizing peptides derived from phage display screening. Further optimization of the protocols and factors to consider are required to mitigate the challenges involved with phage display screening of peptides for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ashlyn Wen Ning Yau
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Sylvester Yee Chun Chu
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Wei Hsum Yap
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Chuan Loo Wong
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Adeline Yoke Yin Chia
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Yin-Quan Tang
- School of Bioscience, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact lab, Taylor's University, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Pung HS, Tye GJ, Leow CH, Ng WK, Lai NS. Generation of peptides using phage display technology for cancer diagnosis and molecular imaging. Mol Biol Rep 2023; 50:4653-4664. [PMID: 37014570 PMCID: PMC10072011 DOI: 10.1007/s11033-023-08380-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Cancer is one of the leading causes of mortality worldwide; nearly 10 million people died from it in 2020. The high mortality rate results from the lack of effective screening approaches where early detection cannot be achieved, reducing the chance of early intervention to prevent cancer development. Non-invasive and deep-tissue imaging is useful in cancer diagnosis, contributing to a visual presentation of anatomy and physiology in a rapid and safe manner. Its sensitivity and specificity can be enhanced with the application of targeting ligands with the conjugation of imaging probes. Phage display is a powerful technology to identify antibody- or peptide-based ligands with effective binding specificity against their target receptor. Tumour-targeting peptides exhibit promising results in molecular imaging, but the application is limited to animals only. Modern nanotechnology facilitates the combination of peptides with various nanoparticles due to their superior characteristics, rendering novel strategies in designing more potent imaging probes for cancer diagnosis and targeting therapy. In the end, a myriad of peptide candidates that aimed for different cancers diagnosis and imaging in various forms of research were reviewed.
Collapse
Affiliation(s)
- Hai Shin Pung
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Woei Kean Ng
- Faculty of Medicine, AIMST University, Bedong, Kedah, 08100, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
Azari M, Bahreini F, Uversky VN, Rezaei N. Current therapeutic approaches and promising perspectives of using bioengineered peptides in fighting chemoresistance in triple-negative breast cancer. Biochem Pharmacol 2023; 210:115459. [PMID: 36813121 DOI: 10.1016/j.bcp.2023.115459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Breast cancer is a collation of malignancies that manifest in the mammary glands at the early stages. Among breast cancer subtypes, triple-negative breast cancer (TNBC) shows the most aggressive behavior, with apparent stemness features. Owing to the lack of response to hormone therapy and specific targeted therapies, chemotherapy remains the first line of the TNBC treatment. However, the acquisition of resistance to chemotherapeutic agents increase therapy failure, and promotes cancer recurrence and distant metastasis. Invasive primary tumors are the birthplace of cancer burden, though metastasis is a key attribute of TNBC-associated morbidity and mortality. Targeting the chemoresistant metastases-initiating cells via specific therapeutic agents with affinity to the upregulated molecular targets is a promising step in the TNBC clinical management. Exploring the capacity of peptides as biocompatible entities with the specificity of action, low immunogenicity, and robust efficacy provides a principle for designing peptide-based drugs capable of increasing the efficacy of current chemotherapy agents for selective targeting of the drug-tolerant TNBC cells. Here, we first focus on the resistance mechanisms that TNBC cells acquire to evade the effect of chemotherapeutic agents. Next, the novel therapeutic approaches employing tumor-targeting peptides to exploit the mechanisms of drug resistance in chemorefractory TNBC are described.
