1
|
Strader RN, Dowd SC, Blawas C, Mahoney RD, Patetta NC, Leslie J, Nye JA. Climate variability hypothesis is partially supported in thermal limits of juvenile Northwest Atlantic coastal fishes. JOURNAL OF FISH BIOLOGY 2023; 103:1452-1462. [PMID: 37650861 DOI: 10.1111/jfb.15533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
As ocean warming continues to impact marine species globally, there is a need to understand the mechanisms underlying shifts in abundance and distribution. There is growing evidence that upper and lower temperature tolerances rather than mean preferences explain range shifts, but the full thermal niche is unknown for many marine species and observational data are often ill-suited to estimate the upper and lower thermal tolerances. We quantified critical thermal maximum (CTmax ) and critical thermal minimum (CTmin ) using standard methods to quantify temperature limits and thermal ranges of 14 economically and ecologically important juvenile fish species on the US Atlantic coast. We then tested the climate variability hypothesis (CVH), which states that higher-latitude species should have a wider temperature tolerance due to higher climatic variability closer to the poles. Our findings generally support the CVH in the juvenile fishes that we evaluated. However, low-latitude species were not uniformly stenothermal. Rather, species with median occurrences across a wide range of latitudes had wide temperature tolerances, but only the tropical species we tested had more narrow ranges. These findings suggest that quantifying temperature tolerances may be used to predict which low-latitude species are most likely to shift in response to warming water and those that may be more sensitive to climate change in this region.
Collapse
Affiliation(s)
- Ryan N Strader
- Department of Earth Marine and Environmental Science, Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, North Carolina, USA
| | - Sally C Dowd
- Department of Earth Marine and Environmental Science, Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, North Carolina, USA
| | - Camryn Blawas
- Department of Earth Marine and Environmental Science, Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, North Carolina, USA
| | - Richard D Mahoney
- Department of Earth Marine and Environmental Science, Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, North Carolina, USA
| | - Natalie C Patetta
- Department of Earth Marine and Environmental Science, Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, North Carolina, USA
| | - Jaelyn Leslie
- Department of Earth Marine and Environmental Science, Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, North Carolina, USA
| | - Janet A Nye
- Department of Earth Marine and Environmental Science, Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, North Carolina, USA
| |
Collapse
|
2
|
Zhang L, Yang Z, Yang F, Wang G, Zeng M, Zhang Z, Yang M, Wang Z, Li Z. Gut microbiota of two invasive fishes respond differently to temperature. Front Microbiol 2023; 14:1087777. [PMID: 37056740 PMCID: PMC10088563 DOI: 10.3389/fmicb.2023.1087777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Temperature variation structures the composition and diversity of gut microbiomes in ectothermic animals, key regulators of host physiology, with potential benefit to host or lead to converse results (i.e., negative). So, the significance of either effect may largely depend on the length of time exposed to extreme temperatures and how rapidly the gut microbiota can be altered by change in temperature. However, the temporal effects of temperature on gut microbiota have rarely been clarified. To understand this issue, we exposed two juvenile fishes (Cyprinus carpio and Micropterus salmoides), which both ranked among the 100 worst invasive alien species in the world, to increased environmental temperature and sampled of the gut microbiota at multiple time points after exposure so as to determine when differences in these communities become detectable. Further, how temperature affects the composition and function of microbiota was examined by comparing predicted metagenomic profiles of gut microbiota between treatment groups at the final time point of the experiment. The gut microbiota of C. carpio was more plastic than those of M. salmoides. Specifically, communities of C. carpio were greatly altered by increased temperature within 1 week, while communities of M. salmoides exhibit no significant changes. Further, we identified 10 predicted bacterial functional pathways in C. carpio that were temperature-dependent, while none functional pathways in M. salmoides was found to be temperature-dependent. Thus, the gut microbiota of C. carpio was more sensitive to temperature changes and their functional pathways were significantly changed after temperature treatment. These results showed the gut microbiota of the two invasive fishes differ in response to temperature change, which may indicate that they differ in colonization modes. Broadly, we have confirmed that the increased short-term fluctuations in temperatures are always expected to alter the gut microbiota of ectothermic vertebrates when facing global climate change.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
- Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem and The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, China
- *Correspondence: Lixia Zhang,
| | - Zi Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Fan Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Gege Wang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ming Zeng
- Jigongshan National Nature Reserve, Xinyang, China
| | | | - Mengxiao Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Zhibing Li
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
3
