1
|
Zhang X, Zhao W, Lin Y, Shan B, Yang S. Identification of Meloidogyne panyuensis (Nematoda: Meloidogynidae) infecting Orah ( Citrus reticulata Blanco) and its impact on rhizosphere microbial dynamics: Guangxi, China. PeerJ 2024; 12:e18495. [PMID: 39525478 PMCID: PMC11549905 DOI: 10.7717/peerj.18495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Root-knot nematode disease severely affects the yield and quality of the mandarin variety Citrus reticulata Blanco "Orah" in Guangxi, China. Nevertheless, the pathogen and the effects of this disease on microbial communities remain inadequately understood. This study identified the root-knot nematode Meloidogyne panyuensis in the rhizosphere of infected Orah using morphological and molecular biological methods. Soil chemical properties indicated that organic matter, total nitrogen (TN), total phosphorus (TP), available phosphorus (AP), total potassium (TK), and available potassium (AK) were significantly higher in the rhizosphere soil of M. panyuensis-infected Orah than in that of healthy plants. The relative abundance of the bacteria Bacillus, Sphingomonas, and Burkholderia-Caballeronia-Paraburkholderia, as well as the fungi Lycoperdon, Fusarium, Neocosmospora, Talaromyces, and Tetragoniomyces, was elevated in the rhizosphere soil of M. panyuensis-infected plants. Furthermore, organic matter, TN, available nitrogen (AN), TP, AP, TK, and AK exhibited positive correlationswith these bacteria and fungi in the rhizosphere soil of M. panyuensis-infected Orah. Potential biocontrol strains, such as Burkholderia spp., were identified by comparing the differences in rhizosphere microbial composition between healthy Orah and M. panyuensis-infected Orah. Our findings provide a foundation for the early warning and prevention of root-knot nematode disease in Orah.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Wei Zhao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Yuming Lin
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Bin Shan
- Guangxi Subtropical Crops Research Institute, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - Shanshan Yang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Li Z, Wu Y, Wang C. A SWMM-Based Screening Model for Estimating Wastewater Treatment Burden of Pesticides on the Urban Scale. ENVIRONMENTAL MANAGEMENT 2023; 71:785-794. [PMID: 36094663 DOI: 10.1007/s00267-022-01717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/01/2022] [Indexed: 05/08/2023]
Abstract
To estimate the treatment load of pesticides for wastewater treatment plants (WWTPs) on an urban scale, we developed a SWMM-based screening model that integrates the mass balance of pesticides in residential soil and the storm-water runoff passing through residential lawns. Furthermore, we introduce an approximate approach that simplifies the simulation using the octanol-water partition coefficients (i.e., log KOW) of pesticides. The results indicate that the simulated transport factors (i.e., the dissipation kinetics-relevant property from the soil) of systemic pesticides (i.e., log KOW < 2.0) are constant, whereas those of non-systemic pesticides decrease with increasing log KOW, indicating that highly lipophilic pesticides are thermodynamically favored for soil absorption. By using the approximate approach, we estimated the total mass of pesticides entering the urban sewer system and the pesticide concentrations in the influent of WWTPs for a midsize city. The results indicate that the estimated concentration of systemic pesticides in the influent is ~9.2 ng L-1 and that of pesticides with log KOW values above 3.0 is below 0.84 ng L-1. The pesticide concentrations are consistent with published field data, indicating that the approximate approach can be applied as preliminary modeling tool to recommend pretreatment values for urban WWTPs. Although the model must be further validated and refined using field data, the screening method can be used to help urban planners and engineers to manage the treatment process of pesticides in WWTPs.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yingjie Wu
- Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China
| | - Chen Wang
- Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Carles L, Martin-Laurent F, Devers M, Spor A, Rouard N, Beguet J, Besse-Hoggan P, Batisson I. Potential of preventive bioremediation to reduce environmental contamination by pesticides in an agricultural context: A case study with the herbicide 2,4-D. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125740. [PMID: 33848793 DOI: 10.1016/j.jhazmat.2021.125740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
One of the major problems with pesticides is linked to the non-negligible proportion of the sprayed active ingredient that does not reach its intended target and contaminates environmental compartments. Here, we have implemented and provided new insights to the preventive bioremediation process based on the simultaneous application of the pesticide with pesticide-degrading microorganisms to reduce the risk of leaching into the environment. This study pioneers such a practice, in an actual farming context. The 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) and one of its bacterial mineralizing-strains (Cupriavidus necator JMP134) were used as models. The 2,4-D biodegradation was studied in soil microcosms planted with sensitive (mustard) and insensitive (wheat) plants. Simultaneous application of a 2,4-D commercial formulation (DAM®) at agricultural recommended doses with 105 cells.g-1 dw of soil of the JMP134 strain considerably accelerated mineralization of the herbicide since its persistence was reduced threefold for soil supplemented with the mineralizing bacterium without reducing the herbicide efficiency. Furthermore, the inoculation of the Cupriavidus necator strain did not significantly affect the α- and β-diversity of the bacterial community. By tackling the contamination immediately at source, the preventive bioremediation process proves to be an effective and promising way to reduce environmental contamination by agricultural pesticides.
