1
|
Ishizawa H, Tashiro Y, Okada T, Inoue D, Ike M, Futamata H. Uncovering the causal relationships in plant-microbe ecosystems: A time series analysis of the duckweed cultivation system for biomass production and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177717. [PMID: 39615172 DOI: 10.1016/j.scitotenv.2024.177717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
The complex interplay among plants, microbes, and the environment strongly affects productivity of vegetation ecosystems; however, determining causal relationships among various factors in these systems remains challenging. To address this issue, this study aimed to evaluate the potential of a data analytical framework called empirical dynamic modeling, which identifies causal links and directions solely from time series data. By cultivating duckweed, a promising aquatic plant for biomass production and wastewater treatment, we obtained a 63-day time series data of plant productivity, microbial community structure, wastewater treatment performance, and environmental factors. We confirmed that empirical dynamic modeling can identify the correct causal directions among temperature, light intensity and plant growth, solely from time series data. Extending the analysis to microbial community data suggested that the bacterial family Comamonadaceae positively affects host duckweed growth and nitrogen removal. Additionally, the predicted abundance of bacterial genes relevant to xenobiotics biodegradation was shown to have a positive effect on organic pollutant removal, supporting the significant role of bacterial metabolism in phytoremediation performance. These results demonstrate the effectiveness of empirical dynamic modeling in uncovering causal relationships within vegetation ecosystems, which are difficult to examine comprehensively through conventional experiment-based approaches.
Collapse
Affiliation(s)
- Hidehiro Ishizawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan; Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan.
| | - Yosuke Tashiro
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan; Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| | - Takashi Okada
- Institution for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0821, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0821, Japan
| | - Hiroyuki Futamata
- Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan; Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan; Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan
| |
Collapse
|
2
|
Ogata Y, Yamamura S, Nakajima N, Yamada M. Development of a floating constructed wetland for landfill leachate treatment and its potential to remove recalcitrant organic matter. WATER RESEARCH 2024; 263:122154. [PMID: 39094204 DOI: 10.1016/j.watres.2024.122154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The development of simple and economical treatment technologies for the removal of recalcitrant organic matter is required to achieve long-term and sustainable treatment of landfill leachates in tropical regions. In this study, we evaluated the fundamental properties required to develop the floating constructed wetland (FCW), which consists of a buoyant planting unit made of foamed glass and cattails. The results showed that foamed glass alone can be used as a planting substrate for cattails. Treatment of a synthetic landfill leachate by a lab-scale FCW demonstrated that the test system effectively and continuously removed recalcitrant organic matter, whereas the control system did not. This removal by FCW was shown to proceed through nearly equal contributions from adsorption and potential biological processes. Furthermore, the effect of introducing an FCW in an actual waste landfill site in Thailand was simulated using the parameters obtained from this study. The simulation indicated that the introduction of the FCW into the stabilisation pond was effective in reducing both leachate volume and recalcitrant organic matter. It is important to determine how much of the stabilisation pond should be covered with the FCW for cost-effectiveness. The FCW is expected to contribute to improving long-term, sustainable, and appropriate management of landfill leachate in tropical developing countries.
Collapse
Affiliation(s)
- Yuka Ogata
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Shigeki Yamamura
- Regional Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Nobuyoshi Nakajima
- Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Masato Yamada
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
3
|
Ogata Y, Matsukami H, Ishimori H. Per- and polyfluoroalkyl substances removal from landfill leachate by a planting unit via interactions between foamed glass and Typha domingensis. CHEMOSPHERE 2024; 363:142865. [PMID: 39019191 DOI: 10.1016/j.chemosphere.2024.142865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Sustainable removal of per- and polyfluoroalkyl substances (PFAS) from landfill leachate remains a pressing global challenge. To develop an effective PFAS removal technology that utilizes nature-based solutions, we considered a planting unit comprised of a microbial carrier (foamed glass) and Typha domingensis. This study evaluated the possibility of removing PFAS from landfill leachate using a planting unit through a pot experiment. The planting unit effectively removed various short- and long-chain PFAS from the landfill leachate, including perfluorocarboxylic acids (PFCAs [C4-C10]), perfluorosulfonic acids (PFSAs [C4, C6, and C8]), fluorotelomer carboxylic acids (FTCAs [5:3 and 7:3]), and 6:2 fluorotelomer sulfonic acid (FTS), with initial concentrations of 43-9100 ng L-1, achieving a removal efficiency of 53-83% in 21 d. Mass balance analysis indicated that the contribution of accumulation on foamed glass and plant adsorption and uptake played no major role in the removal of PFCAs (C4-C9), PFSAs (C4), and FTCAs (5:3 and 7:3), and that other removal processes played a key role. Although not the most effective removal process, the contribution of accumulation on foamed glass tended to be more notable in the removal of longer-chain PFCAs. In addition, plant adsorption and uptake showed that longer-chain PFCAs were more likely to remain in roots, whereas shorter-chain PFCAs were more likely to be transferred to aboveground plant part. On the other hand, 6:2 FTS removal occurred primarily due to accumulation on foamed glass. These results suggest that differences in the physicochemical properties of PFAS affect removal mechanisms. This study provides valuable insights into development of environmentally friendly technologies capable of removing a variety of short- and long-chain PFAS.