|
Comparison of Whole Blood Fatty Acid Profiles between Lionfish (Pterois spp.) in Wild and Managed Care Environments. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2022. [DOI: 10.3390/jzbg3030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Suboptimal nutrition may contribute to lionfish (Pterois volitans and Pterois miles) health issues in managed care environments. This study’s objective was to establish and compare whole blood fatty acid profiles in wild and aquarium lionfish. Whole blood samples were dried onto specialized high-quality paper cards from wild, invasive lionfish harvested off the North Carolina coast (n = 16) and lionfish managed by the North Carolina Aquariums (n = 12). Blood fatty acid profiles were analyzed from dried blood spots. Aquarium lionfish had significantly (p < 0.05) higher linoleic (18:2ω6) and eicosapentaenoic (20:5ω3) acid levels than wild lionfish. Similarly, aquarium lionfish had significantly (p < 0.05) lower saturated fatty acids and arachidonic (20:4ω6) to eicosapentaenoic acid (20:5ω3) ratios than wild lionfish. Total omega-3 and omega-6 fatty acids, as well as the ratio of these two fatty acid groups, were similar between wild and aquarium lionfish. Gut content analysis of wild lionfish diets included reef-dependent and schooling fish while aquarium lionfish diets were pelagic fish, crustaceans, mollusks, and commercial gel diets with nutrient supplements. This study reports whole blood fatty acid profiles in lionfish, providing comparative macronutrient data that may be useful for improving their nutrition and welfare in aquariums.
Collapse
|
4
|
Kochhann D, Sarmento CG, de Oliveira JC, Queiroz HL, Val AL, Chapman LJ. Take time to look at the fish: Behavioral response to acute thermal challenge in two Amazonian cichlids. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:735-744. [PMID: 34492166 DOI: 10.1002/jez.2541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022]
Abstract
Critical thermal maximum (CTmax ) is often used as an index of upper thermal tolerance in fishes; however, recent studies have shown that some fishes exhibit agitation or avoidance behavior well before the CTmax is reached. In this study, we quantified behavioral changes during CTmax trials in two Amazonian cichlids, Apistogramma agassizii and Mesonauta insignis. The thermal agitation temperature (Tag ) was recorded as the temperature at which fish left cover and began swimming in an agitated manner, and four behaviors (duration of sheltering, digging, activity, and aquatic surface respiration [ASR]) were compared before and after Tag . Both A. agassizii and M. insignis exhibited high critical thermal maxima, 40.8°C and 41.3°C, respectively. Agitation temperature was higher in M. insignis (37.3°C) than in A. agassizii (35.4°C), indicating that A. agassizii has a lower temperature threshold at which avoidance behavior is initiated. Activity level increased and shelter use decreased with increased temperatures, and patterns were similar between the two species. Digging behavior increased after Tag in both species, but was higher in A. agassazii and may reflect its substrate-oriented ecology. ASR (ventilating water at the surface film) was extremely rare before Tag , but increased in both cichlid species after Tag and was greater in M. insignis than in A. agassizii. This suggests that fish were experiencing physiological hypoxia at water temperatures approaching CTmax . These results demonstrate that acute thermal challenge can induce a suite of behavioral changes in fishes that may provide additional, ecologically relevant information on thermal tolerance.
Collapse
Affiliation(s)
- Daiani Kochhann
- Laboratory of Behavioural Ecophysiology, Center of Agrarian and Biological Sciences, Acaraú Valley State University, Sobral, Ceará, Brazil
| | - Carolina G Sarmento
- Laboratory of Ecology and Fish Biology, Mamirauá Institute for Sustainable Development-MISD, Tefé, Brazil
| | - Jomara C de Oliveira
- Laboratory of Ecology and Fish Biology, Mamirauá Institute for Sustainable Development-MISD, Tefé, Brazil.,Amazonas State Secretary for Education and Teaching Quality, SEDUC Amazonas, Manaus, Brazil
| | - Helder L Queiroz
- Laboratory of Ecology and Fish Biology, Mamirauá Institute for Sustainable Development-MISD, Tefé, Brazil
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon-INPA, Manaus, Brazil
| | - Lauren J Chapman
- Department of Biology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
5
|
Harman AA, Fuzzen M, Stoa L, Boreham D, Manzon R, Somers CM, Wilson JY. Evaluating tank acclimation and trial length for dynamic shuttle box temperature preference assays in aquatic animals. J Exp Biol 2021; 224:269164. [PMID: 34137867 DOI: 10.1242/jeb.233205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/17/2021] [Indexed: 11/20/2022]
Abstract
Characterizing the thermal preference of fish is important in conservation, environmental and evolutionary physiology and can be determined using a shuttle box system. Initial tank acclimation and trial lengths are important considerations in experimental design, yet systematic studies of these factors are missing. Three different behavioral assay experimental designs were tested to determine the effect of tank acclimation and trial length (hours of tank acclimation:behavioral trial: 12:12, 0:12, 2:2) on the temperature preference of juvenile lake whitefish (Coregonus clupeaformis), using a shuttle box. Average temperature preferences for the 12 h:12 h, 0 h:12 h, 2 h:2 h experimental designs were 16.10±1.07°C, 16.02±1.56°C and 16.12±1.59°C respectively, with no significant differences between experimental designs (P=0.9337). Ultimately, length of acclimation time and trial length had no significant effect on thermal preference.