Collapse
Affiliation(s)
- Louis Carles
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Sigma Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France.
| | - Fabrice Martin-Laurent
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ., Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Marion Devers
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ., Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Aymé Spor
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ., Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Nadine Rouard
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ., Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jérémie Beguet
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ., Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Pascale Besse-Hoggan
- Université Clermont Auvergne, CNRS, Sigma Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Isabelle Batisson
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), F-63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Chavez Rodriguez L, Ingalls B, Schwarz E, Streck T, Uksa M, Pagel H. Gene-Centric Model Approaches for Accurate Prediction of Pesticide Biodegradation in Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13638-13650. [PMID: 33064475 DOI: 10.1021/acs.est.0c03315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pesticides are widely used in agriculture despite their negative impact on ecosystems and human health. Biogeochemical modeling facilitates the mechanistic understanding of microbial controls on pesticide turnover in soils. We propose to inform models of coupled microbial dynamics and pesticide turnover with measurements of the abundance and expression of functional genes. To assess the advantages of informing models with genetic data, we developed a novel "gene-centric" model and compared model variants of differing structural complexity against a standard biomass-based model. The models were calibrated and validated using data from two batch experiments in which the degradation of the pesticides dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) were observed in soil. When calibrating against data on pesticide mineralization, the gene-centric and biomass-based models performed equally well. However, accounting for pesticide-triggered gene regulation allows improved performance in capturing microbial dynamics and in predicting pesticide mineralization. This novel modeling approach also reveals a hysteretic relationship between pesticide degradation rates and gene expression, implying that the biodegradation performance in soils cannot be directly assessed by measuring the expression of functional genes. Our gene-centric model provides an effective approach for exploiting molecular biology data to simulate pesticide degradation in soils.
Collapse
Affiliation(s)
- Luciana Chavez Rodriguez
- Institute of Soil Science and Land Evaluation, Biogeophysics Section, University of Hohenheim, Stuttgart, Germany
| | - Brian Ingalls
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Erik Schwarz
- Institute of Soil Science and Land Evaluation, Biogeophysics Section, University of Hohenheim, Stuttgart, Germany
| | - Thilo Streck
- Institute of Soil Science and Land Evaluation, Biogeophysics Section, University of Hohenheim, Stuttgart, Germany
| | - Marie Uksa
- Institute of Soil Science and Land Evaluation, Soil Biology Section, University of Hohenheim, Stuttgart, Germany
| | - Holger Pagel
- Institute of Soil Science and Land Evaluation, Biogeophysics Section, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
5
|
Xu XH, Liu XM, Zhang L, Mu Y, Zhu XY, Fang JY, Li SP, Jiang JD. Bioaugmentation of chlorothalonil-contaminated soil with hydrolytically or reductively dehalogenating strain and its effect on soil microbial community. JOURNAL OF HAZARDOUS MATERIALS 2018; 351:240-249. [PMID: 29550558 DOI: 10.1016/j.jhazmat.2018.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 05/24/2023]
Abstract
Although bioaugmentation of pollutant-contaminated sites is a great concern, there are few reports on the relationships among indigenous microbial consortia, exogenous inocula, and pollutants in a bioaugmentation process. In this study, bioaugmentation with Pseudochrobactrum sp. BSQ1 and Massilia sp. BLM18, which can hydrolytically and reductively dehalogenate chlorothalonil (TPN), respectively, was studied for its ability to remove TPN from soil; the alteration of the soil microbial community during the bioaugmentation process was investigated. The results showed that TPN (50 mg/kg) was completely removed in both bioaugmentation treatments within 35 days with half-lives of 6.8 and 9.8 days for strains BSQ1 and BLM18 respectively. In high concentration of TPN-treated soils (100 mg/kg), the bioaugmentation with strains BSQ1 and BLM18 respectively reduced 76.7% and 62.0% of TPN within 35 days. The TPN treatment significantly decreased bacterial richness and diversity and improved the growth of bacteria related to the elimination of chlorinated organic pollutants. However, little influence on soil microbial community was observed for each inoculation treatment (without TPN treatment), showing that TPN treatment is the main force for the shift in indigenous consortia. This study provides insights into the effects of halogenated fungicide application and bioaugmentation on indigenous soil microbiomes.
