1
|
Sun X, Parker JE, Yu G. Phytobacterial effectors antagonize plant reproduction: new weapons in hand. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00035-4. [PMID: 40016025 DOI: 10.1016/j.tplants.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 03/01/2025]
Abstract
Bacteria secrete proteins into plant cells to reprogram host immunity and development. Yang et al. recently revealed that a nonadapted bacterial pathogen, Xanthomonas oryzae (Xoo), suppresses reproduction in arabidopsis (Arabidopsis thaliana) via a type VI-secreted effector TleB. Delivery of TleB to flowers disrupts an ovule initiation program controlled by the PUB14-BZR1 transcriptional module.
Collapse
Affiliation(s)
- Xinhua Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Gang Yu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Jia M, Li P, Yan Y, Liu X, Gao L, Zhu G, Chen Z. Antimicrobial susceptibility and genomic characterization of Vibrio cholerae non-O1/non-O139 isolated from clinical and environmental samples in Jiaxing City, China. FEMS Microbiol Lett 2025; 372:fnaf009. [PMID: 39824655 DOI: 10.1093/femsle/fnaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 01/20/2025] Open
Abstract
Non-O1/non-O139 (NOVC) strains inhabit aquatic environments and sporadically induce human illnesses. This study involved the virulence and antimicrobial genetic characterization of 176 NOVC strains, comprising 25 from clinical samples and 151 from environmental sources, collected between 2021 and 2023. The antimicrobial susceptibility of the examined NOVC population was predominantly high, exhibiting only poor susceptibility to colistin, with 89.2% resistance. The examination of virulence genes revealed that the majority of strains were positive for glucose metabolism (als gene) (169/176, 96.0%). Through multilocus sequence typing, the 176 NOVC strains were categorised into 121 sequence types, 79 of which were novel. NOVC strains demonstrate significant genetic variability and frequently engage in recombination. This work offers genetic characterization of the pathogenicity and antimicrobial resistance of a NOVC community. Our findings offer insights that may aid in the development of preventative and treatment methods for this pathogen.
Collapse
Affiliation(s)
- Miaomiao Jia
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Ping Li
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Yong Yan
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Xuejuan Liu
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Lei Gao
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Guoying Zhu
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| | - Zhongwen Chen
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing 314050, China
| |
Collapse
|
3
|
Podnar E, Dendinovic K, Danevčič T, Lories B, Kovačec E, Steenackers H, Mandic-Mulec I. Bacillus subtilis ensures high spore quality in competition with Salmonella Typhimurium via the SigB-dependent pathway. THE ISME JOURNAL 2025; 19:wraf052. [PMID: 40098255 PMCID: PMC11994997 DOI: 10.1093/ismejo/wraf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/11/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
The interactions between beneficial bacteria and pathogens are understudied. Here we investigate the interactions between the probiotic strain Bacillus subtilis PS-216 and the pathogen Salmonella Typhimurium SL1344. We show here that the sporulation of B. subtilis is impaired when it competes with S. Typhimurium in a nutrient-depleted medium. The sporulation impairment in B. subtilis is mediated by the sigma factor B (SigB)-dependent general stress response, as the ΔsigB mutant remains blind to manipulative cues from S. Typhimurium. Furthermore, we show that decreased sporulation frequency in B. subtilis depends on cell-cell contact between the two species involving the S. Typhimurium Type VI Secretion System, whereas B. subtilis uses the SigB-dependent response to trade spore quantity for higher spore quality.
Collapse
Affiliation(s)
- Eli Podnar
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Kristina Dendinovic
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Tjaša Danevčič
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Bram Lories
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| | - Eva Kovačec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
- Agricultural Institute of Slovenia, Ljubljana, Slovenia
| | - Hans Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| | - Ines Mandic-Mulec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
4
|
Zhang Y, Zhang Z, Wang Z, Chen Y, Liao L, Du L, Gao H, Chen Q, Man C, Chen S, Wang F. Whole Genome Sequencing and Comparative Genomics Analysis of Goat-Derived Klebsiella oxytoca. Genes (Basel) 2024; 16:13. [PMID: 39858560 PMCID: PMC11765384 DOI: 10.3390/genes16010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
Background: This research aims to enhance the genomic database of Klebsiella oxytoca by identifying virulence genes through the whole genome sequencing and comparative analysis of a goat-derived K. oxytoca (KOHN1) strain, while clarifying the relationship between its genetic evolution and virulence, ultimately providing a theoretical foundation for clinical prevention and diagnosis. Methods: Third-generation Oxford Nanopore Technologies (ONT) sequencing and second-generation Illumina sequencing were used to sequence the strain and analyze the database annotations. Screening for 10 virulence genes was conducted using PCR. Comparative genomic analyses of the strain KOHN1 with four human-derived K. oxytoca model strains were performed using collinearity analysis, taxonomy classification through ANI analysis, and gene function family analysis. Results: The genome size of the KOHN1 strain was 5,817,806 bp, and the GC content was 55.14%. It contained 5227 predicted coding genes, including 25 rRNA genes, 85 tRNA genes, and 53 sRNA genes. A total of 14 type VI secretion system effector proteins and 146 virulence factor-related genes were annotated. Additionally, eight virulence genes-fimA, fimH, entB, mrkD, clpV, rmpA, vgrG, and hcp-were detected through PCR identification. The strain has 448 drug resistance genes, mainly against β-lactams and fosfomycins. Comparative genomic analysis indicated that its closest relation is the human isolate ASM338647. Conclusions: In this study, the whole genome sequence of a goat-derived K. oxytoca (KOHN1) strain was obtained, revealing its evolutionary relationship with domestic and foreign isolates and providing a reference for future studies on the mechanisms of antimicrobial resistance and the pathogenicity of K. oxytoca.
