1
|
Zardi GI, Nicastro KR, Truong SL, Decorse P, Nozak S, Chevillot-Biraud A, Froneman PW, Akoueson F, Duflos G, Seuront L. Microplastic leachates inhibit small-scale self-organization in mussel beds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169816. [PMID: 38181965 DOI: 10.1016/j.scitotenv.2023.169816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Self-organized spatial patterns are increasingly recognized for their contribution to ecosystem functioning. They can improve the ecosystem's ability to respond to perturbation and thus increase its resilience to environmental stress. Plastic pollution has now emerged as major threat to aquatic and terrestrial biota. Under laboratory conditions, we tested whether plastic leachates from pellets collected in the intertidal can impair small-scale, spatial self-organization and byssal threads production of intertidal mussels and whether the effect varied depending on where the pellets come from. Specifically, leachates originating from plastic pellets collected from relatively pristine and polluted areas respectively impaired and inhibited the ability of mussels to self-organize at small-scale and to produce byssal threads compared to control conditions (i.e., seawater without leaching solution). Limitations to natural self-organizing processes and threads formation may translate to a declined capacity of natural ecosystems to avoid tipping points and to a reduced restoration success of disturbed ecosystems.
Collapse
Affiliation(s)
- Gerardo I Zardi
- Normandie Université, UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), 14000 Caen, France; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; CCMAR-CIMAR Laboratório Associado, Universidade do Algarve, Campus Gambelas, Faro 8005-139, Portugal
| | - Katy R Nicastro
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; CCMAR-CIMAR Laboratório Associado, Universidade do Algarve, Campus Gambelas, Faro 8005-139, Portugal; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 LOG, F-59000 Lille, France.
| | - Stéphanie Lau Truong
- Laboratoire ITODYS CNRS UMR7086, Université Paris Diderot, Bâtiment Lavoisier, 75205, France
| | - Philippe Decorse
- Laboratoire ITODYS CNRS UMR7086, Université Paris Diderot, Bâtiment Lavoisier, 75205, France
| | - Sophie Nozak
- Laboratoire ITODYS CNRS UMR7086, Université Paris Diderot, Bâtiment Lavoisier, 75205, France
| | | | | | - Fleurine Akoueson
- Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, EA 7394, Institut Charles Viollette, USC ANSES, INRAe, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Uni. Liège, F-62200 Boulogne-sur-Mer, France; ANSES - Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, F-62200 Boulogne-sur-Mer, France
| | - Guillaume Duflos
- ANSES - Laboratoire de Sécurité des Aliments, Boulevard du Bassin Napoléon, F-62200 Boulogne-sur-Mer, France
| | - Laurent Seuront
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 LOG, F-59000 Lille, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
2
|
Nicastro KR, Pearson GA, Ramos X, Pearson V, McQuaid CD, Zardi GI. Transcriptome wide analyses reveal intraspecific diversity in thermal stress responses of a dominant habitat-forming species. Sci Rep 2023; 13:5645. [PMID: 37024658 PMCID: PMC10079687 DOI: 10.1038/s41598-023-32654-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The impact of climate change on biodiversity has stimulated the need to understand environmental stress responses, particularly for ecosystem engineers whose responses to climate affect large numbers of associated organisms. Distinct species differ substantially in their resilience to thermal stress but there are also within-species variations in thermal tolerance for which the molecular mechanisms underpinning such variation remain largely unclear. Intertidal mussels are well-known for their role as ecosystem engineers. First, we exposed two genetic lineages of the intertidal mussel Perna perna to heat stress treatments in air and water. Next, we ran a high throughput RNA sequencing experiment to identify differences in gene expression between the thermally resilient eastern lineage and the thermally sensitive western lineage. We highlight different thermal tolerances that concord with their distributional ranges. Critically, we also identified lineage-specific patterns of gene expression under heat stress and revealed intraspecific differences in the underlying transcriptional pathways in response to warmer temperatures that are potentially linked to the within-species differences in thermal tolerance. Beyond the species, we show how unravelling within-species variability in mechanistic responses to heat stress promotes a better understanding of global evolutionary trajectories of the species as a whole in response to changing climate.