Collapse
Affiliation(s)
- Xi-Hui Xu
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiao-Mei Liu
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China; College of Food Science and Engineering, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Long Zhang
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yang Mu
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xu-Yuan Zhu
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jing-Ya Fang
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Shun-Peng Li
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Environmental Microbiology for Agriculture, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China; Jiangsu Key Lab for Solid Organic Waste Utilization, 210095, Nanjing, China.
| |
Collapse
|
6
|
McManus SL, Coxon CE, Mellander PE, Danaher M, Richards KG. Hydrogeological characteristics influencing the occurrence of pesticides and pesticide metabolites in groundwater across the Republic of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:594-602. [PMID: 28577396 DOI: 10.1016/j.scitotenv.2017.05.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Pesticide contamination of water is a potential environmental issue which may impact the quality of drinking water. The full extent of pesticide contamination is not fully understood due to complex fate pathways in the subsurface. Groundwater pesticide occurrence was investigated at seven agricultural sites in different hydrogeological settings to identify where pesticide occurrence dominated in temperate maritime climatic conditions. In Ireland, six cereal dominated sites in the South East and one grassland site in the West were investigated. Soil and subsoils varied from acid brown earths with high permeability to clay and silt rich tills with lower permeability. Over a 2year monitoring period, 730 samples were collected from a network of dedicated wells and springs across the seven sites. Multi-nested piezometers were installed in intergranular, fissured and karstic type aquifers to target shallow, transition and deeper groundwaters. Several springs were also sampled and the network included a confined aquifer. Groundwater was analysed for nine pesticide active ingredients and eight metabolites. Mecoprop and 2,4-D were the most frequently detected active ingredients above the instrument detection limit, accounting for 36% and 26% of the 730 samples collected and analysed. Phenoxyacetic acid was the most frequently detected and widespread metabolite found in 39% of samples collected at all seven sites. Where the European Union drinking water standard of 0.1μg/L was exceeded, metabolites accounted for the majority of exceedances with 3,5-dichlorobenzoic acid (DBA) and phenoxyacetic acid (PAC) dominating. Highest detections were encountered in sites with well drained soils underlain by gravel and limestone aquifers and within gravel lenses in lower permeability subsoil. Across the seven sites pesticide detections were mostly associated with metabolites and the environmental impact of many of these is unknown as they have received little attention in groundwater previously.
Collapse
Affiliation(s)
- Sarah-Louise McManus
- Teagasc Environmental Research Centre, Johnstown Castle, Wexford, Ireland; Centre for the Environment/Department of Geology, Trinity College Dublin, Dublin 2, Ireland
| | - Catherine E Coxon
- Centre for the Environment/Department of Geology, Trinity College Dublin, Dublin 2, Ireland
| | - Per-Erik Mellander
- Teagasc Environmental Research Centre, Johnstown Castle, Wexford, Ireland
| | - Martin Danaher
- Food Safety Department, Teagasc Food Research Centre, Ashtown Dublin 15, Ireland
| | - Karl G Richards
- Teagasc Environmental Research Centre, Johnstown Castle, Wexford, Ireland.
