1
|
Grunseich JM, Huang PC, Bernal JS, Kolomiets M. Western corn rootworm resistance in maize persists in the absence of jasmonic acid. PLANTA 2024; 261:6. [PMID: 39625501 DOI: 10.1007/s00425-024-04580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025]
Abstract
MAIN CONCLUSION Larva growth, survival, and development speed were not affected by the absence of jasmonic acid (JA) indicating that JA does not have a direct role in maize resistance to western corn rootworm. Jasmonic acid (JA) is a plant hormone that regulates multiple physiological processes including defense against herbivory by chewing insects. Previous research showed its importance for resistance to aboveground herbivory. While few studies have investigated the role of JA in resistance to belowground root-feeding herbivores, none has directly tested the role of JA in such resistance. In this study, we used an opr7opr8 double mutant to directly test the role of JA in resistance to western corn rootworm (Diabrotica virgifera virgifera, WCR), a devastating and specialist pest of maize. The opr7opr8 double mutant is deficient in JA accumulation as we found that it does not accumulate JA nor JA-Ile independently of exposure to WCR. We found no significant difference in growth (body mass), survival, and development of WCR larvae in response to JA deficiency, suggesting that disruption of JA biosynthesis does not impact resistance in maize roots to WCR. Additionally, we observed no significant effect on loss of root tissue caused by WCR associated with JA deficiency, while we found a reduction in shoot growth (mass) associated with WCR herbivory in the opr7opr8 mutant that was not observed in the wildtype. This suggested a role for JA in aboveground growth response to WCR herbivory rather than resistance to WCR.
Collapse
Affiliation(s)
- John M Grunseich
- Department of Entomology, Texas A&M University, College Station, TX, 77845, USA
| | - Pei-Cheng Huang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Julio S Bernal
- Department of Entomology, Texas A&M University, College Station, TX, 77845, USA.
| | - Michael Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Sappington TW. Aseasonal, undirected migration in insects: 'Invisible' but common. iScience 2024; 27:110040. [PMID: 38883831 PMCID: PMC11177203 DOI: 10.1016/j.isci.2024.110040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Many insect pests are long-distance migrants, moving from lower latitudes where they overwinter to higher latitudes in spring to exploit superabundant, but seasonally ephemeral, host crops. These seasonal long-distance migration events are relatively easy to recognize, and justifiably garner much research attention. Evidence indicates several pest species that overwinter in diapause, and thus inhabit a year-round range, also engage in migratory flight, which is somewhat "invisible" because displacement is nondirectional and terminates among conspecifics. Support for aseasonal, undirected migration is related to recognizing true migratory flight behavior, which differs fundamentally from most other kinds of flight in that it is nonappetitive. Migrating adults are not searching for resources and migratory flight is not arrested by encounters with potential resources. The population-level consequence of aseasonal, undirected migration is spatial mixing of individuals within the larger metapopulation, which has important implications for population dynamics, gene flow, pest management, and insect resistance management.
Collapse
Affiliation(s)
- Thomas W Sappington
- USDA, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Sappington TW, Spencer JL. Movement Ecology of Adult Western Corn Rootworm: Implications for Management. INSECTS 2023; 14:922. [PMID: 38132596 PMCID: PMC10744206 DOI: 10.3390/insects14120922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Movement of adult western corn rootworm, Diabrotica virgifera virgifera LeConte, is of fundamental importance to this species' population dynamics, ecology, evolution, and interactions with its environment, including cultivated cornfields. Realistic parameterization of dispersal components of models is needed to predict rates of range expansion, development, and spread of resistance to control measures and improve pest and resistance management strategies. However, a coherent understanding of western corn rootworm movement ecology has remained elusive because of conflicting evidence for both short- and long-distance lifetime dispersal, a type of dilemma observed in many species called Reid's paradox. Attempts to resolve this paradox using population genetic strategies to estimate rates of gene flow over space likewise imply greater dispersal distances than direct observations of short-range movement suggest, a dilemma called Slatkin's paradox. Based on the wide-array of available evidence, we present a conceptual model of adult western corn rootworm movement ecology under the premise it is a partially migratory species. We propose that rootworm populations consist of two behavioral phenotypes, resident and migrant. Both engage in local, appetitive flights, but only the migrant phenotype also makes non-appetitive migratory flights, resulting in observed patterns of bimodal dispersal distances and resolution of Reid's and Slatkin's paradoxes.
Collapse
Affiliation(s)
- Thomas W. Sappington
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Joseph L. Spencer
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| |
Collapse
|
4
|
Boyle JH, Strickler S, Twyford AD, Ricono A, Powell A, Zhang J, Xu H, Smith R, Dalgleish HJ, Jander G, Agrawal AA, Puzey JR. Temporal matches between monarch butterfly and milkweed population changes over the past 25,000 years. Curr Biol 2023; 33:3702-3710.e5. [PMID: 37607548 DOI: 10.1016/j.cub.2023.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/13/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
In intimate ecological interactions, the interdependency of species may result in correlated demographic histories. For species of conservation concern, understanding the long-term dynamics of such interactions may shed light on the drivers of population decline. Here, we address the demographic history of the monarch butterfly, Danaus plexippus, and its dominant host plant, the common milkweed Asclepias syriaca (A. syriaca), using broad-scale sampling and genomic inference. Because genetic resources for milkweed have lagged behind those for monarchs, we first release a chromosome-level genome assembly and annotation for common milkweed. Next, we show that despite its enormous geographic range across eastern North America, A. syriaca is best characterized as a single, roughly panmictic population. Using approximate Bayesian computation with random forests (ABC-RF), a machine learning method for reconstructing demographic histories, we show that both monarchs and milkweed experienced population expansion during the most recent recession of North American glaciers 10,000-20,000 years ago. Our data also identify concurrent population expansions in both species during the large-scale clearing of eastern forests (∼200 years ago). Finally, we find no evidence that either species experienced a reduction in effective population size over the past 75 years. Thus, the well-documented decline of monarch abundance over the past 40 years is not visible in our genomic dataset, reflecting a possible mismatch of the overwintering census population to effective population size in this species.