Collapse
Affiliation(s)
- Katy R Nicastro
- CNRS, Univ. Littoral Côte d'Opale, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Univ. Lille, 59000, Lille, France
- CCMAR-CIMAR - Associated Laboratory, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Gareth A Pearson
- CCMAR-CIMAR - Associated Laboratory, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Xana Ramos
- CCMAR-CIMAR - Associated Laboratory, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Vasco Pearson
- CCMAR-CIMAR - Associated Laboratory, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Department of Mathematics, Instituto Superior Técnico, 1049-001, Lisbon, Portugal
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Gerardo I Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa.
- UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), Normandie Université, CS 14032, 14000, Caen, France.
| |
Collapse
|
3
|
Oróstica MH, Wyness AJ, Monsinjon JR, Nicastro KR, Zardi GI, Barker C, McQuaid CD. Effects of habitat quality on abundance, size and growth of mussel recruits. HYDROBIOLOGIA 2022; 849:4341-4356. [PMID: 36065210 PMCID: PMC9434526 DOI: 10.1007/s10750-022-04994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 05/02/2023]
Abstract
UNLABELLED Recruitment of mussels is a complex process with the successful arrival of individuals hinging on the availability of suitable habitats. We examined the effects of adult mussels as settlement habitat and the degree to which the suitability of habitat they offer is species-specific by comparing the recruitment success of intertidal mussels. We hypothesised that mussel recruitment and early growth are dictated by the quality of habitat offered by conspecifics adults. We used a unique experimental arena on the south coast of South Africa, where Mytilus galloprovincialis and two lineages of Perna perna co-exist. Treatments were based on the translocation of individuals of M. galloprovincialis, western- and eastern lineage of P. perna to a single site, where artificial beds were created and sampled monthly over one year. Recruit's number, their sizes and growth were greater within beds of the western lineage of Perna than eastern lineage or Mytilus beds. The results clearly demonstrate that the quality of settlement habitat offered by adult beds differs among adult lineages/species and affects rates of settlement and the early growth of recruits. This effect extends to the intraspecific level; we found greater differences in density and growth of recruits between lineages of Perna than between either lineage and M. galloprovincialis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10750-022-04994-7.
Collapse
Affiliation(s)
- Mauricio H. Oróstica
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140 South Africa
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibañéz, 2562340 Viña del Mar, Chile
| | - Adam J. Wyness
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140 South Africa
- School of Biology and Environmental Sciences, University of Mpumalanga, Mbombela, 1200 South Africa
| | - Jonathan R. Monsinjon
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140 South Africa
- Institut Français de Recherche pour l’Exploitation de la Mer (IFREMER), Délégation Océan Indien (DOI), Rue Jean Bertho, BP 60 - 97822, 97420 Le Port, La Réunion France
| | - Katy R. Nicastro
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140 South Africa
- CCMAR–Centro de Ciencias do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005‐139 Faro, Portugal
- Univ. Lille, CNRS, Univ. Littoral Côte d’Opale, UMR 8187 – LOG – Laboratoire d’Océanologie et de Géosciences, 59000 Lille, France
| | - Gerardo I. Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140 South Africa
- CCMAR–Centro de Ciencias do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005‐139 Faro, Portugal
| | - Cassandra Barker
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140 South Africa
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7600 South Africa
| | | |
Collapse
|
4
|
Zardi GI, Nicastro KR, McQuaid CD, de Jager M, van de Koppel J, Seuront L. Density-Dependent and Species-Specific Effects on Self-Organization Modulate the Resistance of Mussel Bed Ecosystems to Hydrodynamic Stress. Am Nat 2021; 197:615-623. [PMID: 33908830 DOI: 10.1086/713738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSelf-organized, regular spatial patterns emerging from local interactions among individuals enhance the ability of ecosystems to respond to environmental disturbances. Mussels self-organize to form large, regularly patterned biogenic structures that modify the biotic and abiotic environment and provide numerous ecosystem functions and services. We used two mussel species that form monospecific and mixed beds to investigate how species-specific behavior affects self-organization and resistance to wave stress. Perna perna has strong attachment but low motility, while Mytilus galloprovincialis shows the reverse. At low density, the less motile P. perna has limited spatial self-organization compared with M. galloprovincialis, while when coexisting, the two species formed random spatial patterns. At high density, the two species self-organized in similar ways, while when coexisting, patterns were less strong. Spatial pattern formations significantly shaped resistance to hydrodynamic stress. At low density, P. perna beds with strong attachment and M. galloprovincialis beds with strong spatial organization showed higher retention rates than mixed beds. At high density, the presence of strongly attached P. perna significantly increased retention in mixed and P. perna beds compared with M. galloprovincialis beds. Our study emphasizes the importance of the interplay of species-specific behaviors to spatial self-organization and stress tolerance in natural communities.