Collapse
Affiliation(s)
- Adam Alexander Harman
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, Canada, L8S 4K1
| | - Meghan Fuzzen
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, Canada, L8S 4K1
| | - Lisa Stoa
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, Canada, L8S 4K1
| | - Douglas Boreham
- Medical Sciences , Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, Canada, P3E 2C6
| | - Richard Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK, Canada, S4S 0A2
| | - Christopher M Somers
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK, Canada, S4S 0A2
| | - Joanna Yvonne Wilson
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
6
|
Christensen EAF, Andersen LEJ, Bergsson H, Steffensen JF, Killen SS. Shuttle-box systems for studying preferred environmental ranges by aquatic animals. CONSERVATION PHYSIOLOGY 2021; 9:coab028. [PMID: 34026213 PMCID: PMC8129825 DOI: 10.1093/conphys/coab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 05/12/2023]
Abstract
Animals' selection of environments within a preferred range is key to understanding their habitat selection, tolerance to stressors and responses to environmental change. For aquatic animals, preferred environmental ranges can be studied in so-called shuttle-boxes, where an animal can choose its ambient environment by shuttling between separate choice chambers with differences in an environmental variable. Over time, researchers have refined the shuttle-box technology and applied them in many different research contexts, and we here review the use of shuttle-boxes as a research tool with aquatic animals over the past 50 years. Most studies on the methodology have been published in the latest decade, probably due to an increasing research interest in the effects of environmental change, which underlines the current popularity of the system. The shuttle-box has been applied to a wide range of research topics with regards to preferred ranges of temperature, CO 2 , salinity and O 2 in a vast diversity of species, showing broad applicability for the system. We have synthesized the current state-of-the-art of the methodology and provided best practice guidelines with regards to setup, data analyses, experimental design and study reporting. We have also identified a series of knowledge gaps, which can and should be addressed in future studies. We conclude with highlighting directions for research using shuttle-boxes within evolutionary biology and behavioural and physiological ecology.
Collapse
Affiliation(s)
- Emil A F Christensen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow,
82 Hillhead Street, Glasgow, G12 8QQ, UK
| | - Lars E J Andersen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark
| | - Heiðrikur Bergsson
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark
| | - John F Steffensen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow,
82 Hillhead Street, Glasgow, G12 8QQ, UK
| |
Collapse
|
7
|
Christensen EAF, Norin T, Tabak I, van Deurs M, Behrens JW. Effects of temperature on physiological performance and behavioral thermoregulation in an invasive fish, the round goby. J Exp Biol 2021; 224:jeb237669. [PMID: 33257434 PMCID: PMC7823162 DOI: 10.1242/jeb.237669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Invasive species exert negative impacts on biodiversity and ecosystems on a global scale, which may be enhanced in the future by climate change. Knowledge of how invasive species respond physiologically and behaviorally to novel and changing environments can improve our understanding of which traits enable the ecological success of these species, and potentially facilitate mitigation efforts. We examined the effects of acclimation to temperatures ranging from 5 to 28°C on aerobic metabolic rates, upper temperature tolerance (critical thermal maximum, CTmax), as well as temperature preference (Tpref) and avoidance (Tavoid) of the round goby (Neogobius melanostomus), one of the most impactful invasive species in the world. We show that round goby maintained a high aerobic scope from 15 to 28°C; that is, the capacity to increase its aerobic metabolic rate above that of its maintenance metabolism remained high across a broad thermal range. Although CTmax increased relatively little with acclimation temperature compared with other species, Tpref and Tavoid were not affected by acclimation temperature at all, meaning that round goby maintained a large thermal safety margin (CTmax-Tavoid) across acclimation temperatures, indicating a high level of thermal resilience in this species. The unperturbed physiological performance and high thermal resilience were probably facilitated by high levels of phenotypic buffering, which can make species readily adaptable and ecologically competitive in novel and changing environments. We suggest that these physiological and behavioral traits could be common for invasive species, which would only increase their success under continued climate change.