Collapse
Affiliation(s)
- John H Boyle
- Biology Department, College of William & Mary, 540 Landrum Dr., Williamsburg, VA 23185, USA; Biology Department, University of Mary, 7500 University Dr., Bismarck, ND 58504, USA
| | - Susan Strickler
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA; Chicago Botanic Garden, Plant Science and Conservation, 1000 Lake Cook Rd., Glencoe, IL 60022, USA; Northwestern University, Plant Biology and Conservation Program, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Alex D Twyford
- Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Rd., Edinburgh EH9 3FL, UK; Royal Botanic Garden Edinburgh, Edinburgh EH3 5NZ, UK
| | - Angela Ricono
- Biology Department, College of William & Mary, 540 Landrum Dr., Williamsburg, VA 23185, USA
| | - Adrian Powell
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA
| | - Jing Zhang
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA
| | - Hongxing Xu
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA; College of Life Sciences, Shaanxi Normal University, South Chang'an Rd., Xi'an 710062, China
| | - Ronald Smith
- Data Science Program, College of William & Mary, 540 Landrum Dr., Williamsburg, VA 23185, USA
| | - Harmony J Dalgleish
- Biology Department, College of William & Mary, 540 Landrum Dr., Williamsburg, VA 23185, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall, Ithaca, NY 14853, USA
| | - Joshua R Puzey
- Biology Department, College of William & Mary, 540 Landrum Dr., Williamsburg, VA 23185, USA.
| |
Collapse
|
5
|
Huang PC, Grunseich JM, Berg-Falloure KM, Tolley JP, Koiwa H, Bernal JS, Kolomiets MV. Maize OPR2 and LOX10 Mediate Defense against Fall Armyworm and Western Corn Rootworm by Tissue-Specific Regulation of Jasmonic Acid and Ketol Metabolism. Genes (Basel) 2023; 14:1732. [PMID: 37761872 PMCID: PMC10530937 DOI: 10.3390/genes14091732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Foliage-feeding fall armyworm (FAW; Spodoptera frugiperda) and root-feeding western corn rootworm (WCR; Diabrotica virgifera virgifera) are maize (Zea mays L.) pests that cause significant yield losses. Jasmonic acid (JA) plays a pivotal defense role against insects. 12-oxo-phytodienoic acid (12-OPDA) is converted into JA by peroxisome-localized OPDA reductases (OPR). However, little is known about the physiological functions of cytoplasmic OPRs. Here, we show that disruption of ZmOPR2 reduced wound-induced JA production and defense against FAW while accumulating more JA catabolites. Overexpression of ZmOPR2 in Arabidopsis enhanced JA production and defense against beet armyworm (BAW; Spodoptera exigua). In addition, lox10opr2 double mutants were more susceptible than either single mutant, suggesting that ZmOPR2 and ZmLOX10 uniquely and additively contributed to defense. In contrast to the defensive roles of ZmOPR2 and ZmLOX10 in leaves, single mutants did not display any alteration in root herbivory defense against WCR. Feeding on lox10opr2 double mutants resulted in increased WCR mortality associated with greater herbivory-induced production of insecticidal death acids and ketols. Thus, ZmOPR2 and ZmLOX10 cooperatively inhibit the synthesis of these metabolites during herbivory by WCR. We conclude that ZmOPR2 and ZmLOX10 regulate JA-mediated resistance in leaves against FAW while suppressing insecticidal oxylipin synthesis in roots during WCR infestation.
Collapse
Affiliation(s)
- Pei-Cheng Huang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (K.M.B.-F.)
| | - John M. Grunseich
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA;
| | - Katherine M. Berg-Falloure
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (K.M.B.-F.)
| | - Jordan P. Tolley
- Department of Horticultural Sciences, Texas A&M University, College Station, TX77843-2133, USA; (J.P.T.); (H.K.)
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX77843-2133, USA; (J.P.T.); (H.K.)
| | - Julio S. Bernal
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA;
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (K.M.B.-F.)