Collapse
|
5
|
Nicastro KR, McQuaid CD, Dievart A, Zardi GI. Intraspecific diversity in an ecological engineer functionally trumps interspecific diversity in shaping community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140723. [PMID: 32758835 DOI: 10.1016/j.scitotenv.2020.140723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 05/17/2023]
Abstract
Can intraspecific diversity functionally supersede interspecific diversity? Recent studies have established the ecological effects of intraspecific variation on a number of ecosystem dynamics including resilience and productivity and we hypothesised that they may functionally exceed those of species diversity. We focused on a coastal ecosystem dominated by two coexisting bioengineering mussel species, one of which, Perna perna, displays two distinct phylogeographic lineages. A manipulative field experiment revealed greater habitat structural complexity and a more benign microscale environment within beds of the eastern lineage than those of the western lineage or the second species (Mytilus galloprovincialis); the latter two did not differ. Similarly, while infaunal species abundance and biomass differed significantly between the two lineages of Perna, there was no such difference between Mytilus and the western Perna lineage. The evenness and diversity of associated infaunal assemblages responded differently. Diversity differed relatively weakly between species, while evenness showed a very strong difference between conspecific lineages. Our results show that variation within a species can functionally supersede diversity between species. As the two P. perna lineages have different physiological tolerances, we expect them to react differently to environmental change. Our findings indicate that predicting the ecosystem-level consequences of climate change requires an understanding of the relative strengths of within- and between-species differences in functionality.
Collapse
Affiliation(s)
- Katy R Nicastro
- CCMAR, CIMAR Associated Laboratory, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Alexia Dievart
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Gerardo I Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
6
|
Takeuchi S, Honma K, Hirasaka K. Byssus production ability and degree of byssal‐gland development in the infaunal clam
Ruditapes philippinarum. ACTA ZOOL-STOCKHOLM 2019. [DOI: 10.1111/azo.12307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Seiji Takeuchi
- Graduate School of Fisheries and Environmental Sciences Nagasaki University Nagasaki Japan
| | - Kohei Honma
- Faculty of Fisheries Nagasaki University Nagasaki Japan
| | - Katsuya Hirasaka
- Graduate School of Fisheries and Environmental Sciences Nagasaki University Nagasaki Japan
| |
Collapse
|
7
|
Climate warming reduces the reproductive advantage of a globally invasive intertidal mussel. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01990-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Lathlean JA, Seuront L, McQuaid CD, Ng TPT, Zardi GI, Nicastro KR. Cheating the Locals: Invasive Mussels Steal and Benefit from the Cooling Effect of Indigenous Mussels. PLoS One 2016; 11:e0152556. [PMID: 27030975 PMCID: PMC4816446 DOI: 10.1371/journal.pone.0152556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/16/2016] [Indexed: 11/19/2022] Open
Abstract
The indigenous South African mussel Perna perna gapes during periods of aerial exposure to maintain aerobic respiration. This behaviour has no effect on the body temperatures of isolated individuals, but when surrounded by conspecifics, beneficial cooling effects of gaping emerge. It is uncertain, however, whether the presence of the invasive mussel Mytilus galloprovincialis limits the ability of P. perna for collective thermoregulation. We investigated whether varying densities of P. perna and M. galloprovincialis influences the thermal properties of both natural and artificial mussel beds during periods of emersion. Using infrared thermography, body temperatures of P. perna within mixed artificial beds were shown to increase faster and reach higher