1
|
Adams HC, Markham KE, Madden M, Gray MJ, Bolanos Vives F, Chaves G, Hernandez SM. Geographic risk assessment of Batrachochytrium salamandrivorans invasion in Costa Rica as a means of informing emergence management and mitigation. PLoS One 2024; 19:e0293779. [PMID: 39724152 DOI: 10.1371/journal.pone.0293779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/25/2024] [Indexed: 12/28/2024] Open
Abstract
Remotely-sensed risk assessments of emerging, invasive pathogens are key to targeted surveillance and outbreak responses. The recent emergence and spread of the fungal pathogen, Batrachochytrium salamandrivorans (Bsal), in Europe has negatively impacted multiple salamander species. Scholars and practitioners are increasingly concerned about the potential consequences of this lethal pathogen in the Americas, where salamander biodiversity is higher than anywhere else in the world. Although Bsal has not yet been detected in the Americas, certain countries have already proactively implemented monitoring and detection plans in order to identify areas of greatest concern and enable efficient contingency planning in the event of pathogen detection. To predict areas in Costa Rica with a high Bsal transmission risk, we employed ecological niche modeling combined with biodiversity and tourist visitation data to ascertain the specific risk to a country with world renowned biodiversity. Our findings indicate that approximately 23% of Costa Rica's landmass provides suitable conditions for Bsal, posing a threat to 37 salamander species. The Central and Talamanca mountain ranges, in particular, have habitats predicted to be highly suitable for the pathogen. To facilitate monitoring and mitigation efforts, we identified eight specific protected areas that we believe are at the greatest risk due to a combination of high biodiversity, tourist visitation, and suitable habitat for Bsal. We advise regular monitoring utilizing remotely-sensed data and ecological niche modeling to effectively target in-situ surveillance and as places begin implementing educational efforts.
Collapse
Affiliation(s)
- Henry C Adams
- Urban Wildlife Institute, Lincoln Park Zoo Chicago, Chicago, Illinois, United States of America
- Warnell School of Forestry, University of Georgia Athens, Athens, Georgia, United States of America
| | - Katherine E Markham
- Center for Geospatial Research, University of Georgia Athens, Athens, Georgia, United States of America
- Department of Geography, University of Georgia Athens, Athens, Georgia, United States of America
| | - Marguerite Madden
- Center for Geospatial Research, University of Georgia Athens, Athens, Georgia, United States of America
- Department of Geography, University of Georgia Athens, Athens, Georgia, United States of America
| | - Matthew J Gray
- Department of Forestry, Wildlife and Fisheries, University of Tennessee Knoxville, Knoxville, Tennessee, United States of America
| | - Federico Bolanos Vives
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
- Centro de Investigaciones en Biodiversidad y Ecología Tropical (Museo de Zoología), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Gerardo Chaves
- Centro de Investigaciones en Biodiversidad y Ecología Tropical (Museo de Zoología), Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Sonia M Hernandez
- Warnell School of Forestry, University of Georgia Athens, Athens, Georgia, United States of America
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia Athens, Athens, Georgia, United States of America
| |
Collapse
|
2
|
McGrath-Blaser SE, McGathey N, Pardon A, Hartmann AM, Longo AV. Invasibility of a North American soil ecosystem to amphibian-killing fungal pathogens. Proc Biol Sci 2024; 291:20232658. [PMID: 38628130 PMCID: PMC11021929 DOI: 10.1098/rspb.2023.2658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
North American salamanders are threatened by intercontinental spread of chytridiomycosis, a deadly disease caused by the fungal pathogen Batrachochytrium salamandrivorans (Bsal). To predict potential dispersal of Bsal spores to salamander habitats, we evaluated the capacity of soil microbial communities to resist invasion. We determined the degree of habitat invasibility using soils from five locations throughout the Great Smoky Mountains National Park, a region with a high abundance of susceptible hosts. Our experimental design consisted of replicate soil microcosms exposed to different propagule pressures of the non-native pathogen, Bsal, and an introduced but endemic pathogen, B. dendrobatidis (Bd). To compare growth and competitive interactions, we used quantitative PCR, live/dead cell viability assays, and full-length 16S rRNA sequencing. We found that soil microcosms with intact bacterial communities inhibited both Bsal and Bd growth, but inhibitory capacity diminished with increased propagule pressure. Bsal showed greater persistence than Bd. Linear discriminant analysis (LDA) identified the family Burkolderiaceae as increasing in relative abundance with the decline of both pathogens. Although our findings provide evidence of environmental filtering in soils, such barriers weakened in response to pathogen type and propagule pressure, showing that habitats vary their invasibility based on properties of their local microbial communities.