| |
Collapse
|
6
|
Coates BS, Walden KKO, Lata D, Vellichirammal NN, Mitchell RF, Andersson MN, McKay R, Lorenzen MD, Grubbs N, Wang YH, Han J, Xuan JL, Willadsen P, Wang H, French BW, Bansal R, Sedky S, Souza D, Bunn D, Meinke LJ, Miller NJ, Siegfried BD, Sappington TW, Robertson HM. A draft Diabrotica virgifera virgifera genome: insights into control and host plant adaption by a major maize pest insect. BMC Genomics 2023; 24:19. [PMID: 36639634 PMCID: PMC9840275 DOI: 10.1186/s12864-022-08990-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Adaptations by arthropod pests to host plant defenses of crops determine their impacts on agricultural production. The larval host range of western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is restricted to maize and a few grasses. Resistance of D. v. virgifera to crop rotation practices and multiple insecticides contributes to its status as the most damaging pest of cultivated maize in North America and Europe. The extent to which adaptations by this pest contributes to host plant specialization remains unknown. RESULTS A 2.42 Gb draft D. v. virgifera genome, Dvir_v2.0, was assembled from short shotgun reads and scaffolded using long-insert mate-pair, transcriptome and linked read data. K-mer analysis predicted a repeat content of ≥ 61.5%. Ortholog assignments for Dvir_2.0 RefSeq models predict a greater number of species-specific gene duplications, including expansions in ATP binding cassette transporter and chemosensory gene families, than in other Coleoptera. A majority of annotated D. v. virgifera cytochrome P450s belong to CYP4, 6, and 9 clades. A total of 5,404 transcripts were differentially-expressed between D. v. virgifera larvae fed maize roots compared to alternative host (Miscanthus), a marginal host (Panicum virgatum), a poor host (Sorghum bicolor) and starvation treatments; Among differentially-expressed transcripts, 1,908 were shared across treatments and the least number were between Miscanthus compared to maize. Differentially-expressed transcripts were enriched for putative spliceosome, proteosome, and intracellular transport functions. General stress pathway functions were unique and enriched among up-regulated transcripts in marginal host, poor host, and starvation responses compared to responses on primary (maize) and alternate hosts. CONCLUSIONS Manual annotation of D. v. virgifera Dvir_2.0 RefSeq models predicted expansion of paralogs with gene families putatively involved in insecticide resistance and chemosensory perception. Our study also suggests that adaptations of D. v. virgifera larvae to feeding on an alternate host plant invoke fewer transcriptional changes compared to marginal or poor hosts. The shared up-regulation of stress response pathways between marginal host and poor host, and starvation treatments may reflect nutrient deprivation. This study provides insight into transcriptomic responses of larval feeding on different host plants and resources for genomic research on this economically significant pest of maize.
Collapse
Affiliation(s)
- Brad S. Coates
- grid.508983.fCorn Insects & Crop Genetics Research Unit, USDA-ARS, 2310 Pammel Dr, 532 Science II, Iowa State University, Ames, IA 50011 USA
| | - Kimberly K. O. Walden
- grid.35403.310000 0004 1936 9991Roy J. Carver Biotechnology Center, University of Illinois at Champaign-Urbana, Urbana, IL USA
| | - Dimpal Lata
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | | | - Robert F. Mitchell
- grid.267474.40000 0001 0674 4543University of Wisconsin Oshkosh, Oshkosh, WI USA
| | - Martin N. Andersson
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Lund, Sweden
| | - Rachel McKay
- grid.267474.40000 0001 0674 4543University of Wisconsin Oshkosh, Oshkosh, WI USA
| | - Marcé D. Lorenzen
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Nathaniel Grubbs
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Yu-Hui Wang
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Jinlong Han
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Jing Li Xuan
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Peter Willadsen
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Huichun Wang
- grid.24434.350000 0004 1937 0060Department of Entomology, University of Nebraska, Lincoln, NE USA
| | - B. Wade French
- grid.508981.dIntegrated Crop Systems Research Unit, USDA-ARS, Brookings, SD USA
| | - Raman Bansal
- grid.512850.bUSDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA USA
| | - Sammy Sedky
- grid.512850.bUSDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA USA
| | - Dariane Souza
- grid.15276.370000 0004 1936 8091Department of Entomology, University of Florida, Gainesville, FL USA
| | - Dakota Bunn
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | - Lance J. Meinke
- grid.24434.350000 0004 1937 0060Department of Entomology, University of Nebraska, Lincoln, NE USA
| | - Nicholas J. Miller
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | - Blair D. Siegfried
- grid.15276.370000 0004 1936 8091Department of Entomology, University of Florida, Gainesville, FL USA
| | - Thomas W. Sappington
- grid.508983.fCorn Insects & Crop Genetics Research Unit, USDA-ARS, 2310 Pammel Dr, 532 Science II, Iowa State University, Ames, IA 50011 USA
| | - Hugh M. Robertson
- grid.35403.310000 0004 1936 9991Department of Entomology, University of Illinois at Champaign-Urbana, Urbana, IL USA
| |
Collapse
|
7
|
Bernal JS, Helms AM, Fontes-Puebla AA, DeWitt TJ, Kolomiets MV, Grunseich JM. Root volatile profiles and herbivore preference are mediated by maize domestication, geographic spread, and modern breeding. PLANTA 2022; 257:24. [PMID: 36562877 DOI: 10.1007/s00425-022-04057-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/12/2022] [Indexed: 05/19/2023]
Abstract
Domestication affected the abundances and diversity of maize root volatiles more than northward spread and modern breeding, and herbivore preference for roots was correlated with volatile diversity and herbivore resistance. Studies show that herbivore defenses in crops are mediated by domestication, spread, and breeding, among other human-driven processes. They also show that those processes affected chemical communication between crop plants and herbivores. We hypothesized that (i) preference of the herbivore (Diabrotica virgifera virgifera) larvae for embryonic roots of maize (Zea mays mays) would increase and (ii) root volatile diversity would decrease with the crop's domestication, northward spread to present-day USA, and modern breeding. We used Balsas teosinte (Zea mays parviglumis), Mexican and USA landrace maizes, and US inbred maize lines to test these hypotheses. We found that herbivore preference and volatile diversity increased with maize domestication and northward spread but decreased with modern breeding. Additionally, we found that the abundances of single volatiles did not consistently increase or decrease with maize domestication, spread, and breeding; rather, volatiles grouped per their abundances were differentially affected by those processes, and domestication had the greatest effects. Altogether, our results suggested that: the herbivore's preference for maize roots is correlated with volatile diversity and herbivore resistance; changes in abundances of individual volatiles are evident at the level of volatile groups; and maize domestication, but not spread and breeding, affected the abundances of some green leaf volatiles and sesquiterpenes/sesquiterpenoids. In part, we discussed our results in the context of herbivore defense evolution when resources for plant growth and defense vary across environments. We suggested that variability in relative abundance of volatiles may be associated with their local, functional relevance across wild and agricultural environments.
