1
|
Müller S, Du K, Guiguen Y, Pichler M, Nakagawa S, Stöck M, Schartl M, Lamatsch DK. Massive expansion of sex-specific SNPs, transposon-related elements, and neocentromere formation shape the young W-chromosome from the mosquitofish Gambusia affinis. BMC Biol 2023; 21:109. [PMID: 37189152 DOI: 10.1186/s12915-023-01607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The Western mosquitofish, Gambusia affinis, is a model for sex chromosome organization and evolution of female heterogamety. We previously identified a G. affinis female-specific marker, orthologous to the aminomethyl transferase (amt) gene of the related platyfish (Xiphophorus maculatus). Here, we have analyzed the structure and differentiation of the G. affinis W-chromosome, using a cytogenomics and bioinformatics approach. RESULTS The long arm of the G. affinis W-chromosome (Wq) is highly enriched in dispersed repetitive sequences, but neither heterochromatic nor epigenetically silenced by hypermethylation. In line with this, Wq sequences are highly transcribed, including an active nucleolus organizing region (NOR). Female-specific SNPs and evolutionary young transposable elements were highly enriched and dispersed along the W-chromosome long arm, suggesting constrained recombination. Wq copy number expanded elements also include female-specific transcribed sequences from the amt locus with homology to TE. Collectively, the G. affinis W-chromosome is actively differentiating by sex-specific copy number expansion of transcribed TE-related elements, but not (yet) by extensive sequence divergence or gene decay. CONCLUSIONS The G. affinis W-chromosome exhibits characteristic genomic properties of an evolutionary young sex chromosome. Strikingly, the observed sex-specific changes in the genomic landscape are confined to the W long arm, which is separated from the rest of the W-chromosome by a neocentromere acquired during sex chromosome evolution and may thus have become functionally insulated. In contrast, W short arm sequences were apparently shielded from repeat-driven differentiation, retained Z-chromosome like genomic features, and may have preserved pseudo-autosomal properties.
Collapse
Affiliation(s)
- Stefan Müller
- Institute of Human Genetics, Munich University Hospital, Ludwig Maximilians University, Munich, Germany.
| | - Kang Du
- Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | | | - Maria Pichler
- Universität Innsbruck, Research Department for Limnology, Mondsee, Mondsee, Austria
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Matthias Stöck
- Leibniz-Institute for Freshwater Ecology and Inland Fisheries (IGB), Department of Ecophysiology and Aquaculture, Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashihiroshima, 739-8526, Japan
| | - Manfred Schartl
- Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
- Developmental Biochemistry, University of Würzburg, BiozentrumWürzburg, Germany
| | - Dunja K Lamatsch
- Universität Innsbruck, Research Department for Limnology, Mondsee, Mondsee, Austria.
| |
Collapse
|
2
|
Teal CN, Coykendall DK, Campbell MR, Eardley DL, Delomas TA, Shira JT, Schill DJ, Bonar SA, Culver M. Sex-specific markers undetected in green sunfish Lepomis cyanellus using restriction-site associated DNA sequencing. JOURNAL OF FISH BIOLOGY 2022; 100:1528-1540. [PMID: 35439326 DOI: 10.1111/jfb.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
We used restriction-site associated DNA sequencing for SNP discovery and genotyping of known-sex green sunfish Lepomis cyanellus DNA samples to search for sex-diagnostic single nucleotide polymorphisms (SNPs) and restriction-site associated sequences present in one sex and absent in the other. The bioinformatic analyses discovered candidate SNPs and sex-specific restriction-site associated sequences that fit patterns of male or female heterogametic sex determination systems. However, when primers were developed and tested, no candidates reliably identified phenotypic sex. The top performing SNP candidate (ZW_218) correlated with phenotypic sex 63.0% of the time and the presence-absence loci universally amplified in both sexes. We recommend further investigations that interrogate a larger fraction of the L. cyanellus genome. Additionally, studies on the effect of temperature and rearing density on sex determination, as well as breeding of sex-reversed individuals, could provide more insights into the sex determination system of L. cyanellus.