Collapse
Affiliation(s)
- Emil A F Christensen
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Tommy Norin
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Iren Tabak
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Mikael van Deurs
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Jane W Behrens
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Christensen EAF, Norin T, Tabak I, van Deurs M, Behrens JW. Effects of temperature on physiological performance and behavioral thermoregulation in an invasive fish, the round goby. J Exp Biol 2021. [PMID: 33257434 PMCID: PMC7823162 DOI: 10.1242/jeb.237669 10.1242/jeb.237669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Invasive species exert negative impacts on biodiversity and ecosystems on a global scale, which may be enhanced in the future by climate change. Knowledge of how invasive species respond physiologically and behaviorally to novel and changing environments can improve our understanding of which traits enable the ecological success of these species, and potentially facilitate mitigation efforts. We examined the effects of acclimation to temperatures ranging from 5 to 28°C on aerobic metabolic rates, upper temperature tolerance (critical thermal maximum, CTmax), as well as temperature preference (T pref) and avoidance (T avoid) of the round goby (Neogobius melanostomus), one of the most impactful invasive species in the world. We show that round goby maintained a high aerobic scope from 15 to 28°C; that is, the capacity to increase its aerobic metabolic rate above that of its maintenance metabolism remained high across a broad thermal range. Although CTmax increased relatively little with acclimation temperature compared with other species, T pref and T avoid were not affected by acclimation temperature at all, meaning that round goby maintained a large thermal safety margin (CTmax-T avoid) across acclimation temperatures, indicating a high level of thermal resilience in this species. The unperturbed physiological performance and high thermal resilience were probably facilitated by high levels of phenotypic buffering, which can make species readily adaptable and ecologically competitive in novel and changing environments. We suggest that these physiological and behavioral traits could be common for invasive species, which would only increase their success under continued climate change.
Collapse
|
9
|
Hasenei A, Kerstetter DW, Horodysky AZ, Brill RW. Physiological limits to inshore invasion of Indo-Pacific lionfish (Pterois spp.): insights from the functional characteristics of their visual system and hypoxia tolerance. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02241-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Precipitous Declines in Northern Gulf of Mexico Invasive Lionfish Populations Following the Emergence of an Ulcerative Skin Disease. Sci Rep 2020; 10:1934. [PMID: 32020056 PMCID: PMC7000744 DOI: 10.1038/s41598-020-58886-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/22/2020] [Indexed: 11/08/2022] Open
Abstract
Invasive Indo-Pacific lionfish Pterois volitans/miles have become well-established in many western Atlantic marine habitats and regions. However, high densities and low genetic diversity could make their populations susceptible to disease. We examined changes in northern Gulf of Mexico (nGOM) lionfish populations following the emergence of an ulcerative skin disease in August 2017, when estimated disease prevalence was as high as 40%. Ulcerated female lionfish had 9% lower relative condition compared to non-ulcerated females. Changes in lionfish size composition indicated a potential recruitment failure in early summer 2018, when the proportion of new recruits declined by >80%. Remotely operated vehicle surveys during 2016–2018 indicated lionfish population density declined in 2018 by 75% on natural reefs. The strongest declines (77–79%) in lionfish density were on high-density (>25 lionfish per 100 m2) artificial reefs, which declined to similar levels as low-density (<15 lionfish per 100 m2) artificial reefs that had prior lionfish removals. Fisheries-dependent sampling indicated lionfish commercial spearfishing landings, commercial catch per unit effort (CPUE), and lionfish tournament CPUE also declined approximately 50% in 2018. Collectively, these results provide correlative evidence for density-dependent epizootic population control, have implications for managing lionfish and impacted native species, and improve our understanding of biological invasions.