Collapse
Affiliation(s)
| | - Natalie McGathey
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Allison Pardon
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Arik M. Hartmann
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ana V. Longo
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Sun D, Ellepola G, Herath J, Meegaskumbura M. Ecological Barriers for an Amphibian Pathogen: A Narrow Ecological Niche for Batrachochytrium salamandrivorans in an Asian Chytrid Hotspot. J Fungi (Basel) 2023; 9:911. [PMID: 37755019 PMCID: PMC10532633 DOI: 10.3390/jof9090911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
The chytrid fungal pathogens Batrachochytrium salamandrivorans (Bsal) and B. dendrobatidis (Bd) are driving amphibian extinctions and population declines worldwide. As their origins are believed to be in East/Southeast Asia, this region is crucial for understanding their ecology. However, Bsal screening is relatively limited in this region, particularly in hotspots where Bd lineage diversity is high. To address this gap, we conducted an extensive Bsal screening involving 1101 individuals from 36 amphibian species, spanning 17 natural locations and four captive facilities in the biodiversity-rich Guangxi Zhuang Autonomous Region (GAR). Our PCR assays yielded unexpected results, revealing the complete absence of Bsal in all tested samples including 51 individuals with Bd presence. To understand the potential distribution of Bsal, we created niche models, utilizing existing occurrence records from both Asia and Europe. These models estimated potential suitable habitats for Bsal largely in the northern and southwestern parts of the GAR. Although Bsal was absent in our samples, the niche models identified 10 study sites as being potentially suitable for this pathogen. Interestingly, out of these 10 sites, Bd was detected at 8. This suggests that Bsal and Bd could possibly co-exist in these habitats, if Bsal were present. Several factors seem to influence the distribution of Bsal in Asia, including variations in temperature, local caudate species diversity, elevation, and human population density. However, it is climate-related factors that hold the greatest significance, accounting for a notable 60% contribution. The models propose that the specific climatic conditions of arid regions, primarily seen in the GAR, play a major role in the distribution of Bsal. Considering the increased pathogenicity of Bsal at stable and cooler temperatures (10-15 °C), species-dependent variations, and the potential for seasonal Bd-Bsal interactions, we emphasize the importance of periodic monitoring for Bsal within its projected range in the GAR. Our study provides deeper insights into Bsal's ecological niche and the knowledge generated will facilitate conservation efforts in amphibian populations devastated by chytrid pathogens across other regions of the world.
Collapse
Affiliation(s)
- Dan Sun
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530000, China; (D.S.)
| | - Gajaba Ellepola
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530000, China; (D.S.)
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Kandy 20400, Sri Lanka
| | - Jayampathi Herath
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530000, China; (D.S.)
- School of Biomedical Sciences, International Institute of Health Sciences (IIHS), No. 704 Negombo Road, Welisara 71722, Sri Lanka
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530000, China; (D.S.)
| |
Collapse
|
4
|
Hill AJ, Grisnik M, Walker DM. Bacterial Skin Assemblages of Sympatric Salamanders Are Primarily Shaped by Host Genus. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02127-0. [PMID: 36318280 DOI: 10.1007/s00248-022-02127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Bacterial assemblages on the skins of amphibians are known to influence pathogen resistance and other important physiological functions in the host. Host-specific factors and the environment play significant roles in structuring skin assemblages. This study used high-throughput 16S rRNA sequencing and multivariate analyses to examine differences in skin-bacterial assemblages from 246 salamanders belonging to three genera in the lungless family Plethodontidae along multiple spatial gradients. Composition and α- and β-diversity of bacterial assemblages were defined, indicator species were identified for each host group, and the relative influences of host- versus environment-specific ecological factors were evaluated. At the broadest spatial scale, host genus, host species, and sampling site were predictive of skin assemblage structure, but host genus and species were more influential after controlling for the marginal effects of site, as well as nestedness of site. Furthermore, assemblage similarity within each host genus did not change with increasing geographic distance. At the smallest spatial scale, site-specific climate analyses revealed different relationships to climatic variables for each of the three genera, and these relationships were determined by host ecomode. Variation in bacterial assemblages of terrestrial hosts correlated with landscape-level climatic variability, and this pattern decayed with increasing water dependence of the host. Results from this study highlight host-specific considerations for researchers studying wildlife diseases in co-occurring, yet ecologically divergent, species.