temperatures than individuals in conspecific beds, indicating that the presence of M. galloprovincialis limits the group cooling effects of gaping. In contrast, body temperatures of M. galloprovincialis within mixed artificial mussel beds increased slower and exhibited lower temperatures than for individuals in beds comprised entirely of M. galloprovincialis. Interestingly, differences in bed temperatures and heating rates were largely dependent on the size of mussels, with beds comprised of larger individuals experiencing less thermal stress irrespective of species composition. The small-scale patterns of thermal stress detected within manipulated beds were not observed within naturally occurring mixed mussel beds. We propose that small-scale differences in topography, size-structure, mussel bed size and the presence of organisms encrusting the mussel shells mask the effects of gaping behaviour within natural mussel beds. Nevertheless, the results from our manipulative experiment indicate that the invasive species M. galloprovincialis steals thermal properties as well as resources from the indigenous mussel P. perna. This may have significant implications for predicting how the co-existence of these two species may change as global temperatures continue to rise.
Collapse
Affiliation(s)
- Justin A. Lathlean
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
- * E-mail:
| | - Laurent Seuront
- Centre National de la Recherche Scientifique, CNRS UMR 8187 LOG, 28 avenue Foch, BP 80, 62930 Wimereux, France
| | | | - Terence P. T. Ng
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Gerardo I. Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Katy R. Nicastro
- CCMAR—Centro de Ciencias do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, 8005–139 Faro, Portugal
| |
Collapse
|
9
|
Assis J, Zupan M, Nicastro KR, Zardi GI, McQuaid CD, Serrão EA. Oceanographic Conditions Limit the Spread of a Marine Invader along Southern African Shores. PLoS One 2015; 10:e0128124. [PMID: 26114766 PMCID: PMC4482700 DOI: 10.1371/journal.pone.0128124] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/23/2015] [Indexed: 11/19/2022] Open
Abstract
Invasive species can affect the function and structure of natural ecological communities, hence understanding and predicting their potential for spreading is a major ecological challenge. Once established in a new region, the spread of invasive species is largely controlled by their dispersal capacity, local environmental conditions and species interactions. The mussel Mytilus galloprovincialis is native to the Mediterranean and is the most successful marine invader in southern Africa. Its distribution there has expanded rapidly and extensively since the 1970s, however, over the last decade its spread has ceased. In this study, we coupled broad scale field surveys, Ecological Niche Modelling (ENM) and Lagrangian Particle Simulations (LPS) to assess the current invaded distribution of M. galloprovincialis in southern Africa and to evaluate what prevents further spread of this species. Results showed that all environmentally suitable habitats in southern Africa have been occupied by the species. This includes rocky shores between Rocky Point in Namibia and East London in South Africa (approx. 2800 km) and these limits coincide with the steep transitions between cool-temperate and subtropical-warmer climates, on both west and southeast African coasts. On the west coast, simulations of drifting larvae almost entirely followed the northward and offshore direction of the Benguela current, creating a clear dispersal barrier by advecting larvae away from the coast. On the southeast coast, nearshore currents give larvae the potential to move eastwards, against the prevalent Agulhas current and beyond the present distributional limit, however environmental conditions prevent the establishment of the species. The transition between the cooler and warmer water regimes is therefore the main factor limiting the northern spread on the southeast coast; however, biotic interactions with native fauna may also play an important role.