Collapse
Affiliation(s)
- Yu Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Zhenxing Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Ziying Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Yimei Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Lianjie Liao
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Hongyan Gao
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Si Chen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Bai XR, Liu PX, Wang WC, Jin YH, Wang Q, Qi Y, Zhang XY, Sun WD, Fang WH, Han XG, Jiang W. TssL2 of T6SS2 is required for mobility, biofilm formation, wrinkly phenotype formation, and virulence of Vibrio parahaemolyticus SH112. Appl Microbiol Biotechnol 2024; 108:537. [PMID: 39688690 DOI: 10.1007/s00253-024-13351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024]
Abstract
Type VI secretion system 2 (T6SS2) of Vibrio parahaemolyticus is required for cell adhesion and autophagy in macrophages; however, other phenotypes conferred by this T6SS have not been thoroughly investigated. We deleted TssL2, a key component of T6SS2 assembly, to explore the role of the T6SS2 in environmental adaptation and virulence. TssL2 deletion reduced Hcp2 secretion, suggesting that TssL2 played an important role in activity of functional T6SS2. We found that TssL2 was necessary for cell aggregation, wrinkly phenotype formation, and participates in motility and biofilm formation by regulating related genes, suggesting that TssL2 was essential for V. parahaemolyticus to adapt changing environments. In addition, this study demonstrated TssL2 significantly affected adhesion, cytotoxicity, bacterial colonization ability, and mortality in mice, even the levels of the proinflammatory cytokines IL-6 and IL-8, suggesting that TssL2 was involved in bacterial virulence and immunity. Proteome analysis revealed that TssL2 significantly affected the expression of 163 proteins related to ABC transporter systems, flagellar assembly, biofilm formation, and multiple microbial metabolism pathways, some of which supported the effect of TssL2 on the different phenotypes of V. parahaemolyticus. Among them, the decreased expression of the T3SS1 and T2SS proteins was confirmed by the results of gene transcription, which may be the main reason for the decrease in cytotoxicity. Altogether, these findings further our understanding of T6SS2 components on environmental adaption and virulence during bacterial infection. KEY POINTS: • The role of T6SS2 in V. parahaemolyticus was far from clear. • TssL2 participates in cell aggregation, wrinkly phenotype formation, motility, and biofilm formation. • TssL2 is essential for cell bacterial colonization, cytotoxicity, virulence, and proinflammatory cytokine production.
Collapse
Affiliation(s)
- Xue-Rui Bai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Department of Animal Science and Technology, Shanghai Vocational College of Agriculture and Forestry, Shanghai, 201699, China
| | - Peng-Xuan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wen-Chao Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ying-Hong Jin
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China
| | - Quan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yu Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiao-Yun Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wei-Dong Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei-Huan Fang
- Institute of Preventive Veterinary Medicine and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xian-Gan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Longyan University, Longyan, 364012, China.
| | - Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
6
|
Zhang A, Xiao Y, Han Y, Huang Y, Kan B, Liang W. Characterization of quorum regulatory small RNAs in an emerging pathogen Vibrio fluvialis and their roles toward type VI secretion system VflT6SS2 modulation. Emerg Microbes Infect 2024; 13:2396872. [PMID: 39193622 PMCID: PMC11443567 DOI: 10.1080/22221751.2024.2396872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The type VI secretion system (T6SS) is essential for Gram-negative bacteria to antagonize a wide variety of prokaryotic and eukaryotic competitors and thus gain survival advantages. Two sets of T6SS have been found in Vibrio fluvialis, namely VflT6SS1 and VflT6SS2, among which VflT6SS2 is functionally expressed. The CqsA/LuxS-HapR quorum sensing (QS) system with CAI-1 and AI-2 as signal molecules can regulate VflT6SS2 by regulators LuxO and HapR, with LuxO repressing while HapR activating VflT6SS2. Quorum regulatory small RNAs (Qrr sRNAs) are Hfq-dependent trans-encoded sRNAs that control Vibrio quorum sensing. In V. fluvialis, Qrr sRNAs have not been characterized and their regulatory function is unknown. In this study, we first identified four Qrr sRNAs in V. fluvialis and demonstrated that these Qrr sRNAs are regulated by LuxO and involved in the modulation of VflT6SS2 function. On the one hand, Qrr sRNAs act on HapR, the activator of both the major and the auxiliary clusters of VflT6SS2, and then indirectly repress VflT6SS2. On the other hand, they directly repress VflT6SS2 by acting on tssB2 and tssD2_a, the first gene of the major cluster and the highly transcriptional one among the two units of the first auxiliary cluster, respectively. Our results give insights into the role of Qrr sRNAs in CAI-1/AI-2 based QS and VflT6SS2 modulation in V. fluvialis and further enhance understandings of the network between QS and T6SS regulation in Vibrio species.