Collapse
Affiliation(s)
- Aubree J Hill
- Department of Biology, Tennessee Technological University, 1100 North Dixie Avenue, Box 5063, Cookeville, TN, 38505, USA.
| | - Matthew Grisnik
- Department of Agricultural and Environmental Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN, 37209, USA
| | - Donald M Walker
- Department of Biology, Middle Tennessee State University, 1672 Greenland Drive, Murfreesboro, TN, 37132, USA
| |
Collapse
|
5
|
Moubarak M, Fischhoff IR, Han BA, Castellanos AA. A spatially explicit risk assessment of salamander populations to
Batrachochytrium salamandrivorans
in the United States. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
| | | | - Barbara A. Han
- Cary Institute of Ecosystem Studies Millbrook New York USA
| | | |
Collapse
|
6
|
Inhibitory Bacterial Diversity and Mucosome Function Differentiate Susceptibility of Appalachian Salamanders to Chytrid Fungal Infection. Appl Environ Microbiol 2022; 88:e0181821. [PMID: 35348389 PMCID: PMC9040618 DOI: 10.1128/aem.01818-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses. We studied defense mechanisms against chytrid pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), in four salamander species with different Batrachochytrium susceptibilities. Bd infection was quantified using qPCR, mucosome function (i.e., ability to kill Bd or Bsal zoospores in vitro), skin bacterial communities using 16S rRNA gene amplicon sequencing, and the role of Bd-inhibitory bacteria in microbial networks across all species. We explored the presence of candidate-AMPs in eastern newts and red-backed salamanders. Eastern newts had the highest Bd prevalence and mucosome function, while red-back salamanders had the lowest Bd prevalence and mucosome function, and two-lined salamanders and seal salamanders were intermediates. Salamanders with highest Bd infection intensity showed greater mucosome function. Bd infection prevalence significantly decreased as putative Bd-inhibitory bacterial richness and relative abundance increased on hosts. In co-occurrence networks, some putative Bd-inhibitory bacteria were found as hub-taxa, with red-backs having the highest proportion of protective hubs and positive associations related to putative Bd-inhibitory hub bacteria. We found more AMP candidates on salamanders with lower Bd susceptibility. These findings suggest that salamanders possess distinct innate mechanisms that affect chytrid fungi. IMPORTANCE How host mucosal defenses interact, and influence disease outcome is critical in understanding host defenses against pathogens. A more detailed understanding is needed of the interactions between the host and the functioning of its mucosal defenses in pathogen defense. This study investigates the variability of chytrid susceptibility in salamanders and the innate defenses each species possesses to mediate pathogens, thus advancing the knowledge toward a deeper understanding of the microbial ecology of skin-associated bacteria and contributing to the development of bioaugmentation strategies to mediate pathogen infection and disease. This study improves the understanding of complex immune defense mechanisms in salamanders and highlights the potential role of the mucosome to reduce the probability of Bd disease development and that putative protective bacteria may reduce likelihood of Bd infecting skin.