Collapse
Affiliation(s)
- Mandana Azari
- School of Chemical Engineering-Biotechnology, College of Engineering, University of Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Bahreini
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Parrasia S, Szabò I, Zoratti M, Biasutto L. Peptides as Pharmacological Carriers to the Brain: Promises, Shortcomings and Challenges. Mol Pharm 2022; 19:3700-3729. [PMID: 36174227 DOI: 10.1021/acs.molpharmaceut.2c00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
5
|
Foglizzo V, Marchiò S. Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy. Cancers (Basel) 2022; 14:cancers14102473. [PMID: 35626078 PMCID: PMC9139219 DOI: 10.3390/cancers14102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Conventional antitumor drugs have limitations, including poor water solubility and lack of targeting capability, with consequent non-specific distribution, systemic toxicity, and low therapeutic index. Nanotechnology promises to overcome these drawbacks by exploiting the physical properties of diverse nanocarriers that can be linked to moieties with binding selectivity for cancer cells. The use of nanoparticles as therapeutic formulations allows a targeted delivery and a slow, controlled release of the drug(s), making them tunable modules for applications in precision medicine. In addition, nanoparticles are also being developed as cancer vaccines, offering an opportunity to increase both cellular and humoral immunity, thus providing a new weapon to beat cancer. Abstract Malignant tumors originate from a combination of genetic alterations, which induce activation of oncogenes and inactivation of oncosuppressor genes, ultimately resulting in uncontrolled growth and neoplastic transformation. Chemotherapy prevents the abnormal proliferation of cancer cells, but it also affects the entire cellular network in the human body with heavy side effects. For this reason, the ultimate aim of cancer therapy remains to selectively kill cancer cells while sparing their normal counterparts. Nanoparticle formulations have the potential to achieve this aim by providing optimized drug delivery to a pathological site with minimal accumulation in healthy tissues. In this review, we will first describe the characteristics of recently developed nanoparticles and how their physical properties and targeting functionalization are exploited depending on their therapeutic payload, route of delivery, and tumor type. Second, we will analyze how nanoparticles can overcome multidrug resistance based on their ability to combine different therapies and targeting moieties within a single formulation. Finally, we will discuss how the implementation of these strategies has led to the generation of nanoparticle-based cancer vaccines as cutting-edge instruments for cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Foglizzo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence: ; Tel.: +39-01199333239
| |
Collapse
|
6
|
Du J, Shao Y, Hu Y, Chen Y, Cang J, Chen X, Pei W, Miao F, Shen Y, Muddassir M, Zhang Y, Zhang J, Teng G. Multifunctional Liposomes Enable Active Targeting and Twinfilin 1 Silencing to Reverse Paclitaxel Resistance in Brain Metastatic Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23396-23409. [PMID: 33982563 DOI: 10.1021/acsami.1c02822] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Paclitaxel (PTX) is a first-line chemotherapeutic drug for breast cancer, but PTX resistance often occurs in metastatic breast cancer. In addition, due to the poor targeting of chemotherapeutic drugs and the presence of the blood-brain barrier (BBB), it is hard to effectively treat brain metastatic breast cancer using paclitaxel. Thus, it is urgent to develop an effective drug delivery system for the treatment of brain metastatic breast cancer. The current study found that TWF1 gene, an epithelial-mesenchymal transition-associated gene, was overexpressed in brain metastatic breast cancer (231-BR) cells and was associated with the PTX resistance of 231-BR cells. Knockdown of TWF1 by small interference RNA (siRNA) in 231-BR cells could effectively increase the sensitivity of brain metastatic breast cancer cells to paclitaxel. Then, a liposome-based drug delivery system was developed for PTX delivery across BBB, enhancing PTX sensitivity and brain metastases targeting via BRBP1 peptide modification. The results showed that BRBP1-modified liposomes could effectively cross the BBB, specifically accumulate in brain metastases, and effectively interfere TWF1 gene expression in vitro and in vivo, and thus they enhanced proliferation inhibition, cell cycle arrest, and apoptosis induction, thereby inhibiting the formation and growth of brain metastases. In summary, our results indicated that BRBP1-modified and PTX- and TWF1 siRNA-loaded liposomes have the potential for the treatment of brain metastatic breast cancer, which lays the foundation for the development of a new targeted drug delivery system.