Collapse
Affiliation(s)
- Anran Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, People’s Republic of China
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Yue Xiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, People’s Republic of China
| | - Yu Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, People’s Republic of China
| | - Yuanming Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, People’s Republic of China
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, People’s Republic of China
| | - Weili Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, People’s Republic of China
| |
Collapse
|
7
|
Heppert JK, Awori RM, Cao M, Chen G, McLeish J, Goodrich-Blair H. Analyses of Xenorhabdus griffiniae genomes reveal two distinct sub-species that display intra-species variation due to prophages. BMC Genomics 2024; 25:1087. [PMID: 39548374 PMCID: PMC11566119 DOI: 10.1186/s12864-024-10858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Nematodes of the genus Steinernema and their Xenorhabdus bacterial symbionts are lethal entomopathogens that are useful in the biocontrol of insect pests, as sources of diverse natural products, and as research models for mutualism and parasitism. Xenorhabdus play a central role in all aspects of the Steinernema lifecycle, and a deeper understanding of their genomes therefore has the potential to spur advances in each of these applications. RESULTS Here, we report a comparative genomics analysis of Xenorhabdus griffiniae, including the symbiont of Steinernema hermaphroditum nematodes, for which genetic and genomic tools are being developed. We sequenced and assembled circularized genomes for three Xenorhabdus strains: HGB2511, ID10 and TH1. We then determined their relationships to other Xenorhabdus and delineated their species via phylogenomic analyses, concluding that HGB2511 and ID10 are Xenorhabdus griffiniae while TH1 is a novel species. These additions to the existing X. griffiniae landscape further allowed for the identification of two subspecies within the clade. Consistent with other Xenorhabdus, the analysed X. griffiniae genomes each encode a wide array of antimicrobials and virulence-related proteins. Comparative genomic analyses, including the creation of a pangenome, revealed that a large amount of the intraspecies variation in X. griffiniae is contained within the mobilome and attributable to prophage loci. In addition, CRISPR arrays, secondary metabolite potential and toxin genes all varied among strains within the X. griffiniae species. CONCLUSIONS Our findings suggest that phage-related genes drive the genomic diversity in closely related Xenorhabdus symbionts, and that these may underlie some of the traits most associated with the lifestyle and survival of entomopathogenic nematodes and their bacteria: virulence and competition. This study establishes a broad knowledge base for further exploration of not only the relationships between X. griffiniae species and their nematode hosts but also the molecular mechanisms that underlie their entomopathogenic lifestyle.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | | | - Mengyi Cao
- Division of Biosphere Sciences Engineering, Carnegie Institute for Science, Pasadena, CA, USA
| | - Grischa Chen
- Division of Biosphere Sciences Engineering, Carnegie Institute for Science, Pasadena, CA, USA
| | - Jemma McLeish
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA.
| |
Collapse
|
8
|
Chen Z, Mao Y, Song Y, Dou M, Shang K, Yu Z, Ding K, Chen S. Refined egoist: The toxin-antitoxin immune system of T6SS. Microb Pathog 2024; 196:106991. [PMID: 39369755 DOI: 10.1016/j.micpath.2024.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
The Type VI secretory system (T6SS) is a key regulatory network in the bacterial system, which plays an important role in host-pathogen interactions and maintains cell homeostasis by regulating the release of effector proteins in specific competition. T6SS causes cell lysis or competitive inhibition by delivering effector molecules, such as toxic proteins and nucleic acids, directly from donor bacterial cells to eukaryotic or prokaryotic targets. Additionally, it orchestrates synthesis of immune effectors that counteract toxins thus preventing self-intoxication or antagonistic actions by competing microbes. Even so, the mechanism of toxin-antitoxin regulation in bacteria remains unclear. In response, this review discusses the bacterial T6SS's structure and function and the mechanism behind toxin-antitoxin secretion and the T6SS's expression in order to guide the further exploration of the pathogenic mechanism of the T6SS and the development of novel preparations for reducing and replacing toxins and antitoxins.
Collapse
Affiliation(s)
- Ziduo Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yikai Mao
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yinzhou Song
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengxuan Dou
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
9
|
Motta EVS, Lariviere PJ, Jones KR, Song Y, Moran NA. Type VI secretion systems promote intraspecific competition and host interactions in a bee gut symbiont. Proc Natl Acad Sci U S A 2024; 121:e2414882121. [PMID: 39441627 PMCID: PMC11536156 DOI: 10.1073/pnas.2414882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The Type VI Secretion System (T6SS) is a sophisticated mechanism utilized by gram-negative bacteria to deliver toxic effector proteins into target cells, influencing microbial community dynamics and host interactions. In this study, we investigated the role of T6SSs in Snodgrassella alvi wkB2, a core bacterial symbiont of the honey bee gut microbiota. We generated single- and double-knockout mutants targeting essential genes (tssD and tssE) in both T6SS-1 and T6SS-2 and assessed their colonization and competition capabilities in vivo. Our results indicate that T6SSs are nonessential for colonization of the bee gut, although T6SS-2 mutant strains exhibited significantly lower colonization levels compared to the wild-type (WT) strain. Further, a defined community experiment showed that S. alvi wkB2 T6SSs do not significantly impact interspecific competition among core gut bacteria. However, cocolonization experiments with closely related S. alvi strains demonstrated that T6SS-1 plays a role in mediating intraspecific competition. Transcriptomic analysis of bee guts monocolonized by WT or T6SS mutants revealed differential expression of host immunity-related genes relative to microbiota-deprived bees, such as upregulation of the antimicrobial peptide apidaecin in the presence of WT S. alvi and the antimicrobial peptide defensin in the presence of T6SS-2 mutant S. alvi, suggesting that T6SSs contribute to shaping host immune responses. These findings provide insight into the ecological roles of T6SSs in the honey bee gut microbiota, emphasizing their importance in maintaining competitive dynamics and influencing host-bacterial interactions.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Molecular Biosciences, The University of Texas at Austin, TX78712