Collapse
Affiliation(s)
- Julio S Bernal
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Ana A Fontes-Puebla
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
- Instituto Nacional de Investigaciones Forestales, Texas A&M University, 83220, Hermosillo, Son, Mexico
| | - Thomas J DeWitt
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843-2258, USA
| | - Michael V Kolomiets
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
- Department of Plant Pathology and Microbiolgy, Texas A&M University, College Station, TX, 77843-2132, USA
| | - John M Grunseich
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| |
Collapse
|
8
|
Paddock KJ, Finke DL, Kim KS, Sappington TW, Hibbard BE. Patterns of Microbiome Composition Vary Across Spatial Scales in a Specialist Insect. Front Microbiol 2022; 13:898744. [PMID: 35722352 PMCID: PMC9201478 DOI: 10.3389/fmicb.2022.898744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
Microbial communities associated with animals vary based on both intrinsic and extrinsic factors. Of many possible determinants affecting microbiome composition, host phylogeny, host diet, and local environment are the most important. How these factors interact across spatial scales is not well understood. Here, we seek to identify the main influences on microbiome composition in a specialist insect, the western corn rootworm (WCR; Diabrotica virgifera virgifera), by analyzing the bacterial communities of adults collected from their obligate host plant, corn (Zea mays), across several geographic locations and comparing the patterns in communities to its congeneric species, the northern corn rootworm (NCR; Diabrotica barberi). We found that bacterial communities of WCR and NCR shared a portion of their bacterial communities even when collected from disparate locations. However, within each species, the location of collection significantly influenced the composition of their microbiome. Correlations of geographic distance between sites with WCR bacterial community composition revealed different patterns at different spatial scales. Community similarity decreased with increased geographic distance at smaller spatial scales (~25 km between the nearest sites). At broad spatial scales (>200 km), community composition was not correlated with distances between sites, but instead reflected the historical invasion path of WCR across the United States. These results suggest bacterial communities are structured directly by dispersal dynamics at small, regional spatial scales, while landscape-level genetic or environmental differences may drive community composition across broad spatial scales in this specialist insect.
Collapse
Affiliation(s)
- Kyle J Paddock
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Deborah L Finke
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Kyung Seok Kim
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, United States
| | - Thomas W Sappington
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA, United States
| | - Bruce E Hibbard
- USDA-ARS, Plant Genetics Research Unit, University of Missouri, Columbia, MO, United States
| |
Collapse
|
9
|
Kuwar SS, Mishra R, Banerjee R, Milligan J, Rydel T, Du Z, Xie Z, Ivashuta S, Kouadio JL, Meyer JM, Bonning BC. Engineering of Cry3Bb1 provides mechanistic insights toward countering western corn rootworm resistance. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100033. [PMID: 36003270 PMCID: PMC9387510 DOI: 10.1016/j.cris.2022.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is an economically important pest of corn (maize) in North America and Europe. Current management practices for WCR involve transgenic expression of insecticidal proteins to minimize larval feeding damage to corn roots. The evolution of resistant WCR populations to transgenic corn expressing insecticidal proteins (e.g. Cry3Bb1, Gpp34Ab1/Tpp35Ab1) necessitates efforts to discover and deploy new modes of action for WCR control. Here, we tested the hypothesis that the addition of short peptides selected for binding to the WCR gut would restore insecticidal activity of Cry3Bb1 to resistant insects. Phage display technology coupled with deep sequencing was used to identify peptides selected for binding to WCR brush border membrane vesicles and to recombinant putative receptors aminopeptidase and cadherin. The binding and specificity of selected peptides was confirmed by ELISA and pull-down assays, and candidate gut surface binding partners were identified. Although production of 284 novel Cry3Bb1 variants with these peptides did not restore activity against resistant WCR in artificial diet bioassays, 112 variants were active against susceptible insects. These results provided insights for the mechanism of Cry3Bb1 activity and toward engineering a new mode-of-action via receptor re-targeting in the context of protein structure and function.
Collapse
Affiliation(s)
- Suyog S. Kuwar
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Rahul Banerjee
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Jason Milligan
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Timothy Rydel
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Zijin Du
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Zhidong Xie
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Sergey Ivashuta
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Jean-Louis Kouadio
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Jason M. Meyer
- Bayer U.S., Research and Development, Crop Science Plant Biotechnology, Chesterfield, MO, 63017 USA
| | - Bryony C. Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Ecology and Evolutionary History of Diabrotica Beetles—Overview and Update. INSECTS 2022; 13:insects13020156. [PMID: 35206729 PMCID: PMC8877772 DOI: 10.3390/insects13020156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022]
Abstract
An overview is given on several aspects of evolutionary history, ecology, host plant use, and pharmacophagy of Diabrotica spp. with a focus on the evolution of host plant breadth and effects of plant compounds on natural enemies used for biocontrol of pest species in the group. Recent studies on each aspect are discussed, latest publications on taxonomic grouping of Diabrotica spp., and new findings on variations in the susceptibility of corn varieties to root feeding beetle larvae are presented. The further need for in-depth research on biology and ecology of the large number of non-pest species in the genus is pointed out.