Collapse
Affiliation(s)
- Yuka Ogata
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| | - Hidenori Matsukami
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hiroyuki Ishimori
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
4
|
Xiao Y, Han D, Currell M, Song X, Zhang Y. Review of Endocrine Disrupting Compounds (EDCs) in China's water environments: Implications for environmental fate, transport and health risks. WATER RESEARCH 2023; 245:120645. [PMID: 37769420 DOI: 10.1016/j.watres.2023.120645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/25/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
Endocrine Disrupting Compounds (EDCs) are ubiquitous in soil and water system and have become a great issue of environmental and public health concern since the 1990s. However, the occurrence and mechanism(s) of EDCs' migration and transformation at the watershed scale are poorly understood. A review of EDCs pollution in China's major watersheds (and comparison to other countries) has been carried out to better assess these issues and associated ecological risks, compiling a large amount of data. Comparing the distribution characteristics of EDCs in water environments around the world and analyzing various measures and systems for managing EDCs internationally, the significant insights of the review are: 1) There are significant spatial differences and concentration variations of EDCs in surface water and groundwater in China, yet all regions present non-negligible ecological risks. 2) The hyporheic zone, as a transitional zone of surface water and groundwater interaction, can effectively adsorb and degrade EDCs and prevent the migration of high concentrations of EDCs from surface water to groundwater. This suggests that more attention needs to be paid to the role played by critical zones in water environments, when considering the removal of EDCs in water environments. 3) In China, there is a lack of comprehensive and effective regulations to limit and reduce EDCs generated during human activities and their discharge into the water environment. 4) To prevent the deterioration of surface water and groundwater quality, the monitoring and management of EDCs in water environments should be strengthened in China. This review provides a thorough survey of scientifically valid data and recommendations for the development of policies for the management of EDCs in China's water environment.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Han
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Matthew Currell
- School of Engineering, RMIT University, Melbourne, VIC, 3001, SA; Australian Rivers Institute, Griffith University, Nathan, Queensland, 4111, SA
| | - Xianfang Song
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Zhang
- Chinese Academy of Surveying and Mapping, Beijing, 100036, China
| |
Collapse
|
5
|
Photocatalytic Degradation of 4-tert-butylphenol Using Solar Light Responsive Ag2CO3. Catalysts 2022. [DOI: 10.3390/catal12121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In this work, Ag2CO3 was prepared via a solution-based method and was further characterized by XRD, Raman spectroscopy, SEM/EDS analysis, and UV-VIS spectroscopy. SEM results revealed the formation of micro-sized particles with a rectangular shape. The photocatalytic activity of the catalyst was evaluated in the degradation of 4-tert-butylphenol (4-t-BP) under simulated solar light irradiation. The effects of 4-t-BP initial concentration (2.5–10 ppm), catalyst dosage (100–300 mg/L), different types of lamp sources, and water matrix were investigated. Complete 4-t-BP (5 ppm) degradation was achieved after 60 min by Ag2CO3 (200 mg/L). The effect of anions such as CO32−, HCO3−, NO3−, and Cl- in the concentration range of 100–300 mg/L was also studied. CO32− promoted the photocatalytic degradation process, while HCO3− and NO3− exhibited an inhibition effect, which was marked with increasing HCO3− and NO3− concentrations. The presence of Cl− at the concentration of 100 mg/L increased 4-t-BP degradation, but higher concentrations inhibited the photocatalytic reaction. Cyclic experiments showed that the catalyst practically retained its catalytic activity toward 4-t-BP degradation after three successive experimental runs.