Collapse
Affiliation(s)
- Jiawei Du
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Yong Shao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Yue Hu
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Yiwen Chen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Jiehui Cang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Xin Chen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Wenqin Pei
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Fengqin Miao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Yuqing Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, KSA
| | - Ying Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing 210009, People's Republic of China
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Gaojun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| |
Collapse
|
7
|
Du J, Zhang Y, Jin Z, Wu H, Cang J, Shen Y, Miao F, Zhang A, Zhang Y, Zhang J, Teng G. Targeted NIRF/MR dual-mode imaging of breast cancer brain metastasis using BRBP1-functionalized ultra-small iron oxide nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111188. [PMID: 32806329 DOI: 10.1016/j.msec.2020.111188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022]
Abstract
Tumor metastasis to brain is the main clinical manifestation of patients with advanced breast cancer, leading to poor survival prognosis. In order to detect the early incidence of brain metastasis, it is urgent to develop hypersensitive contrast agents for multimode imaging. In this study, PEG-phospholipids coated, a phage play derived peptide, BRBP1 peptide modified ultra-small iron oxide nanoparticles were prepared for targeted NIRF and MR imaging of breast cancer brain metastasis. The nanoparticles showed 10 nm core-shell, high relaxivity values and photon emission efficiency in vitro. The nanoparticles offered a T2 contrast imaging effect and near-infrared fluorescent signal enhancement. Compared with control peptide modified nanoparticles, the MR/NIRF imaging signal of BRBP1-modified nanoparticles in tumor tissue was significantly enhanced, which should be induced by the targeting ability of BRBP1 peptide. These results indicated that BRBP1-SPIO@mPEG (DiR) nanoparticles could be applied as an effective targeted delivery system for diagnosis of breast cancer brain metastasis.
Collapse
Affiliation(s)
- Jiawei Du
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Ying Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Zhangya Jin
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Hao'an Wu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China
| | - Jiehui Cang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yuqing Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Fengqin Miao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School, Southeast University, Nanjing, China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China.
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China; Jiangsu key laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| | - Gaojun Teng
- Jiangsu key laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Hu C, Huang Y, Chen Y. Targeted Modification of the Cationic Anticancer Peptide HPRP-A1 with iRGD To Improve Specificity, Penetration, and Tumor-Tissue Accumulation. Mol Pharm 2019; 16:561-572. [PMID: 30592418 DOI: 10.1021/acs.molpharmaceut.8b00854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The chimeric peptide HPRP-A1-iRGD, composed of a chemically conjugated tumor-homing/penetration domain (iRGD) and a cationic anticancer peptide domain (HPRP-A1), was used to study the effect of targeted modification to enhance the peptide's specificity, penetration, and tumor accumulation ability. The iRGD domain exhibits tumor-targeting and tumor-penetrating activities by specifically binding to the neuropilin-1 receptor. Acting as a homing/penetration domain, iRGD contributed to enhancing the tumor selectivity, permeability, and targeting of HPRP-A1 by targeted receptor dependence. As the anticancer active domain, HPRP-A1 kills cancer cells by disrupting the cell membrane and inducing apoptosis. The in vitro membrane selectivity toward cancer cells, such as A549 and MDA-MB-23, and human umbilical vein endothelial cells (HUVECs), normal cells, the penetrability assessment in the A549 3D multiple cell sphere model, and the in vivo tumor-tissue accumulation test in the A549 xenograft model indicated that HPRP-A1-iRGD exhibited significant increases in the selectivity toward membranes that highly express NRP-1, the penetration distance in 3D multiple cell spheres, and the accumulation in tumor tissues after intravenous injection, compared with HPRP-A1 alone. The mechanism of the enhanced targeting ability of HPRP-A1-iRGD was demonstrated by the pull-down assay and biolayer interferometry test, which indicated that the chimeric peptide could specifically bind to the neuropilin-1 protein with high affinity. We believe that chemical conjugation with iRGD to increase the specificity, penetration, and tumor-tissue accumulation of HPRP-A1 is an effective and promising approach for the targeted modification of peptides as anticancer therapeutics.