Collapse
Affiliation(s)
- Chad N Teal
- Arizona Cooperative Fish and Wildlife Research Unit, School of Natural Resources and the Environment, Tucson, Arizona, USA
| | - D Katharine Coykendall
- Pacific States Marine Fisheries Commission, Eagle Fish Genetics Lab, Eagle, Idaho, USA
- Idaho Department of Fish and Game, Eagle Fish Genetics Lab, Eagle, Idaho, USA
| | - Matthew R Campbell
- Idaho Department of Fish and Game, Eagle Fish Genetics Lab, Eagle, Idaho, USA
| | - Daniel L Eardley
- Pacific States Marine Fisheries Commission, Eagle Fish Genetics Lab, Eagle, Idaho, USA
- Idaho Department of Fish and Game, Eagle Fish Genetics Lab, Eagle, Idaho, USA
| | - Thomas A Delomas
- Pacific States Marine Fisheries Commission, Eagle Fish Genetics Lab, Eagle, Idaho, USA
- Idaho Department of Fish and Game, Eagle Fish Genetics Lab, Eagle, Idaho, USA
| | - James T Shira
- University of Arizona Genetics Core, Tucson, Arizona, USA
| | | | - Scott A Bonar
- US Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, School of Natural Resources and the Environment, University of Arizona, ENR2, Tucson, Arizona, USA
| | - Melanie Culver
- US Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, School of Natural Resources and the Environment, University of Arizona, ENR2, Tucson, Arizona, USA
| |
Collapse
|
3
|
Patil JG, Norazmi-Lokman NH, Kwan TN. Reproductive viability of paradoxically masculinised Gambusia holbrooki generated following diethylstilbestrol (DES) treatment. Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110468. [PMID: 32710933 DOI: 10.1016/j.cbpb.2020.110468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/01/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023]
Abstract
Hormonal sex reversal can produce monosex fish stocks and provide insights into their gamity and reproductive physiology. However, paradoxical effects have been reported in several fish species that remain largely ignored as anomalies, particularly those of masculinisation. As a first step, this study examined reproductive viability of paradoxically masculinised Gambusia holbrooki produced following oral administration (20-100 mg/kg feed) of a feminizing hormone diethylstilbestrol (DES). Contrary to expectation, all treatment groups produced 100% male populations. Survival, mating behaviour, gamete production, breeding output as well as expression of anti-Mullerian hormone (amh), ovarian (cyp19a1a) and brain (cyp19a1b) aromatase of masculinised fish were also examined. Survival (≤ 54.1 ± 7.3%) at termination of DES treatment was significantly lower compared with controls (88.6 ± 4.3%) but remained unaffected post treatment. Gonopodium thrusting frequency (33 ± 9.8 per 10 min) was not significantly different to untreated males just as sperm abundance (3.9 ± 1.5 × 108/male) and their motility (88.6 ± 29.1%). Importantly, paradoxically masculinised fish mated with virgin females and produced clutch sizes (22 ± 4) and progeny survival (87.0 ± %) that were comparable to that of untreated males. Masculinised testes showed high amh and low cyp19a1a expression, a pattern resembling those of untreated males. Production of paradoxically sex-reversed males with a capability to produce viable offspring has not been reported previously in this or other fish species. The outcomes support a feed-back regulation of oestrogenic pathways in this viviparous fish and could be useful for ecological applications such as controlling invasive fish populations.
Collapse
Affiliation(s)
- Jawahar G Patil
- Fisheries and Aquaculture Centre, IMAS, University of Tasmania, Australia; Inland Fisheries Service Tasmania, Australia.
| | - Nor Hakim Norazmi-Lokman
- Fisheries and Aquaculture Centre, IMAS, University of Tasmania, Australia; Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, Malaysia
| | - Tzu Nin Kwan
- Fisheries and Aquaculture Centre, IMAS, University of Tasmania, Australia
| |
Collapse
|
4
|
Day CC, Landguth EL, Simmons RK, Baker WP, Whiteley AR, Lukacs PM, Bearlin A. Simulating effects of fitness and dispersal on the use of Trojan sex chromosomes for the management of invasive species. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Casey C. Day
- Computational Ecology Lab University of Montana Missoula MT USA
| | | | - Ryan K. Simmons
- Seattle City Light Environment, Land and Licensing Seattle WA USA
| | | | - Andrew R. Whiteley
- Wildlife Biology Program Franke College of Forestry and Conservation University of Montana Missoula MT USA
| | - Paul M. Lukacs
- Wildlife Biology Program Franke College of Forestry and Conservation University of Montana Missoula MT USA
| | - Andrew Bearlin
- Seattle City Light Environment, Land and Licensing Seattle WA USA
| |
Collapse
|
5
|
Bókony V, Kövér S, Nemesházi E, Liker A, Székely T. Climate-driven shifts in adult sex ratios via sex reversals: the type of sex determination matters. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0325. [PMID: 28760766 DOI: 10.1098/rstb.2016.0325] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 01/09/2023] Open
Abstract
Sex reversals whereby individuals of one genetic sex develop the phenotype of the opposite sex occur in ectothermic vertebrates with genetic sex-determination systems that are sensitive to extreme temperatures during sexual differentiation. Recent rises in global temperatures have led researchers to predict that sex reversals will become more common, resulting in the distortion of many populations' sex ratios. However, it is unclear whether susceptibility to climate-driven sex-ratio shifts depends on the type of sex determination that varies across species. First, we show here using individual-based theoretical models that XX/XY (male-heterogametic) and ZZ/ZW (female-heterogametic) sex-determination systems can respond differentially to temperature-induced sex reversals. Interestingly, the impacts of climate warming on adult sex ratio (ASR) depend on the effects of both genotypic and phenotypic sex on survival and reproduction. Second, we analyse the temporal changes of ASR in natural amphibian populations using data from the literature, and find that ASR shifted towards males in ZZ/ZW species over the past 60 years, but did not change significantly in XX/XY species. Our results highlight the fact that we need a better understanding of the interactions between genetic and environmental sex-determining mechanisms to predict the responses of ectotherms to climate change and the associated extinction risks.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'.