Collapse
|
6
|
Degradation of 4-Tert-Butylphenol in Water Using Mono-Doped (M1: Mo, W) and Co-Doped (M2-M1: Cu, Co, Zn) Titania Catalysts. NANOMATERIALS 2022; 12:nano12142326. [PMID: 35889551 PMCID: PMC9318463 DOI: 10.3390/nano12142326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023]
Abstract
Mono-doped (Mo-TiO2 and W-TiO2) and co-doped TiO2 (Co-Mo-TiO2, Co-W-TiO2, Cu-Mo-TiO2, Cu-W-TiO2, Zn-Mo-TiO2, and Zn-W-TiO2) catalysts were synthesized by simple impregnation methods and tested for the photocatalytic degradation of 4-tert-butylphenol in water under UV (365 nm) light irradiation. The catalysts were characterized with various analytical methods. X-ray diffraction (XRD), Raman, Diffuse reflectance (DR) spectroscopies, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Energy dispersive spectroscopy (EDS) were applied to investigate the structure, optical properties, morphology, and elemental composition of the prepared catalysts. The XRD patterns revealed the presence of peaks corresponding to the WO3 in W-TiO2, Co-W-TiO2, Cu-W-TiO2, and Zn-W-TiO2. The co-doping of Cu and Mo to the TiO2 lattice was evidenced by the shift of XRD planes towards higher 2θ values, confirming the lattice distortion. Elemental mapping images confirmed the successful impregnation and uniform distribution of metal particles on the TiO2 surface. Compared to undoped TiO2, Mo-TiO2 and W-TiO2 exhibited a lower energy gap. Further incorporation of Mo-TiO2 with Co or Cu introduced slight changes in energy gap and light absorption characteristics, particularly visible light absorption. In addition, photoluminescence (PL) showed that Cu-Mo-TiO2 has a weaker PL intensity than undoped TiO2. Thus, Cu-Mo-TiO2 showed better catalytic activity than pure TiO2, achieving complete degradation of 4-tert-butylphenol under UV light irradiation after 60 min. The application of Cu-Mo-TiO2 under solar light conditions was also tested, and 70% of 4-tert-butylphenol degradation was achieved within 150 min.
Collapse
|
7
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Effect of Separate and Combined Toxicity of Bisphenol A and Zinc on the Soil Microbiome. Int J Mol Sci 2022; 23:5937. [PMID: 35682625 PMCID: PMC9180857 DOI: 10.3390/ijms23115937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/18/2022] Open
Abstract
The research objective was established by taking into account common sources of soil contamination with bisphenol A (B) and zinc (Zn2+), as well as the scarcity of data on the effect of metabolic pathways involved in the degradation of organic compounds on the complexation of zinc in soil. Therefore, the aim of this study was to determine the spectrum of soil homeostasis disorders arising under the pressure of both the separate and combined toxicity of bisphenol A and Zn2+. With a broad pool of indicators, such as indices of the effect of xenobiotics (IFX), humic acid (IFH), plants (IFP), colony development (CD), ecophysiological diversity (EP), the Shannon-Weaver and the Simpson indices, as well as the index of soil biological fertility (BA21), the extent of disturbances was verified on the basis of enzymatic activity, microbiological activity, and structural diversity of the soil microbiome. A holistic character of the study was achieved, having determined the indicators of tolerance (IT) of Sorghum Moench (S) and Panicum virgatum (P), the ratio of the mass of their aerial parts to roots (PR), and the SPAD leaf greenness index. Bisphenol A not only failed to perform a complexing role towards Zn2+, but in combination with this heavy metal, had a particularly negative effect on the soil microbiome and enzymatic activity. The NGS analysis distinguished certain unique genera of bacteria in all objects, representing the phyla Actinobacteriota and Proteobacteria, as well as fungi classified as members of the phyla Ascomycota and Basidiomycota. Sorghum Moench (S) proved to be more sensitive to the xenobiotics than Panicum virgatum (P).
Collapse
Affiliation(s)
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland; (M.Z.); (A.B.); (J.K.)