| | - Korin R. Jones
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Yulin Song
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| |
Collapse
|
10
|
Zeng YH, Li W, Xu H, Gong XX, Zhang YM, Long H, Xie ZY. Dual RNA-Seq Unveils Candidate Key Virulence Genes of Vibrio harveyi at the Early Stage of Infection in Hybrid Grouper (♀ Epinephelus polyphekadion × ♂ E. fuscoguttatus). Microorganisms 2024; 12:2113. [PMID: 39597503 PMCID: PMC11596792 DOI: 10.3390/microorganisms12112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Vibrio harveyi is a major bacterial pathogen that causes disease in aquaculture animals worldwide. Although V. harveyi consistently harbors a range of traditional virulence genes, it remains unclear which specific genes are crucial for virulence at different infection stages. Dual RNA-seq is a cutting-edge RNA sequencing technology that is ideal for investigating the gene expression patterns of pathogens within the host, which is highly effective in identifying key virulence genes. In previous artificial infection experiments, we have identified the liver of hybrid grouper (♀ Epinephelus polyphekadion × ♂ E. fuscoguttatus) as the main target organ for pathogenic V. harveyi GDH11385 during the initial infection phase. To further explore the key virulence factors of V. harveyi at the early stage of infection, the liver of the hybrid grouper infected with strain GDH11385 was analyzed here by dual RNA-seq. The transcriptome data were compared with that of in vitro cultured bacteria. The results showed that 326 and 1140 DEGs (differentially expressed genes) were significantly up- and down-regulated, respectively, at 4 h post-infection (hpi). Further pathway enrichment analyses revealed that these up-regulated DEGs in vivo were mainly enriched in siderophore biosynthesis and transport, type VI secretion system (T6SS), flagellar assembly, glycolysis/gluconeogenesis, and ribosome. Notably, all genes involved in the metabolism and utilization of vibrioferrin (a carboxylate class of siderophore produced by Vibrio), and most of the genes within one of three T6SSs, were significantly up-regulated in vivo. This indicates that siderophore-dependent iron competition and T6SS-mediated delivery of virulence factors are vital for the successful colonization of V. harveyi at the early stage of infection. This study provides more precise clues to reveal the virulence mechanism of V. harveyi during the initial phase of infection.
Collapse
Affiliation(s)
- Yan-Hua Zeng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Wen Li
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - He Xu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Xiao-Xiao Gong
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Yu-Mei Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Hao Long
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Zhen-Yu Xie
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
11
|
Stindt KR, McClean MN. Tuning interdomain conjugation to enable in situ population modification in yeasts. mSystems 2024; 9:e0005024. [PMID: 38747597 PMCID: PMC11326116 DOI: 10.1128/msystems.00050-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/15/2024] [Indexed: 05/28/2024] Open
Abstract
The ability to modify and control natural and engineered microbiomes is essential for biotechnology and biomedicine. Fungi are critical members of most microbiomes, yet technology for modifying the fungal members of a microbiome has lagged far behind that for bacteria. Interdomain conjugation (IDC) is a promising approach, as DNA transfer from bacterial cells to yeast enables in situ modification. While such genetic transfers have been known to naturally occur in a wide range of eukaryotes and are thought to contribute to their evolution, IDC has been understudied as a technique to control fungal or fungal-bacterial consortia. One major obstacle to the widespread use of IDC is its limited efficiency. In this work, we manipulated metabolic and physical interactions between genetically tractable Escherichia coli and Saccharomyces cerevisiae to control the incidence of IDC. We test the landscape of population interactions between the bacterial donors and yeast recipients to find that bacterial commensalism leads to maximized IDC, both in culture and in mixed colonies. We demonstrate the capacity of cell-to-cell binding via mannoproteins to assist both IDC incidence and bacterial commensalism in culture and model how these tunable controls can predictably yield a range of IDC outcomes. Furthermore, we demonstrate that these controls can be utilized to irreversibly alter a recipient yeast population, by both "rescuing" a poor-growing recipient population and collapsing a stable population via a novel IDC-mediated CRISPR/Cas9 system.IMPORTANCEFungi are important but often unaddressed members of most natural and synthetic microbial communities. This work highlights opportunities for modifying yeast microbiome populations through bacterial conjugation. While conjugation has been recognized for its capacity to deliver engineerable DNA to a range of cells, its dependence on cell contact has limited its efficiency. Here, we find "knobs" to control DNA transfer, by engineering the metabolic dependence between bacterial donors and yeast recipients and by changing their ability to physically adhere to each other. Importantly, we functionally validate these "knobs" by irreversibly altering yeast populations. We use these controls to "rescue" a failing yeast population, demonstrate the capacity of conjugated CRISPR/Cas9 to depress or collapse populations, and show that conjugation can be easily interrupted by disrupting cell-to-cell binding. These results offer building blocks toward in situ mycobiome editing, with significant implications for clinical treatments of fungal pathogens and other fungal system engineering.