Collapse
|
11
|
Fontes-Puebla AA, Borrego EJ, Kolomiets MV, Bernal JS. Maize biochemistry in response to root herbivory was mediated by domestication, spread, and breeding. PLANTA 2021; 254:70. [PMID: 34499214 DOI: 10.1007/s00425-021-03720-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
With domestication, northward spread, and breeding, maize defence against root-herbivores relied on induced defences, decreasing levels of phytohormones involved in resistance, and increasing levels of a phytohormone involved in tolerance. We addressed whether a suite of maize (Zea mays mays) phytohormones and metabolites involved in herbivore defence were mediated by three successive processes: domestication, spread to North America, and modern breeding. With those processes, and following theoretical predictions, we expected to find: a change in defence strategy from reliance on induced defences to reliance on constitutive defences; decreasing levels of phytohormones involved in herbivore resistance, and; increasing levels of a phytohormone involved in herbivore tolerance. We tested those predictions by comparing phytohormone levels in seedlings exposed to root herbivory by Diabrotica virgifera virgifera among four plant types encompassing those processes: the maize ancestor Balsas teosinte (Zea mays parviglumis), Mexican maize landraces, USA maize landraces, and USA inbred maize cultivars. With domestication, maize transitioned from reliance on induced defences in teosinte to reliance on constitutive defences in maize, as predicted. One subset of metabolites putatively involved in herbivory defence (13-oxylipins) was suppressed with domestication, as predicted, though another was enhanced (9-oxylipins), and both were variably affected by spread and breeding. A phytohormone (indole-3-acetic acid) involved in tolerance was enhanced with domestication, and with spread and breeding, as predicted. These changes are consistent with documented changes in herbivory resistance and tolerance, and occurred coincidentally with cultivation in increasingly resource-rich environments, i.e., from wild to highly enriched agricultural environments. We concluded that herbivore defence evolution in crops may be mediated by processes spanning thousands of generations, e.g., domestication and spread, as well as by processes spanning tens of generations, e.g., breeding and agricultural intensification.
Collapse
Affiliation(s)
- Ana A Fontes-Puebla
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Campo Experimental Costa de Hermosillo, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Hermosillo, Sonora, México
| | - Eli J Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| | - Julio S Bernal
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Tuda M, Iwase SI, Kébé K, Haran J, Skuhrovec J, Sanaei E, Tsuji N, Podlussány A, Merkl O, El-Heneidy AH, Morimoto K. Diversification, selective sweep, and body size in the invasive Palearctic alfalfa weevil infected with Wolbachia. Sci Rep 2021; 11:9664. [PMID: 33958611 PMCID: PMC8102540 DOI: 10.1038/s41598-021-88770-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
The alfalfa weevil Hypera postica, native to the Western Palearctic, is an invasive legume pest with two divergent mitochondrial clades in its invading regions, the Western clade and the Eastern/Egyptian clade. However, knowledge regarding the native populations is limited. The Western clade is infected with the endosymbiotic bacteria Wolbachia that cause cytoplasmic incompatibility in host weevils. Our aim was to elucidate the spatial genetic structure of this insect and the effect of Wolbachia on its population diversity. We analyzed two mitochondrial and two nuclear genes of the weevil from its native ranges. The Western clade was distributed in western/central Europe, whereas the Eastern/Egyptian clade was distributed from the Mediterranean basin to central Asia. Intermediate mitotypes were found from the Balkans to central Asia. Most Western clade individuals in western Europe were infected with an identical Wolbachia strain. Mitochondrial genetic diversity of the infected individuals was minimal. The infected clades demonstrated a higher nonsynonymous/synonymous substitution rate ratio than the uninfected clades, suggesting a higher fixation of nonsynonymous mutations due to a selective sweep by Wolbachia. Trans-Mediterranean and within-European dispersal routes were supported. We suggest that the ancestral populations diversified by geographic isolation due to glaciations and that the diversity was reduced in the west by a recent Wolbachia-driven sweep(s). The intermediate clade exhibited a body size and host plant that differed from the other clades. Pros and cons of the possible use of infected-clade males to control uninfected populations are discussed.
Collapse
Affiliation(s)
- Midori Tuda
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan. .,Laboratory of Insect Natural Enemies, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Shun-Ichiro Iwase
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.,Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Japan
| | - Khadim Kébé
- GRBA-BE, LE3PI Laboratory, Department of Chemical Engineering and Applied Biology, Polytechnic Higher School of Dakar, Dakar, Senegal
| | - Julien Haran
- CBGP, Cirad, Montpellier SupAgro, INRA, IRD, Univ. Montpellier, Montpellier, France
| | - Jiri Skuhrovec
- Group Function of Invertebrate and Plant Biodiversity in Agro-Ecosystems, Crop Research Institute, Drnovska, Praha, Czech Republic
| | - Ehsan Sanaei
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Naomichi Tsuji
- Entomological Laboratory, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | | | - Ottó Merkl
- Hungarian Natural History Museum, Budapest, Hungary
| | - Ahmed H El-Heneidy
- Department of Biological Control, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | | |
Collapse
|
13
|
Paddock KJ, Robert CAM, Erb M, Hibbard BE. Western Corn Rootworm, Plant and Microbe Interactions: A Review and Prospects for New Management Tools. INSECTS 2021; 12:171. [PMID: 33671118 PMCID: PMC7922318 DOI: 10.3390/insects12020171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is resistant to four separate classes of traditional insecticides, all Bacillius thuringiensis (Bt) toxins currently registered for commercial use, crop rotation, innate plant resistance factors, and even double-stranded RNA (dsRNA) targeting essential genes via environmental RNA interference (RNAi), which has not been sold commercially to date. Clearly, additional tools are needed as management options. In this review, we discuss the state-of-the-art knowledge about biotic factors influencing herbivore success, including host location and recognition, plant defensive traits, plant-microbe interactions, and herbivore-pathogens/predator interactions. We then translate this knowledge into potential new management tools and improved biological control.