Collapse
Affiliation(s)
- Jorge Assis
- Center of Marine Sciences, University of Algarve, Faro, Portugal
- * E-mail:
| | - Mirta Zupan
- Center of Marine Sciences, University of Algarve, Faro, Portugal
| | - Katy R. Nicastro
- Center of Marine Sciences, University of Algarve, Faro, Portugal
| | - Gerardo I. Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | | | - Ester A. Serrão
- Center of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
10
|
Intraspecific genetic lineages of a marine mussel show behavioural divergence and spatial segregation over a tropical/subtropical biogeographic transition. BMC Evol Biol 2015; 15:100. [PMID: 26026663 PMCID: PMC4449970 DOI: 10.1186/s12862-015-0366-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/29/2015] [Indexed: 11/24/2022] Open
Abstract
Background Intraspecific variability is seen as a central component of biodiversity. We investigated genetic differentiation, contemporary patterns of demographic connectivity and intraspecific variation of adaptive behavioural traits in two lineages of an intertidal mussel (Perna perna) across a tropical/subtropical biogeographic transition. Results Microsatellite analyses revealed clear genetic differentiation between western (temperate) and eastern (subtropical/tropical) populations, confirming divergence previously detected with mitochondrial (COI) and nuclear (ITS) markers. Gene flow between regions was predominantly east-to-west and was only moderate, with higher heterozygote deficiency where the two lineages co-occur. This can be explained by differential selection and/or oceanographic dynamics acting as a barrier to larval dispersal. Common garden experiments showed that gaping (periodic closure and opening of the shell) and attachment to the substratum differed significantly between the two lineages. Western individuals gaped more and attached less strongly to the substratum than eastern ones. Conclusions These behavioural differences are consistent with the geographic and intertidal distributions of each lineage along sharp environmental clines, indicating their strong adaptive significance. We highlight the functional role of diversity below the species level in evolutionary trends and the need to understand this when predicting biodiversity responses to environmental change. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0366-5) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Zardi GI, Nicastro KR, Serrão EA, Jacinto R, Monteiro CA, Pearson GA. Closer to the rear edge: ecology and genetic diversity down the core-edge gradient of a marine macroalga. Ecosphere 2015. [DOI: 10.1890/es14-00460.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Babarro JMF, Comeau LA. Byssus attachment strength of two mytilids in mono-specific and mixed-species mussel beds. BIOFOULING 2014; 30:975-985. [PMID: 25300374 DOI: 10.1080/08927014.2014.953941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The mussel Xenostrobus securis is endemic to the brackish waters of New Zealand and Australia, but has successfully invaded the inner Galician Rías of NW Spain, where it coexists with the indigenous mussel Mytilus galloprovincialis. In this laboratory study, the plasticity of the byssus attachment strength of two mytilids was compared by manipulating substratum, salinity, and bed assembly. M. galloprovincialis showed stronger byssus detachment strength than X. securis, despite lower byssus coverage. Both species responded similarly to the substratum, with substantially lower byssus strength on methacrylate, which offered the lowest surface free energy. Byssus detachment values for M. galloprovincialis were lower at lower salinity. In mixed beds, a number of mussels moved upwards, eventually colonising the upper layers of the assemblage. This behaviour increased byssus strength but only for X. securis. X. securis is adapted to a wide spectrum of abiotic conditions, a trait that may promote its dissemination within estuarine environments.