Collapse
|
7
|
Crawshaw L, Buchanan T, Shirose L, Palahnuk A, Cai HY, Bennett AM, Jardine CM, Davy CM. Widespread occurrence of
Batrachochytrium dendrobatidis
in Ontario, Canada, and predicted habitat suitability for the emerging
Batrachochytrium salamandrivorans. Ecol Evol 2022; 12:e8798. [PMID: 35475183 PMCID: PMC9020443 DOI: 10.1002/ece3.8798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022] Open
Abstract
Chytridiomycosis, caused by the fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, is associated with massive amphibian mortality events worldwide and with some species’ extinctions. Previous ecological niche models suggest that B. dendrobatidis is not well‐suited to northern, temperate climates, but these predictions have often relied on datasets in which northern latitudes are underrepresented. Recent northern detections of B. dendrobatidis suggest that these models may have underestimated the suitability of higher latitudes for this fungus. We used qPCR to test for B. dendrobatidis in 1,041 non‐invasive epithelial swab samples from 18 species of amphibians collected across 735,345 km2 in Ontario and Akimiski Island (Nunavut), Canada. We detected the pathogen in 113 samples (10.9%) from 11 species. Only one specimen exhibited potential clinical signs of disease. We used these data to produce six Species Distribution Models of B. dendrobatidis, which classified half of the study area as potential habitat for the fungus. We also tested each sample for B. salamandrivorans, an emerging pathogen that is causing alarming declines in European salamanders, but is not yet detected in North America. We did not detect B. salamandrivorans in any of the samples, providing a baseline for future surveillance. We assessed the potential risk of future introduction by comparing salamander richness to temperature‐dependent mortality, predicted by a previous exposure study. Areas with the highest species diversity and predicted mortality risk extended 60,530 km2 across southern Ontario, highlighting the potential threat B. salamandrivorans poses to northern Nearctic amphibians. Preventing initial introduction will require coordinated, transboundary regulation of trade in amphibians (including frogs that can carry and disperse B. salamandrivorans), and surveillance of the pathways of introduction (e.g., water and wildlife). Our results can inform surveillance for both pathogens and efforts to mitigate the spread of chytridiomycosis through wild populations.
Collapse
Affiliation(s)
- Lauren Crawshaw
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
| | - Tore Buchanan
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
| | - Leonard Shirose
- Canadian Wildlife Health Cooperative Department of Pathobiology University of Guelph Guelph ON Canada
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - Amanda Palahnuk
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
| | - Hugh Y. Cai
- Animal Health Laboratory University of Guelph Guelph ON Canada
| | | | - Claire M. Jardine
- Canadian Wildlife Health Cooperative Department of Pathobiology University of Guelph Guelph ON Canada
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - Christina M. Davy
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
- Department of Biology Trent University Peterborough ON Canada
| |
Collapse
|
8
|
García‐Rodríguez A, Basanta MD, García‐Castillo MG, Zumbado‐Ulate H, Neam K, Rovito S, Searle CL, Parra‐Olea G. Anticipating the potential impacts of
Batrachochytrium salamandrivorans
on Neotropical salamander diversity. Biotropica 2021. [DOI: 10.1111/btp.13042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Adrián García‐Rodríguez
- Departamento de Zoología Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México México
- BioInvasions, Global Change, Macroecology‐Group Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| | - M. Delia Basanta
- Departamento de Zoología Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México México
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos México
| | - Mirna G. García‐Castillo
- Universidad Politécnica de Huatusco Huatusco Veracruz México
- Facultad de Ciencias Biológicas y Agropecuarias Región: Orizaba–Córdoba Universidad Veracruzana Amatlán de los Reyes Veracruz México
| | | | - Kelsey Neam
- Global Wildlife Conservation Austin Texas USA
- Amphibian Specialist Group IUCN Species Survival Commission USA
| | - Sean Rovito
- Unidad de Genómica Avanzada (Langebio) CINVESTAV Irapuato México
| | - Catherine L. Searle
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
| | - Gabriela Parra‐Olea
- Departamento de Zoología Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México México
- Amphibian Specialist Group IUCN Species Survival Commission USA
| |
Collapse
|
9
|
Bernard RF, Grant EHC. Rapid Assessment Indicates Context‐Dependent Mitigation for Amphibian Disease Risk. WILDLIFE SOC B 2021. [DOI: 10.1002/wsb.1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Riley F. Bernard
- Department of Zoology and Physiology University of Wyoming Laramie WY 82071 USA
| | - Evan H. Campbell Grant
- United States Geological Survey, Eastern Ecological Science Center S. O. Conte Anadromous Fish Laboratory Turners Falls MA 01376 USA
| |
Collapse
|