| |
Collapse
|
7
|
Cycoń M, Mrozik A, Piotrowska-Seget Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. CHEMOSPHERE 2017; 172:52-71. [PMID: 28061345 DOI: 10.1016/j.chemosphere.2016.12.129] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 06/06/2023]
Abstract
Bioaugmentation, a green technology, is defined as the improvement of the degradative capacity of contaminated areas by introducing specific microorganisms, has emerged as the most advantageous method for cleaning-up soil contaminated with pesticides. The present review discusses the selection of pesticide-utilising microorganisms from various sources, their potential for the degradation of pesticides from different chemical classes in liquid media as well as soil-related case studies in a laboratory, a greenhouse and field conditions. The paper is focused on the microbial degradation of the most common pesticides that have been used for many years such as organochlorinated and organophosphorus pesticides, triazines, pyrethroids, carbamate, chloroacetamide, benzimidazole and derivatives of phenoxyacetic acid. Special attention is paid to bacterial strains from the genera Alcaligenes, Arthrobacter, Bacillus, Brucella, Burkholderia, Catellibacterium, Pichia, Pseudomonas, Rhodococcus, Serratia, Sphingomonas, Stenotrophomonas, Streptomyces and Verticillum, which have potential applications in the bioremediation of pesticide-contaminated soils using bioaugmentation technology. Since many factors strongly influence the success of bioaugmentation, selected abiotic and biotic factors such as pH, temperature, type of soil, pesticide concentration, content of water and organic matter, additional carbon and nitrogen sources, inoculum size, interactions between the introduced strains and autochthonous microorganisms as well as the survival of inoculants were presented.
Collapse
Affiliation(s)
- Mariusz Cycoń
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Agnieszka Mrozik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Zofia Piotrowska-Seget
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
8
|
Xia ZY, Zhang L, Zhao Y, Yan X, Li SP, Gu T, Jiang JD. Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by a New Isolated Strain of Achromobacter sp. LZ35. Curr Microbiol 2016; 74:193-202. [PMID: 27933337 DOI: 10.1007/s00284-016-1173-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/25/2016] [Indexed: 01/18/2023]
Abstract
In this study, a bacterial strain of Achromobacter sp. LZ35, which was capable of utilizing 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxy acetic acid (MCPA) as the sole sources of carbon and energy for growth, was isolated from the soil in a disused pesticide factory in Suzhou, China. The optimal 2,4-D degradation by strain LZ35 occurred at 30 °C and pH 8.0 when the initial 2,4-D concentration was 200 mg L-1. Strain LZ35 harbored the conserved 2,4-D/alpha-ketoglutarate dioxygenase (96%) and 2,4-dichlorophenol hydroxylase (99%), and catabolized 2,4-D via the intermediate 2,4-dichlorophenol. The inoculation of 7.8 × 106 CFU g-1 soil of strain LZ35 cells to 2,4-D-contaminated soil could efficiently remove over 75 and 90% of 100 and 50 mg L-1 2,4-D in 12 days and significantly released the phytotoxicity of maize caused by the 2,4-D residue. This is the first report of an Achromobacter sp. strain that was capable of mineralizing both 2,4-D and MCPA. This study provides us a promising candidate for its application in the bioremediation of 2,4-D- or MCPA-contaminated sites.
Collapse
Affiliation(s)
- Zhen-Yuan Xia
- Yunnan Academy of Tobacco Agricultural Science, Kunming, 650031, People's Republic of China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yan Zhao
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xin Yan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shun-Peng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tao Gu
- The Institute of Plant Protection, Jiangsu Agricultural Academy Science, Nanjing, People's Republic of China.