Collapse
Affiliation(s)
- Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Szilvia Kövér
- Department of Ecology, University of Veterinary Medicine, Rottenbiller u. 50, 1077 Budapest, Hungary
| | - Edina Nemesházi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary.,Department of Ecology, University of Veterinary Medicine, Rottenbiller u. 50, 1077 Budapest, Hungary
| | - András Liker
- Department of Limnology, University of Pannonia, Pf. 158, 8201 Veszprém, Hungary.,MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Pf. 158, 8201 Veszprém, Hungary
| | - Tamás Székely
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
6
|
Genome-wide analysis of brain and gonad transcripts reveals changes of key sex reversal-related genes expression and signaling pathways in three stages of Monopterus albus. PLoS One 2017; 12:e0173974. [PMID: 28319194 PMCID: PMC5358790 DOI: 10.1371/journal.pone.0173974] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/01/2017] [Indexed: 12/21/2022] Open
Abstract
Background The natural sex reversal severely affects the sex ratio and thus decreases the productivity of the rice field eel (Monopterus albus). How to understand and manipulate this process is one of the major issues for the rice field eel stocking. So far the genomics and transcriptomics data available for this species are still scarce. Here we provide a comprehensive study of transcriptomes of brain and gonad tissue in three sex stages (female, intersex and male) from the rice field eel to investigate changes in transcriptional level during the sex reversal process. Results Approximately 195 thousand unigenes were generated and over 44.4 thousand were functionally annotated. Comparative study between stages provided multiple differentially expressed genes in brain and gonad tissue. Overall 4668 genes were found to be of unequal abundance between gonad tissues, far more than that of the brain tissues (59 genes). These genes were enriched in several different signaling pathways. A number of 231 genes were found with different levels in gonad in each stage, with several reproduction-related genes included. A total of 19 candidate genes that could be most related to sex reversal were screened out, part of these genes’ expression patterns were validated by RT-qPCR. The expression of spef2, maats1, spag6 and dmc1 were abundant in testis, but was barely detected in females, while the 17β-hsd12, zpsbp3, gal3 and foxn5 were only expressed in ovary. Conclusion This study investigated the complexity of brain and gonad transcriptomes in three sex stages of the rice field eel. Integrated analysis of different gene expression and changes in signaling pathways, such as PI3K-Akt pathway, provided crucial data for further study of sex transformation mechanisms.
Collapse
|
7
|
Mcnair A, Lokman PM, Closs GP, Nakagawa S. ECOLOGICAL AND EVOLUTIONARY APPLICATIONS FOR ENVIRONMENTAL SEX REVERSAL OF FISH. QUARTERLY REVIEW OF BIOLOGY 2015; 90:23-44. [PMID: 26434164 DOI: 10.1086/679762] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Environmental sex reversal (ESR), which results in a mismatch between genotypic and phenotypic sex, is well documented in numerous fish species and may be induced by chemical exposure. Historically, research involving piscine ESR has been carried out with a view to improving profitability in aquaculture or to elucidate the processes governing sex determination and sexual differentiation. However, recent studies in evolution and ecology suggest research on ESR now has much wider applications and ramifications. We begin with an overview of ESR in fish and a brief review of the traditional applications thereof. We then discuss ESR and its potential demographic consequences in wild populations. Theory even suggests sex-reversed fish may be purposefully released to manipulate population dynamics. We suggest new research directions that may prove fruitful in understanding how ESR at the individual level translates to population-level processes. In the latter portion of the review we focus on evolutionary applications of ESR. Sex-reversal studies from the aquaculture literature provide insight in to the evolvability of determinants of sexual phenotype. Additionally, induced sex reversal can provide information about the evolution of sex chromosomes and sex-linked traits. Recently, naturally occurring ESR has been implicated as a mechanism contributing to the evolution of sex chromosomes.
Collapse
|
8
|
Shen ZG, Wang HP. Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish. Genet Sel Evol 2014; 46:26. [PMID: 24735220 PMCID: PMC4108122 DOI: 10.1186/1297-9686-46-26] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 03/24/2014] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed.
Collapse
Affiliation(s)
| | - Han-Ping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, Ohio 45661, USA.
| |
Collapse
|