Collapse
Affiliation(s)
- Kevin R Stindt
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Doctoral Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Megan N McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Hernández-Martínez G, Ares MA, Rosales-Reyes R, Soria-Bustos J, Yañez-Santos JA, Cedillo ML, Girón JA, Martínez-Laguna Y, Leng F, Ibarra JA, De la Cruz MA. The nucleoid protein HU positively regulates the expression of type VI secretion systems in Enterobacter cloacae. mSphere 2024; 9:e0006024. [PMID: 38647313 PMCID: PMC11324020 DOI: 10.1128/msphere.00060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Enterobacter cloacae is an emerging pathogen isolated in healthcare-associated infections. A major virulence factor of this bacterium is the type VI secretion system (T6SS). The genome of E. cloacae harbors two T6SS gene clusters (T6SS-1 and T6SS-2), and the functional characterization of both systems showed that these two T6SSs are not expressed under the same conditions. Here, we report that the major histone-like protein HU positively regulates the expression of both T6SSs and, therefore, the function that each T6SS exerts in E. cloacae. Single deletions of the genes encoding the HU subunits (hupA and hupB) decreased mRNA levels of both T6SS. In contrast, the hupA hupB double mutant dramatically affected the T6SS expression, diminishing its transcription. The direct binding of HU to the promoter regions of T6SS-1 and T6SS-2 was confirmed by electrophoretic mobility shift assay. In addition, single and double mutations in the hup genes affected the ability of inter-bacterial killing, biofilm formation, adherence to epithelial cells, and intestinal colonization, but these phenotypes were restored when such mutants were trans-complemented. Our data broaden our understanding of the regulation of HU-mediated T6SS in these pathogenic bacteria. IMPORTANCE T6SS is a nanomachine that functions as a weapon of bacterial destruction crucial for successful colonization in a specific niche. Enterobacter cloacae expresses two T6SSs required for bacterial competition, adherence, biofilm formation, and intestinal colonization. Expression of T6SS genes in pathogenic bacteria is controlled by multiple regulatory systems, including two-component systems, global regulators, and nucleoid proteins. Here, we reported that the HU nucleoid protein directly activates both T6SSs in E. cloacae, affecting the T6SS-related phenotypes. Our data describe HU as a new regulator involved in the transcriptional regulation of T6SS and its impact on E. cloacae pathogenesis.
Collapse
Affiliation(s)
- Gabriela Hernández-Martínez
- Unidad de
Investigación Médica en Enfermedades Infecciosas y
Parasitarias, Hospital de Pediatría, Centro Médico
Nacional Siglo XXI, Instituto Mexicano del Seguro
Social, Mexico City,
Mexico
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Miguel A. Ares
- Unidad de
Investigación Médica en Enfermedades Infecciosas y
Parasitarias, Hospital de Pediatría, Centro Médico
Nacional Siglo XXI, Instituto Mexicano del Seguro
Social, Mexico City,
Mexico
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina
Experimental de la Facultad de Medicina, Universidad Autónoma de
México, Mexico
City, Mexico
| | - Jorge Soria-Bustos
- Pathogen and
Microbiome Division, Translational Genomics Research Institute (TGen)
North, Flagstaff,
Arizona, USA
- Instituto de Ciencias
de la Salud, Universidad Autónoma del Estado de
Hidalgo, Pachuca,
Hidalgo, Mexico
| | | | - María L. Cedillo
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
| | - Jorge A. Girón
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de
Investigación en Ciencias Microbiológicas,
Benemérita Universidad Autónoma de
Puebla, Puebla,
Mexico
| | - Fenfei Leng
- Biomolecular Sciences
Institute and Department of Chemistry and Biochemistry, Florida
International University,
Miami, Florida, USA
| | - J. Antonio Ibarra
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Miguel A. De la Cruz
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
- Facultad de Medicina,
Benemérita Universidad Autónoma de
Puebla, Puebla,
Mexico
| |
Collapse
|
13
|
Oscarsson J, Bao K, Shiratsuchi A, Grossmann J, Wolski W, Aung KM, Lindholm M, Johansson A, Mowsumi FR, Wai SN, Belibasakis GN, Bostanci N. Bacterial symbionts in oral niche use type VI secretion nanomachinery for fitness increase against pathobionts. iScience 2024; 27:109650. [PMID: 38650989 PMCID: PMC11033201 DOI: 10.1016/j.isci.2024.109650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Microbial ecosystems experience spatial and nutrient restrictions leading to the coevolution of cooperation and competition among cohabiting species. To increase their fitness for survival, bacteria exploit machinery to antagonizing rival species upon close contact. As such, the bacterial type VI secretion system (T6SS) nanomachinery, typically expressed by pathobionts, can transport proteins directly into eukaryotic or prokaryotic cells, consequently killing cohabiting competitors. Here, we demonstrate for the first time that oral symbiont Aggregatibacter aphrophilus possesses a T6SS and can eliminate its close relative oral pathobiont Aggregatibacter actinomycetemcomitans using its T6SS. These findings bring nearer the anti-bacterial prospects of symbionts against cohabiting pathobionts while introducing the presence of an active T6SS in the oral cavity.