Collapse
Affiliation(s)
- Kyle J. Paddock
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Christelle A. M. Robert
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Bruce E. Hibbard
- Plant Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Meinke LJ, Souza D, Siegfried BD. The Use of Insecticides to Manage the Western Corn Rootworm, Diabrotica virgifera virgifera, LeConte: History, Field-Evolved Resistance, and Associated Mechanisms. INSECTS 2021; 12:112. [PMID: 33525337 PMCID: PMC7911631 DOI: 10.3390/insects12020112] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte (Dvv) is a significant insect pest of maize in the United States (U.S.). This paper reviews the history of insecticide use in Dvv management programs, Dvv adaptation to insecticides, i.e., field-evolved resistance and associated mechanisms of resistance, plus the current role of insecticides in the transgenic era. In the western U.S. Corn Belt where continuous maize is commonly grown in large irrigated monocultures, broadcast-applied soil or foliar insecticides have been extensively used over time to manage annual densities of Dvv and other secondary insect pests. This has contributed to the sequential occurrence of Dvv resistance evolution to cyclodiene, organophosphate, carbamate, and pyrethroid insecticides since the 1950s. Mechanisms of resistance are complex, but both oxidative and hydrolytic metabolism contribute to organophosphate, carbamate, and pyrethroid resistance facilitating cross-resistance between insecticide classes. History shows that Dvv insecticide resistance can evolve quickly and may persist in field populations even in the absence of selection. This suggests minimal fitness costs associated with Dvv resistance. In the transgenic era, insecticides function primarily as complementary tools with other Dvv management tactics to manage annual Dvv densities/crop injury and resistance over time.
Collapse
Affiliation(s)
- Lance J. Meinke
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA
| | - Dariane Souza
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA; (D.S.); (B.D.S.)
| | - Blair D. Siegfried
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA; (D.S.); (B.D.S.)
| |
Collapse
|
15
|
Bruno P, Machado RAR, Glauser G, Köhler A, Campos-Herrera R, Bernal J, Toepfer S, Erb M, Robert CAM, Arce CCM, Turlings TCJ. Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Sci Rep 2020; 10:8257. [PMID: 32427834 PMCID: PMC7237494 DOI: 10.1038/s41598-020-64945-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/28/2020] [Indexed: 12/30/2022] Open
Abstract
Natural enemies of herbivores are expected to adapt to the defence strategies of their preys or hosts. Such adaptations may also include their capacity to cope with plant metabolites that herbivores sequester as a defence. In this study, we evaluated the ability of Mexican entomopathogenic nematodes (EPN) to resist benzoxazinoids that are sequestered from maize roots by the western corn rootworm (WCR, Diabrotica virgifera virgifera; Coleoptera: Chrysomelidae), an important maize pest in America and Europe. From maize fields throughout Mexico, we retrieved 40 EPN isolates belonging to five different species, with a majority identified as Heterorhabditis bacteriophora. In the laboratory, all nematodes readily infected non-sequestering larvae of the banded cucumber beetle (D. balteata), while infectivity varied strongly for WCR larvae. While some H. bacteriophora isolates seemed negatively affected by benzoxazinoids, most showed to be resistant. Thus, EPN from Mexican maize fields can cope with these plant defence metabolites, but the results also indicate that WCR larvae possess other mechanisms that help to resist EPN. This work contributes to a better understanding of the capacity of herbivore natural enemies to resist plant defence metabolites. Furthermore, it identifies several benzoxazinoid-resistant EPN isolates that may be used to control this important maize pest.