Collapse
Affiliation(s)
- Cuihua Hu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130021 , China.,School of Life Sciences , Jilin University , Changchun 130021 , China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130021 , China.,School of Life Sciences , Jilin University , Changchun 130021 , China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130021 , China.,School of Life Sciences , Jilin University , Changchun 130021 , China
| |
Collapse
|
9
|
Kuzmicheva GA, Belyavskaya VA. Peptide phage display in biotechnology and biomedicine. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817010061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 2017; 24:21. [PMID: 28320393 PMCID: PMC5359827 DOI: 10.1186/s12929-017-0328-x] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer along with cardiovascular disease are the main causes of death in the industrialised countries around the World. Conventional cancer treatments are losing their therapeutic uses due to drug resistance, lack of tumour selectivity and solubility and as such there is a need to develop new therapeutic agents. Therapeutic peptides are a promising and a novel approach to treat many diseases including cancer. They have several advantages over proteins or antibodies: as they are (a) easy to synthesise, (b) have a high target specificity and selectivity and (c) have low toxicity. Therapeutic peptides do have some significant drawbacks related to their stability and short half-life. In this review, strategies used to overcome peptide limitations and to enhance their therapeutic effect will be compared. The use of short cell permeable peptides that interfere and inhibit protein-protein interactions will also be evaluated.
Collapse
Affiliation(s)
- Susan Marqus
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
11
|
Kuzmicheva GA, Belyavskaya VA. [Peptide phage display in biotechnology and biomedicine]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:481-495. [PMID: 27797323 DOI: 10.18097/pbmc20166205481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To date peptide phage display is one of the most common combinatorial methods used for identifying specific peptide ligands. Phage display peptide libraries containing billions different clones successfully used for selection of ligands with high affinity and selectivity toward wide range of targets including individual proteins, bacteria, viruses, spores, different kind of cancer cells and variety of nonorganic targets (metals, alloys, semiconductors etc.) Success of using filamentous phage in phage display technologies relays on the robustness of phage particles and a possibility to genetically modify its DNA to construct new phage variants with novel properties. In this review we are discussing characteristics of the most known non-commercial peptide phage display libraries of different formats (landscape libraries in particular) and their successful applications in several fields of biotechnology and biomedicine: discovery of peptides with diagnostic values against different pathogens, discovery and using of peptides recognizing cancer cells, trends in using of phage display technologies in human interactome studies, application of phage display technologies in construction of novel nano materials.
Collapse
Affiliation(s)
- G A Kuzmicheva
- Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, Russia; XBiotech USA, Austin, TX, USA
| | - V A Belyavskaya
- Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
12
|
Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 2017; 18:2. [PMID: 28061847 PMCID: PMC5219689 DOI: 10.1186/s12865-016-0187-3] [Citation(s) in RCA: 464] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Background A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. Methods This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). Results In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. Conclusions A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.
Collapse
Affiliation(s)
- Lan Lin
- Department of Bioengineering, Medical School, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
13
|
Nobrega FL, Ferreira D, Martins IM, Suarez-Diez M, Azeredo J, Kluskens LD, Rodrigues LR. Screening and characterization of novel specific peptides targeting MDA-MB-231 claudin-low breast carcinoma by computer-aided phage display methodologies. BMC Cancer 2016; 16:881. [PMID: 27842517 PMCID: PMC5109716 DOI: 10.1186/s12885-016-2937-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/25/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Claudin-low breast carcinoma represents 19% of all breast cancer cases and is characterized by an aggressive progression with metastatic nature and high rates of relapse. Due to a lack of known specific molecular biomarkers for this breast cancer subtype, there are no targeted therapies available, which results in the worst prognosis of all breast cancer subtypes. Hence, the identification of novel biomarkers for this type of breast cancer is highly relevant for an early diagnosis. Additionally, claudin-low breast carcinoma peptide ligands can be used to design powerful drug delivery systems that specifically target this type of breast cancer. METHODS In this work, we propose the identification of peptides for the specific recognition of MDA-MB-231, a cell line representative of claudin-low breast cancers, using phage display (both conventional panning and BRASIL). Binding assays, such as phage forming units and ELISA, were performed to select the most interesting peptides (i.e., specific to the target cells) and bioinformatics approaches were applied to putatively identify the biomarkers to which these peptides bind. RESULTS Two peptides were selected using this methodology specifically targeting MDA-MB-231 cells, as demonstrated by a 4 to 9 log higher affinity as compared to control cells. The use of bioinformatics approaches provided relevant insights into possible cell surface targets for each peptide identified. CONCLUSIONS The peptides herein identified may contribute to an earlier detection of claudin-low breast carcinomas and possibly to develop more individualized therapies.