Collapse
Affiliation(s)
- Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Kai Bao
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| | - Akiko Shiratsuchi
- Department of Liberal Arts and Sciences, Graduate School of Medicine, Sapporo Medical University, Sapporo, Hokkaido 060-8556, Japan
| | - Jonas Grossmann
- Functional Genomics Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics (SIB) Quartier Sorge-Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Witold Wolski
- Functional Genomics Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics (SIB) Quartier Sorge-Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Kyaw Min Aung
- Department of Molecular Biology and the Umeå Centre for Microbial Research (UCMR), and the Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Mark Lindholm
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| | - Anders Johansson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Sun Nyunt Wai
- Department of Molecular Biology and the Umeå Centre for Microbial Research (UCMR), and the Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Georgios N. Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14104 Huddinge, Stockholm, Sweden
| |
Collapse
|
14
|
Upton C, Healey J, Rothnie AJ, Goddard AD. Insights into membrane interactions and their therapeutic potential. Arch Biochem Biophys 2024; 755:109939. [PMID: 38387829 DOI: 10.1016/j.abb.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Recent research into membrane interactions has uncovered a diverse range of therapeutic opportunities through the bioengineering of human and non-human macromolecules. Although the majority of this research is focussed on fundamental developments, emerging studies are showcasing promising new technologies to combat conditions such as cancer, Alzheimer's and inflammatory and immune-based disease, utilising the alteration of bacteriophage, adenovirus, bacterial toxins, type 6 secretion systems, annexins, mitochondrial antiviral signalling proteins and bacterial nano-syringes. To advance the field further, each of these opportunities need to be better understood, and the therapeutic models need to be further optimised. Here, we summarise the knowledge and insights into several membrane interactions and detail their current and potential uses therapeutically.
Collapse
Affiliation(s)
- Calum Upton
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Joseph Healey
- Nanosyrinx, The Venture Centre, University of Warwick Science Park, Coventry, CV4 7EZ, UK
| | - Alice J Rothnie
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Alan D Goddard
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
15
|
Keck C, Enninga J, Swistak L. Caught in the act: In situ visualization of bacterial secretion systems by cryo-electron tomography. Mol Microbiol 2024; 121:636-645. [PMID: 37975530 DOI: 10.1111/mmi.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Bacterial secretion systems, such as the type 3, 4, and 6 are multiprotein nanomachines expressed at the surface of pathogens with Gram-negative like envelopes. They are known to be crucial for virulence and to translocate bacteria-encoded effector proteins into host cells to manipulate cellular functions. This facilitates either pathogen attachment or invasion of the targeted cell. Effector proteins also promote evasion of host immune recognition. Imaging by cryo-electron microscopy in combination with structure determination has become a powerful approach to understand how these nanomachines work. Still, questions on their assembly, the precise secretion mechanisms, and their direct involvement in pathogenicity remain unsolved. Here, we present an overview of the recent developments in in situ cryo-electron microscopy. We discuss its potential for the investigation of the role of bacterial secretion systems during the host-bacterial crosstalk at the molecular level. These in situ studies open new perspectives for our understanding of secretion system structure and function.
Collapse
Affiliation(s)
- Camille Keck
- Dynamics of Host-Pathogen Interactions, Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Paris, France
| | - Jost Enninga
- Dynamics of Host-Pathogen Interactions, Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Paris, France
| | - Léa Swistak
- Dynamics of Host-Pathogen Interactions, Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Paris, France
| |
Collapse
|
16
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
17
|
Lages MA, do Vale A, Lemos ML, Balado M. Remodulation of bacterial transcriptome after acquisition of foreign DNA: the case of irp-HPI high-pathogenicity island in Vibrio anguillarum. mSphere 2024; 9:e0059623. [PMID: 38078732 PMCID: PMC10826351 DOI: 10.1128/msphere.00596-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024] Open
Abstract
The high-pathogenicity island irp-HPI is widespread in Vibrionaceae and encodes the siderophore piscibactin, as well as the regulator PbtA that is essential for its expression. In this work, we aim to study whether PbtA directly interacts with irp-HPI promoters. Furthermore, we hypothesize that PbtA, and thereby the acquisition of irp-HPI island, may also influence the expression of other genes elsewhere in the bacterial genome. To address this question, an RNAseq analysis was conducted to identify differentially expressed genes after pbtA deletion in Vibrio anguillarum RV22 genetic background. The results showed that PbtA not only modulates the irp-HPI genes but also modulates the expression of a plethora of V. anguillarum core genome genes, inducing nitrate, arginine, and sulfate metabolism, T6SS1, and quorum sensing, while repressing lipopolysaccharide (LPS) production, MARTX toxin, and major porins such as OmpV and ChiP. The direct binding of the C-terminal domain of PbtA to piscibactin promoters (PfrpA and PfrpC), quorum sensing (vanT), LPS transporter wza, and T6SS structure- and effector-encoding genes was demonstrated by electrophoretic mobility shift assay (EMSA). The results provide valuable insights into the regulatory mechanisms underlying the expression of irp-HPI island and its impact on Vibrios transcriptome, with implications in pathogenesis.IMPORTANCEHorizontal gene transfer enables bacteria to acquire traits, such as virulence factors, thereby increasing the risk of the emergence of new pathogens. irp-HPI genomic island has a broad dissemination in Vibrionaceae and is present in numerous potentially pathogenic marine bacteria, some of which can infect humans. Previous works showed that certain V. anguillarum strains exhibit an expanded host range plasticity and heightened virulence, a phenomenon linked to the acquisition of the irp-HPI genomic island. The present work shows that this adaptive capability is likely achieved through comprehensive changes in the transcriptome of the bacteria and that these changes are mediated by the master regulator PbtA encoded within the irp-HPI element. Our results shed light on the broad implications of horizontal gene transfer in bacterial evolution, showing that the acquired DNA can directly mediate changes in the expression of the core genome, with profounds implications in pathogenesis.