Collapse
Affiliation(s)
- Pamela Bruno
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | | | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Angela Köhler
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Friedrich Schiller University Jena, Jena, Germany
| | - Raquel Campos-Herrera
- Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja), Logroño, La Rioja, Spain
| | - Julio Bernal
- Department of Entomology, Texas A&M University, Texas, USA
| | - Stefan Toepfer
- CABI, c/o Plant Protection and Soil Conservation Directorate, Hódmezővásárhely, Hungary
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Carla C M Arce
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
16
|
Fontes-Puebla AA, Bernal JS. Resistance and Tolerance to Root Herbivory in Maize Were Mediated by Domestication, Spread, and Breeding. FRONTIERS IN PLANT SCIENCE 2020; 11:223. [PMID: 32174953 PMCID: PMC7056747 DOI: 10.3389/fpls.2020.00223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/12/2020] [Indexed: 05/17/2023]
Abstract
Plants may defend against herbivory and disease through various means. Plant defensive strategies against herbivores include resistance and tolerance, which may have metabolic costs that affect plant growth and reproduction. Thus, expression of these strategies may be mediated by a variety of factors, such as resource availability, herbivory pressure, and plant genetic variation, among others. Additionally, artificial selection by farmers and systematic breeding by scientists may mediate the expression of resistance and tolerance in crop plants. In this study, we tested whether maize defense against Western corn rootworm (WCR) was mediated by the crop's domestication, spread, and modern breeding. We expected to find a trend of decreasing resistance to WCR with maize domestication, spread, and breeding, and a trend of increasing tolerance with decreasing resistance. To test our expectations, we compared resistance and tolerance among four Zea plants spanning those processes: Balsas teosinte, Mexican landrace maize, US landrace maize, and US inbred maize. We measured the performance of WCR larvae as a proxy for plant resistance, and plant growth as affected by WCR feeding as a proxy for plant tolerance. Our results showed that domestication and spread decreased maize resistance to WCR, as expected, whereas breeding increased maize resistance to WCR, contrary to expected. Our results also showed that maize resistance and tolerance to WCR are negatively correlated, as expected. We discussed our findings in relation to ecological-evolutionary hypotheses seeking to explain defense strategy evolution in the contexts of plant resistance-productivity trade-offs, plant tolerance-resistance trade-offs, and varying resource availability vis-à-vis plant physiological stress and herbivory pressure. Finally, we suggested that defense strategy evolution in maize, from domestication to the present, is predicted by those ecological-evolutionary hypotheses.
Collapse
|
17
|
Strock CF, Schneider HM, Galindo-Castañeda T, Hall BT, Van Gansbeke B, Mather DE, Roth MG, Chilvers MI, Guo X, Brown K, Lynch JP. Laser ablation tomography for visualization of root colonization by edaphic organisms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5327-5342. [PMID: 31199461 PMCID: PMC6793448 DOI: 10.1093/jxb/erz271] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/05/2019] [Indexed: 05/03/2023]
Abstract
Soil biota have important effects on crop productivity, but can be difficult to study in situ. Laser ablation tomography (LAT) is a novel method that allows for rapid, three-dimensional quantitative and qualitative analysis of root anatomy, providing new opportunities to investigate interactions between roots and edaphic organisms. LAT was used for analysis of maize roots colonized by arbuscular mycorrhizal fungi, maize roots herbivorized by western corn rootworm, barley roots parasitized by cereal cyst nematode, and common bean roots damaged by Fusarium. UV excitation of root tissues affected by edaphic organisms resulted in differential autofluorescence emission, facilitating the classification of tissues and anatomical features. Samples were spatially resolved in three dimensions, enabling quantification of the volume and distribution of fungal colonization, western corn rootworm damage, nematode feeding sites, tissue compromised by Fusarium, and as well as root anatomical phenotypes. Owing to its capability for high-throughput sample imaging, LAT serves as an excellent tool to conduct large, quantitative screens to characterize genetic control of root anatomy and interactions with edaphic organisms. Additionally, this technology improves interpretation of root-organism interactions in relatively large, opaque root segments, providing opportunities for novel research investigating the effects of root anatomical phenes on associations with edaphic organisms.
Collapse
Affiliation(s)
- Christopher F Strock
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Hannah M Schneider
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | | | - Benjamin T Hall
- Lasers for Innovative Solutions, LLC, State College, PA, USA
| | - Bart Van Gansbeke
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB, Glen Osmond, SA, Australia
| | - Diane E Mather
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB, Glen Osmond, SA, Australia
| | - Mitchell G Roth
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Martin I Chilvers
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Xiangrong Guo
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Kathleen Brown
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Jonathan P Lynch
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
18
|
Javal M, Lombaert E, Tsykun T, Courtin C, Kerdelhué C, Prospero S, Roques A, Roux G. Deciphering the worldwide invasion of the Asian long‐horned beetle: A recurrent invasion process from the native area together with a bridgehead effect. Mol Ecol 2019; 28:951-967. [DOI: 10.1111/mec.15030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Marion Javal
- INRA UR633 Zoologie Forestière Orléans Cedex 2 France
| | - Eric Lombaert
- INRA, Université Côte d'Azur, CNRS ISA Sophia Antipolis France
| | - Tetyana Tsykun
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
| | | | - Carole Kerdelhué
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro Université Montpellier Montpellier France
| | - Simone Prospero
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
| | - Alain Roques
- INRA UR633 Zoologie Forestière Orléans Cedex 2 France
| | - Géraldine Roux
- INRA UR633 Zoologie Forestière Orléans Cedex 2 France
- COST Université d'Orléans Orléans France
| |
Collapse
|
19
|
Batista MRD, Penha RES, Sofia SH, Klaczko LB. Comparative analysis of adaptive and neutral markers of Drosophila mediopunctata populations dispersed among forest fragments. Ecol Evol 2018; 8:12681-12693. [PMID: 30619573 PMCID: PMC6308856 DOI: 10.1002/ece3.4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 11/26/2022] Open
Abstract
Comparison of adaptive and neutral genetic markers is a valuable approach to characterize the evolutionary consequences of populations living in environments threatened by anthropogenic disturbances, such as forest fragmentation. Shifts in allele frequencies, low genetic variability, and a small effective population size can be considered clear signs of forest fragmentation effects (due to genetic drift) over natural populations, while adaptive responses correlate with environmental variables. Brazilian Atlantic Forest had its landscape drastically reduced and fragmented. Now, several forest remnants are isolated from each other by urban and crop areas. We sampled Drosophila mediopunctata populations from eight forest remnants dispersed on two adjacent geomorphological regions, which are physiognomic and climatically quite distinct. Microsatellite data of inversion-free chromosomes (neutral genetic marker) indicate low structuration among populations suggesting that they were panmictic and greatly influenced by gene flow. Moreover, significant differences in chromosomal inversion frequencies (adaptive genetic marker) among populations and their correlations with climatic and geographical variables indicate that genetic divergence among populations could be an adaptive response to their environment. Nonetheless, we observed a significant difference in inversion frequencies of a population in two consecutive years that may be associated with edge and demographic effects. Also, it may be reflecting seasonal changes of inversion frequencies influenced by great temperature variation due to edge effects. Moreover, the forest fragment size does not affect genetic variation of neutral markers. Our data indicate that despite oscillations in chromosomal inversion frequencies, D. mediopunctata populations from Brazilian Atlantic Forest and their divergence may be driven by adaptive factors to local differences, perhaps because it is a small flying insect easily carried by the wind increasing its migration rates.