Collapse
Affiliation(s)
- Franklin L Nobrega
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Débora Ferreira
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ivone M Martins
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Joana Azeredo
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Leon D Kluskens
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Lígia R Rodrigues
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
14
|
Silva VL, Ferreira D, Nobrega FL, Martins IM, Kluskens LD, Rodrigues LR. Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer. PLoS One 2016; 11:e0161290. [PMID: 27548261 PMCID: PMC4993384 DOI: 10.1371/journal.pone.0161290] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/27/2016] [Indexed: 11/30/2022] Open
Abstract
The use of bacteriophages to select novel ligands has been widely explored for cancer therapy. Their application is most warranted in cancer subtypes lacking knowledge on how to target the cancer cells in question, such as the triple negative breast cancer, eventually leading to the development of alternative nanomedicines for cancer therapeutics. Therefore, the following study aimed to select and characterize novel peptides for a triple negative breast cancer murine mammary carcinoma cell line– 4T1. Using phage display, 7 and 12 amino acid random peptide libraries were screened against the 4T1 cell line. A total of four rounds, plus a counter-selection round using the 3T3 murine fibroblast cell line, was performed. The enriched selective peptides were characterized and their binding capacity towards 4T1 tissue samples was confirmed by immunofluorescence and flow cytometry analysis. The selected peptides (4T1pep1 –CPTASNTSC and 4T1pep2—EVQSSKFPAHVS) were enriched over few rounds of selection and exhibited specific binding to the 4T1 cell line. Interestingly, affinity to the human MDA-MB-231 cell line was also observed for both peptides, promoting the translational application of these novel ligands between species. Additionally, bioinformatics analysis suggested that both peptides target human Mucin-16. This protein has been implicated in different types of cancer, as it is involved in many important cellular functions. This study strongly supports the need of finding alternative targeting systems for TNBC and the peptides herein selected exhibit promising future application as novel homing peptides for breast cancer therapy.
Collapse
Affiliation(s)
- Vera L. Silva
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Debora Ferreira
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Franklin L. Nobrega
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Ivone M. Martins
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Leon D. Kluskens
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal
- * E-mail:
| |
Collapse
|
15
|
Stern LA, Schrack IA, Johnson SM, Deshpande A, Bennett NR, Harasymiw LA, Gardner MK, Hackel BJ. Geometry and expression enhance enrichment of functional yeast-displayed ligands via cell panning. Biotechnol Bioeng 2016; 113:2328-41. [PMID: 27144954 DOI: 10.1002/bit.26001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/23/2016] [Accepted: 04/25/2016] [Indexed: 01/10/2023]
Abstract
Yeast surface display has proven to be an effective tool in the discovery and evolution of ligands with new or improved binding activity. Selections for binding activity are generally carried out using immobilized or fluorescently labeled soluble domains of target molecules such as recombinant ectodomain fragments. While this method typically provides ligands with high affinity and specificity for the soluble molecular target, translation to binding true membrane-bound cellular target is commonly problematic. Direct selections against mammalian cell surfaces can be carried out either exclusively or in combination with soluble target-based selections to further direct towards ligands for genuine cellular target. Using a series of fibronectin domain, affibody, and Gp2 ligands and human cell lines expressing a range of their targets, epidermal growth factor receptor and carcinoembryonic antigen, this study quantitatively identifies the elements that dictate ligand enrichment and yield. Most notably, extended flexible linkers between ligand and yeast enhance enrichment ratios from 1.4 ± 0.8 to 62 ± 57 for a low-affinity (>600 nM) binder on cells with high target expression and from 14 ± 13 to 74 ± 25 for a high-affinity binder (2 nM) on cells with medium valency. Inversion of the yeast display fusion from C-terminal display to N-terminal display still enables enrichment albeit with 40-97% reduced efficacy. Collectively, this study further enlightens the conditions-while highlighting new approaches-that yield successful enrichment of yeast-displayed binding ligands via panning on mammalian cells. Biotechnol. Bioeng. 2016;113: 2328-2341. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lawrence A Stern
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455
| | - Ian A Schrack
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455
| | - Sadie M Johnson
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455
| | - Aakash Deshpande
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455
| | - Nathaniel R Bennett
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455
| | - Lauren A Harasymiw
- Department of Genetics, Cell Biology, and Development, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota, 55455.