Collapse
Affiliation(s)
- Jose M F Babarro
- a Department of Biotechnology and Aquaculture , Instituto de Investigaciones Marinas CSIC , Eduardo Cabello 6, 36208 Vigo , Spain
| | | |
Collapse
|
13
|
Marquet N, Nicastro KR, Gektidis M, McQuaid CD, Pearson GA, Serrão EA, Zardi GI. Comparison of phototrophic shell-degrading endoliths in invasive and native populations of the intertidal mussel Mytilus galloprovincialis. Biol Invasions 2012. [DOI: 10.1007/s10530-012-0363-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Patchiness and co-existence of indigenous and invasive mussels at small spatial scales: the interaction of facilitation and competition. PLoS One 2011; 6:e26958. [PMID: 22132084 PMCID: PMC3222663 DOI: 10.1371/journal.pone.0026958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 10/07/2011] [Indexed: 11/22/2022] Open
Abstract
Ecological theory predicts that two species with similar requirements will fail to show long-term co-existence in situations where shared resources are limiting, especially at spatial scales that are small relative to the size of the organisms. Two species of intertidal mussels, the indigenous Perna perna and the invasive Mytilus galloprovincialis, form mixed beds on the south coast of South Africa in a situation that has been stable for several generations of these species, even though these populations are often limited by the availability of space. We examined the spatial structure of these species where they co-exist at small spatial scales in the absence of apparent environmental heterogeneity at two sites, testing: whether conspecific aggregation of mussels can occur (using spatial Monte-Carlo tests); the degree of patchiness (using Korcak B patchiness exponent), and whether there was a relationship between percent cover and patchiness. We found that under certain circumstances there is non-random conspecific aggregation, but that in other circumstances there may be random distribution (i.e. the two species are mixed), so that spatial patterns are context-dependent. The relative cover of the species differed between sites, and within each site, the species with higher cover showed low Korcak B values (indicating low patchiness, i.e. the existence of fewer, larger patches), while the less abundant species showed the reverse, i.e. high patchiness. This relationship did not hold for either species within sites. We conclude that co-existence between these mussels is possible, even at small spatial scales because each species is an ecological engineer and, while they have been shown to compete for space, this is preceded by initial facilitation. We suggest that a patchy pattern of co-existence is possible because of a balance between direct (competitive) and indirect (facilitative) interactions.
Collapse
|
15
|
Nicastro KR, Zardi GI, McQuaid CD, Stephens L, Radloff S, Blatch GL. The role of gaping behaviour in habitat partitioning between coexisting intertidal mussels. BMC Ecol 2010; 10:17. [PMID: 20624310 PMCID: PMC2912236 DOI: 10.1186/1472-6785-10-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 07/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Environmental heterogeneity plays a major role in invasion and coexistence dynamics. Habitat segregation between introduced species and their native competitors is usually described in terms of different physiological and behavioural abilities. However little attention has been paid to the effects of behaviour in habitat partitioning among invertebrates, partially because their behavioural repertoires, especially marine benthic taxa, are extremely limited. This study investigates the effect of gaping behaviour on habitat segregation of the two dominant mussel species living in South Africa, the invasive Mytilus galloprovincialis and the indigenous Perna perna. These two species show partial habitat segregation on the south coast of South Africa, the lower and upper areas of the mussel zone are dominated by P. perna and M. galloprovincialis respectively, with overlap in the middle zone. During emergence, intertidal mussels will either keep the valves closed, minimizing water loss and undergoing anaerobic metabolism, or will periodically open the valves maintaining a more efficient aerobic metabolism but increasing the risk of desiccation. RESULTS Our results show that, when air exposed, the two species adopt clearly different behaviours. M. galloprovincialis keeps the shell valves closed, while P. perna periodically gapes. Gaping behaviour increased water loss in the indigenous species, and consequently the risk of desiccation. The indigenous species expressed significantly higher levels of stress protein (Hsp70) than M. galloprovincialis under field conditions and suffered significantly higher mortality rates when exposed to air in the laboratory. In general, no intra-specific differences were observed in relation to intertidal height. The absence of gaping minimises water loss but exposes the invasive species to other stresses, probably related to anoxic respiration. CONCLUSIONS Gaping affects tolerance to desiccation, thus influencing the vertical zonation of the two species. Valve closure exposes the invasive species to higher stress and associated energy demands, but it minimizes water loss, allowing this species to dominate the upper mussel zone, where the gaping indigenous P. perna cannot survive. Thus even very simple behaviour can influence the outcome of interactions between indigenous and invasive species.
Collapse
Affiliation(s)
- Katy R Nicastro
- CCMAR, CIMAR, Universidade do Algarve, Gambelas, Faro, Portugal
| | | | | | | | | | | |
Collapse
|