Collapse
Affiliation(s)
- Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
18
|
Luo Y, Chen Z, Lian S, Ji X, Zhu C, Zhu G, Xia P. The Love and Hate Relationship between T5SS and Other Secretion Systems in Bacteria. Int J Mol Sci 2023; 25:281. [PMID: 38203452 PMCID: PMC10778856 DOI: 10.3390/ijms25010281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Bacteria have existed on Earth for billions of years, exhibiting ubiquity and involvement in various biological activities. To ensure survival, bacteria usually release and secrete effector proteins to acquire nutrients and compete with other microorganisms for living space during long-term evolution. Consequently, bacteria have developed a range of secretion systems, which are complex macromolecular transport machines responsible for transporting proteins across the bacterial cell membranes. Among them, one particular secretion system that stands out from the rest is the type V secretion system (T5SS), known as the "autotransporter". Bacterial activities mediated by T5SS include adherence to host cells or the extracellular matrix, invasion of host cells, immune evasion and serum resistance, contact-dependent growth inhibition, cytotoxicity, intracellular flow, protease activity, autoaggregation, and biofilm formation. In a bacterial body, it is not enough to rely on T5SS alone; in most cases, T5SS cooperates with other secretion systems to carry out bacterial life activities, but regardless of how good the relationship is, there is friction between the secretion systems. T5SS and T1SS/T2SS/T3SS/T6SS all play a synergistic role in the pathogenic processes of bacteria, such as nutrient acquisition, pathogenicity enhancement, and immune modulation, but T5SS indirectly inhibits the function of T4SS. This could be considered a love-hate relationship between secretion systems. This paper uses the systematic literature review methodology to review 117 journal articles published within the period from 1995 to 2024, which are all available from the PubMed, Web of Science, and Scopus databases and aim to elucidate the link between T5SS and other secretion systems, providing clues for future prevention and control of bacterial diseases.
Collapse
Affiliation(s)
- Yi Luo
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Ziyue Chen
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Xingduo Ji
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Chunhong Zhu
- Jiangsu Institute of Poultry Science, Yangzhou 225009, China;
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; (Y.L.); (Z.C.); (S.L.); (X.J.); (G.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
19
|
Shi X, Qiu S, Ji L, Lu H, Wu S, Chen Q, Zou X, Hu Q, Feng T, Chen S, Cui W, Xu S, Jiang M, Cai R, Geng Y, Bai Q, Huang D, Liu P. Pathogenetic characterization of a Micrococcus luteus strain isolated from an infant. Front Pediatr 2023; 11:1303040. [PMID: 38188910 PMCID: PMC10770869 DOI: 10.3389/fped.2023.1303040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose To explore the clinical characteristics of Micrococcus luteus bloodstream infection in an infant and characterize the phenotype and genotype of the isolated strains, as well as seek suitable infection models for assessing virulence. Methods Clinical data was collected from an infant patient diagnosed with M. luteus bloodstream infection. Metagenomic sequencing was performed on the isolated blood sample. The strain was isolated and underwent mass spectrometry, biochemical tests, antibiotic susceptibility assays, and whole-genome sequencing. The Galleria mellonella infection model was used to assess M. luteus virulence. Results Patient responded poorly to cephalosporins, but recovered after Linezolid treatment. Metagenomic sequencing identified M. luteus as the predominant species in the sample, confirming infection. They were identified as M. luteus with a high confidence level of 98.99% using mass spectrometry. The strain showed positive results for Catalase, Oxidase, and Urea tests, and negative results for Mannose, Xylose, Lactose, Mannitol, Arginine, and Galactose tests, consistent with the biochemical profile of M. luteus reference standards. M. luteus susceptibility to 15 antibiotics was demonstrated and no resistance genes were detected. Predicted virulence genes, including clpB, were associated with metabolic pathways and the type VI secretion system. The infection model demonstrated dose-dependent survival rates. Conclusion The infant likely developed a bloodstream infection with M. luteus due to compromised immunity. Although the isolated strain is sensitive to cephalosporin antibiotics and has low pathogenicity in infection models, clinical treatment with cephalosporins was ineffective. Linezolid proved to be effective, providing valuable guidance for future clinical management of such rare infections.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuxiang Qiu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Liyin Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Huiqun Lu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuang Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qiongcheng Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qinghua Hu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Tiejian Feng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shiting Chen
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Wenkai Cui
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Shiqin Xu
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Rui Cai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yijie Geng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Dingjie Huang
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Peihui Liu
- Pediatric Department, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| |
Collapse
|
20
|
Liu W, Li M, Cao S, Ishaq HM, Zhao H, Yang F, Liu L. The Biological and Regulatory Role of Type VI Secretion System of Klebsiella pneumoniae. Infect Drug Resist 2023; 16:6911-6922. [PMID: 37928603 PMCID: PMC10624183 DOI: 10.2147/idr.s426657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Bacteria communicate with their surroundings through diverse secretory systems, and the recently discovered Type VI Secretion System (T6SS) has gained significant attention. Klebsiella pneumoniae (K. pneumoniae), an opportunistic pathogen known for causing severe infections in both hospital and animal settings, possesses this intriguing T6SS. This system equips K. pneumoniae with a formidable armory of protein-based weaponry, enabling the delivery of toxins into neighboring cells, thus granting a substantial competitive advantage. Remarkably, the T6SS has also been associated with K. pneumoniae's ability to form biofilms and acquire resistance against antibiotics. However, the precise effects of the T6SS on K. pneumoniae's functions remain inadequately studied, despite research efforts to understand the intricacies of these mechanisms. This comprehensive review aims to provide an overview of the current knowledge regarding the biological functions and regulatory mechanisms of the T6SS in K. pneumoniae.