| |
Collapse
|
16
|
Fu B, Long W, Zhang Y, Zhang A, Miao F, Shen Y, Pan N, Gan G, Nie F, He Y, Zhang J, Teng G. Enhanced antitumor effects of the BRBP1 compound peptide BRBP1-TAT-KLA on human brain metastatic breast cancer. Sci Rep 2015; 5:8029. [PMID: 25619721 PMCID: PMC4306141 DOI: 10.1038/srep08029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/16/2014] [Indexed: 12/17/2022] Open
Abstract
Novel molecularly targeted agents that block the development and metastasis of human brain metastatic breast cancer hold great promise for their translational value. In this study, we constructed a novel targeting composite peptide BRBP1-TAT-KLA comprising of three elements: a brain metastatic breast carcinoma cell (231-BR)-binding peptide BRBP1, a cell penetrating peptide TAT, and a proapoptotic peptide KLA. This composite peptide efficiently internalized in 231-BR cells and consequently induced mitochondrial damage and cellular apoptosis. Exposure of 231-BR cells to BRBP1-TAT-KLA significantly decreased cell viability and increased apoptosis compared with the cells treated with the control peptides. In vivo relevance of these findings was further corroborated in the 231-BR tumor-bearing mice that demonstrated significantly delayed tumor development and metastasis following administration of BRBP1-TAT-KLA compared with those treated with TAT-KLA alone. Interestingly, BRBP1-TAT-KLA inhibited the formation of both large and micro-metastases, while TAT-KLA alone failed to significantly reduce micro-metastases in the breast cancer brain metastasis mice. BRBP1-TAT-KLA selectively homed to the tumors in vivo where it induced cellular apoptosis without significant toxicity on non-tumor tissues. Our findings therefore demonstrated the enhanced antitumor effects of the BRBP1 compound peptide BRBP1-TAT-KLA, providing insights toward development of a potential therapeutic strategy for brain metastatic breast cancer.
Collapse
Affiliation(s)
- Bo Fu
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education; Medical School, Southeast University, Nanjing, China
| | - Wei Long
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education; Medical School, Southeast University, Nanjing, China
| | - Ying Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education; Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education; Medical School, Southeast University, Nanjing, China
| | - Fengqin Miao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education; Medical School, Southeast University, Nanjing, China
| | - Yuqing Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education; Medical School, Southeast University, Nanjing, China
| | - Ning Pan
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education; Medical School, Southeast University, Nanjing, China
| | - Guangming Gan
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education; Medical School, Southeast University, Nanjing, China
| | - Fang Nie
- Jiangsu Key Laboratory of Molecular and Functional Imaging; Department of Radiology, Zhongda Hospital; Medical School, Southeast University, Nanjing, China
| | - Youji He
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education; Medical School, Southeast University, Nanjing, China
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education; Medical School, Southeast University, Nanjing, China
| | - Gaojun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging; Department of Radiology, Zhongda Hospital; Medical School, Southeast University, Nanjing, China
| |
Collapse
|