Collapse
|
11
|
Steell SC, Van Leeuwen TE, Brownscombe JW, Cooke SJ, Eliason EJ. An appetite for invasion: digestive physiology, thermal performance and food intake in lionfish ( Pterois spp.). ACTA ACUST UNITED AC 2019; 222:jeb.209437. [PMID: 31527176 DOI: 10.1242/jeb.209437] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/09/2019] [Indexed: 12/25/2022]
Abstract
Species invasions threaten global biodiversity, and physiological characteristics may determine their impact. Specific dynamic action (SDA; the increase in metabolic rate associated with feeding and digestion) is one such characteristic, strongly influencing an animal's energy budget and feeding ecology. We investigated the relationship between SDA, scope for activity, metabolic phenotype, temperature and feeding frequency in lionfish (Pterois spp.), which are invasive to western Atlantic marine ecosystems. Intermittent-flow respirometry was used to determine SDA, scope for activity and metabolic phenotype at 26°C and 32°C. Maximum metabolic rate occurred during digestion, as opposed to exhaustive exercise, as in more athletic species. SDA and its duration (SDAdur) were 30% and 45% lower at 32°C than at 26°C, respectively, and lionfish ate 42% more at 32°C. Despite a 32% decline in scope for activity from 26°C to 32°C, aerobic scope may have increased by 24%, as there was a higher range between standard metabolic rate (SMR) and peak SDA (SDApeak; the maximum postprandial metabolic rate). Individuals with high SMR and low scope for activity phenotypes had a less costly SDA and shorter SDAdur but a higher SDApeak Feeding frequently had a lower and more consistent cost than consuming a single meal, but increased SDApeak These findings demonstrate that: (1) lionfish are robust physiological performers in terms of SDA and possibly aerobic scope at temperatures approaching their thermal maximum, (2) lionfish may consume more prey as oceans warm with climate change, and (3) metabolic phenotype and feeding frequency may be important mediators of feeding ecology in fish.
Collapse
Affiliation(s)
- S Clay Steell
- Fish Ecology and Conservation Physiology Lab, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Travis E Van Leeuwen
- The Cape Eleuthera Institute, Eleuthera, The Bahamas.,Fisheries and Oceans Canada, 80 East White Hills Road, PO Box 5667, St John's, NL, Canada, A1C 5X1
| | - Jacob W Brownscombe
- Fish Ecology and Conservation Physiology Lab, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Lab, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
12
|
Spinks RK, Munday PL, Donelson JM. Developmental effects of heatwave conditions on the early life stages of a coral reef fish. ACTA ACUST UNITED AC 2019; 222:222/16/jeb202713. [PMID: 31444281 DOI: 10.1242/jeb.202713] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/29/2019] [Indexed: 01/03/2023]
Abstract
Marine heatwaves, which are increasing in frequency, duration and intensity owing to climate change, are an imminent threat to marine ecosystems. On coral reefs, heatwave conditions often coincide with periods of peak recruitment of juvenile fishes and exposure to elevated temperature may affect their development. However, whether differences in the duration of high temperature exposure have effects on individual performance is unknown. We exposed juvenile spiny damselfish, Acanthochromis polyacanthus, to increasing lengths of time (3, 7, 30 and 108 days post-hatching) of elevated temperature (+2°C). After 108 days, we measured escape performance at present-day control and elevated temperatures, standard length, mass and critical thermal maximum. Using a Bayesian approach, we show that 30 days or more exposure to +2°C leads to improved escape performance, irrespective of performance temperature, possibly owing to developmental effects of high temperature on muscle development and/or anaerobic metabolism. Continued exposure to elevated temperature for 108 days caused a reduction in body size compared with the control, but not in fish exposed to high temperature for 30 days or less. By contrast, exposure to elevated temperatures for any length of time had no effect on critical thermal maximum, which, combined with previous work, suggests a short-term physiological constraint of ∼37°C in this species. Our study shows that extended exposure to increased temperature can affect the development of juvenile fishes, with potential immediate and future consequences for individual performance.
Collapse
Affiliation(s)
- Rachel K Spinks
- ARC Centre of Excellence for Coral Reef Studies, James Cook Drive, Douglas 4814, James Cook University, QLD, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook Drive, Douglas 4814, James Cook University, QLD, Australia
| | - Jennifer M Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook Drive, Douglas 4814, James Cook University, QLD, Australia
| |
Collapse
|