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
9
|
Application of biodegradation in mitigating and remediating pesticide contamination of freshwater resources: state of the art and challenges for optimization. Appl Microbiol Biotechnol 2016; 100:7361-76. [DOI: 10.1007/s00253-016-7709-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
10
|
Biodegradation of the herbicide Diuron in a packed bed channel and a double biobarrier with distribution of oxygenated liquid by airlift devices: influence of oxygen limitation. N Biotechnol 2016; 33:7-15. [DOI: 10.1016/j.nbt.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 07/06/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022]
|
11
|
Dai Y, Li N, Zhao Q, Xie S. Bioremediation using Novosphingobium strain DY4 for 2,4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure. Biodegradation 2015; 26:161-70. [PMID: 25743701 DOI: 10.1007/s10532-015-9724-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is commonly used for weed control. The ubiquity of 2,4-D has gained increasing environmental concerns. Biodegradation is an attractive way to clean up 2,4-D in contaminated soil. However, information on the bioaugmentation trial for remediating contaminated soil is still very limited. The impact of bioaugmentation using 2,4-D-degraders on soil microbial community remains unknown. The present study investigated the bioremediation potential of a novel degrader (strain DY4) for heavily 2,4-D-polluted soil and its bioaugmentation impact on microbial community structure. The strain DY4 was classified as a Novosphingobium species within class Alphaproteobacteria and harbored 2,4-D-degrading TfdAα gene. More than 50 and 95 % of the herbicide could be dissipated in bioaugmented soil (amended with 200 mg/kg 2,4-D) respectively in 3-4 and 5-7 days after inoculation of Novosphingobium strain DY4. A significant growth of the strain DY4 was observed in bioaugmented soil with the biodegradation of 2,4-D. Moreover, herbicide application significantly altered soil bacterial community structure but bioaumentation using the strain DY4 showed a relatively weak impact.
Collapse
Affiliation(s)
- Yu Dai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | |
Collapse
|
12
|
Determination and occurrence of phenoxyacetic acid herbicides and their transformation products in groundwater using ultra high performance liquid chromatography coupled to tandem mass spectrometry. Molecules 2014; 19:20627-49. [PMID: 25514054 PMCID: PMC6271189 DOI: 10.3390/molecules191220627] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 11/27/2022] Open
Abstract
A sensitive method was developed and validated for ten phenoxyacetic acid herbicides, six of their main transformation products (TPs) and two benzonitrile TPs in groundwater. The parent compounds mecoprop, mecoprop-p, 2,4-D, dicamba, MCPA, triclopyr, fluroxypr, bromoxynil, bentazone, and 2,3,6-trichlorobenzoic acid (TBA) are included and a selection of their main TPs: phenoxyacetic acid (PAC), 2,4,5-trichloro-phenol (TCP), 4-chloro-2-methylphenol (4C2MP), 2,4-dichlorophenol (DCP), 3,5,6-trichloro-2-pyridinol (T2P), and 3,5-dibromo-4-hydroxybenzoic acid (BrAC), as well as the dichlobenil TPs 2,6-dichlorobenzamide (BAM) and 3,5-dichlorobenzoic acid (DBA) which have never before been determined in Irish groundwater. Water samples were analysed using an efficient ultra-high performance liquid chromatography (UHPLC) method in an 11.9 min separation time prior to detection by tandem mass spectrometry (MS/MS). The limit of detection (LOD) of the method ranged between 0.00008 and 0.0047 µg·L−1 for the 18 analytes. All compounds could be detected below the permitted limits of 0.1 µg·L−1 allowed in the European Union (EU) drinking water legislation [1]. The method was validated according to EU protocols laid out in SANCO/10232/2006 with recoveries ranging between 71% and 118% at the spiked concentration level of 0.06 µg·L−1. The method was successfully applied to 42 groundwater samples collected across several locations in Ireland in March 2012 to reveal that the TPs PAC and 4C2MP were detected just as often as their parent active ingredients (a.i.) in groundwater.
Collapse
|
13
|
Nunes OC, Lopes AR, Manaia CM. Microbial degradation of the herbicide molinate by defined cultures and in the environment. Appl Microbiol Biotechnol 2013; 97:10275-91. [DOI: 10.1007/s00253-013-5316-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
|
14
|
Reduced leaching of the herbicide MCPA after bioaugmentation with a formulated and stored Sphingobium sp. Biodegradation 2013; 25:291-300. [PMID: 23982656 DOI: 10.1007/s10532-013-9660-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022]
Abstract
The use of pesticides on sandy soils and on many non-agricultural areas entails a potentially high risk of water contamination. This study examined leaching of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) after bioaugmentation in sand with differently formulated and stored Sphingobium sp. T51 and at different soil moisture contents. Dry formulations of Sphingobium sp. T51 were achieved by either freeze drying or fluidised bed drying, with high initial cell viability of 67-85 %. Storage stability of T51 cells was related to formulation excipient/carrier and storage conditions. Bacterial viability in the fluidised bed-dried formulations stored at 25 °C under non-vacuum conditions was poor, with losses of at least 97 % within a month. The freeze-dried formulations could be stored substantially longer, with cell survival rates of 50 %, after 6 months of storage at the same temperature under partial vacuum. Formulated and long-term stored Sphingobium cells maintained their MCPA degradation efficacy and reduced MCPA leaching as efficiently as freshly cultivated cells, by at least 73 % when equal amounts of viable cells were used. The importance of soil moisture for practical field bioaugmentation techniques is discussed.