Collapse
Affiliation(s)
- Marcos R. D. Batista
- Departamento de Genética, Evolução, Microbiologia e ImunologiaInstituto de Biologia, Universidade Estadual de Campinas – UnicampCampinasSPBrasil
| | - Rafael E. S. Penha
- Departamento de Genética, Evolução, Microbiologia e ImunologiaInstituto de Biologia, Universidade Estadual de Campinas – UnicampCampinasSPBrasil
| | - Silvia H. Sofia
- Departamento de Biologia Geral, Centro de Ciências BiológicasUniversidade Estadual de LondrinaLondrinaPRBrasil
| | - Louis B. Klaczko
- Departamento de Genética, Evolução, Microbiologia e ImunologiaInstituto de Biologia, Universidade Estadual de Campinas – UnicampCampinasSPBrasil
| |
Collapse
|
20
|
Bieńkowski AO, Orlova-Bienkowskaja MJ. Alien leaf beetles (Coleoptera, Chrysomelidae) of European Russia and some general tendencies of leaf beetle invasions. PLoS One 2018; 13:e0203561. [PMID: 30192838 PMCID: PMC6128575 DOI: 10.1371/journal.pone.0203561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/22/2018] [Indexed: 11/28/2022] Open
Abstract
Invasions of leaf beetles can cause tremendous economic consequences because some of these insects become major pests in invaded territories. We present the first inventory of alien Chrysomelidae of European Russia that appeared in the region in the 20th and 21st centuries (9 species) with analysis of the history of their invasions and detailed maps of distribution. This case study revealed some general tendencies of invasions of leaf beetles: (1) Recently, a dramatic increase in the rate of Chrysomelidae invasions is observed, which reflects the increase in international trade of living plants; (2) Alien leaf beetles can spread quickly, occupying almost all of Europe within several decades; (3) When the range of some leaf beetle species is quickly expanding, or when the species has been recorded established somewhere outside the native range, this species should be regarded as a potential invader worldwide. and (4) Alien leaf beetles usually occur on alien or cultivated plants, but some become naturalized in native communities. The specific information was the following. Two species native to the Mediterranean region, Chrysolina americana (feeds on Rosmarinus and Lavandula) and Leptomona erythrocephala (feeds on Lotus corniculatus) were recorded in European Russia for the first time. A polyphagous pest of floriculture Luperomorpha xanthodera native to China and Korea and a pest of soybeans Medythia nigrobilineata native to east Asia have been in the region since 2016. A pest of tobacco Epitrix hirtipennis native to North America has occurred since 2011. A pest of corn Diabrotica virgifera was intercepted at the border of Russia in 2011 but has not established. Three alien species have been in the region since the 20th century: Zygogramma suturalis introduced from North America for control of Ambrosia, Phyllotreta reitteri native to Afghanistan and Tajikistan and feeding on Lepidium latifolium, and the Colorado potato beetle Leptinotarsa decemlineata.
Collapse
Affiliation(s)
- Andrzej O. Bieńkowski
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
21
|
Marchioro CA, Krechemer FS. Potential global distribution of Diabrotica species and the risks for agricultural production. PEST MANAGEMENT SCIENCE 2018; 74:2100-2109. [PMID: 29575502 DOI: 10.1002/ps.4906] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/23/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Despite efforts in the last few decades to prevent biological invasions, agricultural pests continue to spread as a result of globalization and international trade. This study was conducted to identify suitable areas for the occurrence of four Diabrotica species and to assess the potential impact of these species in a scenario of invasion followed by spread throughout the estimated suitable regions. RESULTS Our findings reveal that a large proportion of the suitable areas for Diabrotica species overlap with cultivated areas. Niche analyses also demonstrated that these species occupy a small proportion of the suitable habitats available to them, indicating that, if new areas are invaded, there is a risk of spread throughout adjacent regions. CONCLUSION Most of the suitable areas for Diabrotica species overlap with highly productive agricultural areas, suggesting that a potential spread of these species may cause economic loss. Our study provides a valuable contribution to the development of tools aiming to predict the potential spread of these species throughout the world. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cesar A Marchioro
- Programa de Pós-Graduação em Ecossistemas Agrícolas e Naturais, Departamento de Agricultura, Biodiversidade e Florestas, Universidade Federal de Santa Catarina, Curitibanos, Brazil
| | - Flavia S Krechemer
- Centro de Ciências Rurais, Universidade Federal de Santa Catarina, Curitibanos, Brazil
| |
Collapse
|