Collapse
Affiliation(s)
- Wenke Liu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Min Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Shiwen Cao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Huajie Zhao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Fan Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Liang Liu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| |
Collapse
|
21
|
Stindt KR, McClean MN. Tuning Interdomain Conjugation Toward in situ Population Modification in Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557379. [PMID: 37745509 PMCID: PMC10515866 DOI: 10.1101/2023.09.12.557379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The ability to modify and control natural and engineered microbiomes is essential for biotechnology and biomedicine. Fungi are critical members of most microbiomes, yet technology for modifying the fungal members of a microbiome has lagged far behind that for bacteria. Interdomain conjugation (IDC) is a promising approach, as DNA transfer from bacterial cells to yeast enables in situ modification. While such genetic transfers have been known to naturally occur in a wide range of eukaryotes, and are thought to contribute to their evolution, IDC has been understudied as a technique to control fungal or fungal-bacterial consortia. One major obstacle to widespread use of IDC is its limited efficiency. In this work, we utilize interactions between genetically tractable Escherichia coli and Saccharomyces cerevisiae to control the incidence of IDC. We test the landscape of population interactions between the bacterial donors and yeast recipients to find that bacterial commensalism leads to maximized IDC, both in culture and in mixed colonies. We demonstrate the capacity of cell-to-cell binding via mannoproteins to assist both IDC incidence and bacterial commensalism in culture, and model how these tunable controls can predictably yield a range of IDC outcomes. Further, we demonstrate that these lessons can be utilized to lastingly alter a recipient yeast population, by both "rescuing" a poor-growing recipient population and collapsing a stable population via a novel IDC-mediated CRISPR/Cas9 system.
Collapse
|
22
|
Lin YL, Smith SN, Kanso E, Septer AN, Rycroft CH. A subcellular biochemical model for T6SS dynamics reveals winning competitive strategies. PNAS NEXUS 2023; 2:pgad195. [PMID: 37441614 PMCID: PMC10335733 DOI: 10.1093/pnasnexus/pgad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023]
Abstract
The type VI secretion system (T6SS) is a broadly distributed interbacterial weapon that can be used to eliminate competing bacterial populations. Although unarmed target populations are typically used to study T6SS function in vitro, bacteria most likely encounter other T6SS-armed competitors in nature. However, the connection between subcellular details of the T6SS and the outcomes of such mutually lethal battles is not well understood. Here, we incorporate biological data derived from natural competitors of Vibrio fischeri light organ symbionts to build a biochemical model for T6SS at the single-cell level, which we then integrate into an agent-based model (ABM). Using the ABM, we isolate and experiment with strain-specific physiological differences between competitors in ways not possible with biological samples to identify winning strategies for T6SS-armed populations. Through in vitro experiments, we discover that strain-specific differences exist in T6SS activation speed. ABM simulations corroborate that faster activation is dominant in determining survival during competition. Once competitors are fully activated, the energy required for T6SS creates a tipping point where increased weapon building and firing becomes too costly to be advantageous. Through ABM simulations, we identify the threshold where this transition occurs in the T6SS parameter space. We also find that competitive outcomes depend on the geometry of the battlefield: unarmed target cells survive at the edges of a range expansion where unlimited territory can be claimed. Alternatively, competitions within a confined space, much like the light organ crypts where natural V. fischeri compete, result in the rapid elimination of the unarmed population.
Collapse
Affiliation(s)
| | | | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
23
|
De Sousa BFS, Domingo-Serrano L, Salinero-Lanzarote A, Palacios JM, Rey L. The T6SS-Dependent Effector Re78 of Rhizobium etli Mim1 Benefits Bacterial Competition. BIOLOGY 2023; 12:678. [PMID: 37237492 PMCID: PMC10215855 DOI: 10.3390/biology12050678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
The genes of the type VI secretion system (T6SS) from Rhizobium etli Mim1 (ReMim1) that contain possible effectors can be divided into three modules. The mutants in them indicated that they are not required for effective nodulation with beans. To analyze T6SS expression, a putative promoter region between the tssA and tssH genes was fused in both orientations to a reporter gene. Both fusions are expressed more in free living than in symbiosis. When the module-specific genes were studied using RT-qPCR, a low expression was observed in free living and in symbiosis, which was clearly lower than the structural genes. The secretion of Re78 protein from the T6SS gene cluster was dependent on the presence of an active T6SS. Furthermore, the expression of Re78 and Re79 proteins in E. coli without the ReMim1 nanosyringe revealed that these proteins behave as a toxic effector/immunity protein pair (E/I). The harmful action of Re78, whose mechanism is still unknown, would take place in the periplasmic space of the target cell. The deletion of this ReMim1 E/I pair resulted in reduced competitiveness for bean nodule occupancy and in lower survival in the presence of the wild-type strain.
Collapse
Affiliation(s)
- Bruna Fernanda Silva De Sousa
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain; (B.F.S.D.S.)
| | - Lucía Domingo-Serrano
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain; (B.F.S.D.S.)
| | - Alvaro Salinero-Lanzarote
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain; (B.F.S.D.S.)
| | - José Manuel Palacios
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain; (B.F.S.D.S.)
- Departamento de Biotecnología y Biología Vegetal, ETSI Agronómica Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Luis Rey
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain; (B.F.S.D.S.)
- Departamento de Biotecnología y Biología Vegetal, ETSI Agronómica Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|