Collapse
|
15
|
Önneby K, Pizzul L, Bjerketorp J, Mahlin D, Håkansson S, Wessman P. Effects of di- and polysaccharide formulations and storage conditions on survival of freeze-dried Sphingobium sp. World J Microbiol Biotechnol 2013; 29:1399-408. [DOI: 10.1007/s11274-013-1303-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
|
16
|
Bioremediation of carbofuran contaminated soil under saturated condition: soil column study. Biodegradation 2011; 23:473-85. [PMID: 22173656 DOI: 10.1007/s10532-011-9526-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/19/2011] [Indexed: 10/14/2022]
Abstract
Disturbed soil columns, 5.8 cm in diameter and 25 cm in length, were used as a basic model to simulate the movement of carbofuran in rice field soil under saturated conditions. Bioaugmentation using a specific carbofuran degrader, Burkholderia sp. PCL3, in free and immobilized cell forms and biostimulation using rice straw as organic amendment were applied with the aim of enhancing the degradation of carbofuran in soil and to prevent the movement of carbofuran along with the flow through. In the abiotic control and the treatment with only indigenous microorganisms, the mass recovery percentage of carbofuran in the effluent was 52.1 and 22.5%, respectively. The application of bioaugmentation or biostimulation significantly enhanced carbofuran degradation in soil and reduced the movement of carbofuran as indicated by a low mass recovery percentage of carbofuran in the effluent of 14.6-15.5%. A low efficiency of carbofuran removal was obtained from the soil column with bioaugmentation together with biostimulation treatments in which the mass recovery percentage of carbofuran in the effluent was in the range of 22.1-22.6%. Sorption of carbofuran to soil, rice straw and corncob, formation of carbofuran metabolite and colony forming unit (CFU) and pH variation with the time were also investigated during column operation.
Collapse
|
17
|
Ren YX, Jiao BJ, Zhang ML, Gao XM, Wang J. Crystal Structure, Solution and Solid-state Photoluminescence of a 2D Zinc(II) Supramolecular Architecture. Z Anorg Allg Chem 2011. [DOI: 10.1002/zaac.201100159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Verma A, Ali D, Farooq M, Pant AB, Ray RS, Hans RK. Expression and inducibility of endosulfan metabolizing gene in Rhodococcus strain isolated from earthworm gut microflora for its application in bioremediation. BIORESOURCE TECHNOLOGY 2011; 102:2979-2984. [PMID: 21035330 DOI: 10.1016/j.biortech.2010.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/01/2010] [Accepted: 10/02/2010] [Indexed: 05/30/2023]
Abstract
The metabolizing potential of a bacterial strain Rhodococcus MTCC 6716, isolated from the gut of an Indian earthworm (Metaphire posthuma) was studied for endosulfan bioremediation. In the present work, the optimum conditions for the maximum growth, kinetic of endosulfan degradation, regression equation, half life and correlation coefficient were studied. Endosulfan induced alterations in the expression of mRNA and protein of specific endosulfan metabolizing marker gene (Esd) was studied. Maximum growth of bacteria was observed at pH 7.0, 30°C and 0.085 M sodium chloride concentration in a liquid culture medium. Endosulfan was degraded by Rhodococcus strain up to 97.23% within 15 days without producing toxic metabolite and with strong correlation coefficient (-0.728) and half life 5.99 days. Endosulfan degradation was mediated through gene(s) present in genomic DNA. Expression of marker gene was found endosulfan concentration dependent. The results suggest that this novel strain (Rhodococcus) may be utilized for bioremediation of endosulfan.
Collapse
Affiliation(s)
- Ankit Verma
- Photobiology Division, Indian Institute of Toxicology Research, (CSIR), MG Marg, Lucknow, India
| | | | | | | | | | | |
Collapse
|