| | | | | |
Collapse
|
8
|
Zhang NC, Hong ZF, Qiu RL, Chao YQ, Yu YF, A D. Removal pathway quantification and co-metabolic mechanism evaluation of alkylphenols from synthetic wastewater by phenolic root exudates in the rhizosphere of Phragmites australis. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127269. [PMID: 34607026 DOI: 10.1016/j.jhazmat.2021.127269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Phenolic root exudates (PREs) released from wetland plants are potentially effective for accelerating the biodegradation of alkylphenols, yet the inherent behavior is still unclear. In this study, two representative root exudates (REs), namely p-coumaric acid (PREs) and oxalic acid (non-PREs) were exogenously added as specific and non-specific co-metabolic substrates, respectively, to elucidate the quantification of each removal pathway and degradation mechanism of co-metabolism for alkylphenols (i.e. p-tert-butylphenol (PTBP)) from synthetic wastewater. The results showed that soil adsorption (31-37%), microbial degradation (27-37%), and plant uptake (16-41%) are the main removal pathways of PTBP by PREs in the Phragmites australis rhizosphere. Both REs enriched anaerobic functional community (anaerobic ammonium oxidation bacteria and denitrifying bacteria) and promoted the usage of PTBP as carbon source and/or electron donor. The activity of non-specific enzyme (polyphenol oxidase) was enhanced by RE which owning a significant positive correlation with bacterial abundance, whereas only PREs strengthened the activity of specific enzyme (monophenol oxidase) catalyzing the phenolic ring hydroxylation of PTBP followed by a dehydrogenation route. Moreover, exogenous PREs significantly improved the growth of degrading-related bacteria (Sphingomonas and Gemmatimonas), especially in unplanted soils with high activity of dioxygenase catalyzing the cleavage pathway of PTBP, instead of plant presence.
Collapse
Affiliation(s)
- Ni-Chen Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Feng Hong
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yuan-Qing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ya-Fei Yu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan A
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
9
|
Comparative Study on UV-AOPs for Efficient Continuous Flow Removal of 4-tert-Butylphenol. Processes (Basel) 2021. [DOI: 10.3390/pr10010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the present study, UV-light-driven advanced oxidation processes (AOPs) have been employed for the degradation of 4-tert-Butylphenol (4-t-BP) in water under continuous flow conditions. The effects of varying space time (10, 20, 40, 60 and 120 min) and oxidant dosage (88.3 mg/L, 176.6 mg/L and 264 mg/L) were examined. 4-t-BP degradation efficiency in the UV-induced AOPs followed the order of UV/H2O2 (264.9 mg/L) ≈ UV/Fe2+/H2O2 > UV/Fe3+/H2O2 > UV/H2O2 (176.6 mg/L) > UV/H2O2 (88.3 mg/L) > UV/Fe-TiO2 > UV/TiO2 > UV, while UV/Fe3+/H2O2 was the most efficient process in terms of Total Organic Carbon (TOC) removal (at the space time of 60 min) among those tested. The combination of UV with 88.3 mg/L H2O2 enhanced pollutant removal from 51.29% to 93.34% after 10 min of irradiation. The presence of H2O2 contributed to the highest 4-t-BP and TOC removal values. Interestingly, the increase in space time from 20 to 60 min resulted in surpassing of the activity of the Fe-TiO2 over commercial TiO2, although it had an almost negligible positive impact on the performance of the UV/H2O2 system as well as H2O2 concentration. The results obtained showed that more than 80% of 4-t-BP could be successfully degraded by both heterogeneous and homogeneous AOPs after 60 min.
Collapse
|
10
|
Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U, Jansen MAK, Oyama T, Pasaribu B, Schubert I, Sorrels S, Sree KS, Xu S, Michael TP, Lam E. Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. THE PLANT CELL 2021; 33:3207-3234. [PMID: 34273173 PMCID: PMC8505876 DOI: 10.1093/plcell/koab189] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/18/2021] [Indexed: 05/05/2023]
Abstract
The aquatic Lemnaceae family, commonly called duckweed, comprises some of the smallest and fastest growing angiosperms known on Earth. Their tiny size, rapid growth by clonal propagation, and facile uptake of labeled compounds from the media were attractive features that made them a well-known model for plant biology from 1950 to 1990. Interest in duckweed has steadily regained momentum over the past decade, driven in part by the growing need to identify alternative plants from traditional agricultural crops that can help tackle urgent societal challenges, such as climate change and rapid population expansion. Propelled by rapid advances in genomic technologies, recent studies with duckweed again highlight the potential of these small plants to enable discoveries in diverse fields from ecology to chronobiology. Building on established community resources, duckweed is reemerging as a platform to study plant processes at the systems level and to translate knowledge gained for field deployment to address some of society's pressing needs. This review details the anatomy, development, physiology, and molecular characteristics of the Lemnaceae to introduce them to the broader plant research community. We highlight recent research enabled by Lemnaceae to demonstrate how these plants can be used for quantitative studies of complex processes and for revealing potentially novel strategies in plant defense and genome maintenance.
Collapse
Affiliation(s)
- Kenneth Acosta
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Klaus J Appenroth
- Plant Physiology, Matthias Schleiden Institute, University of Jena, Jena 07737, Germany
| | - Ljudmilla Borisjuk
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Marvin Edelman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uwe Heinig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork T23 TK30, Ireland
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ingo Schubert
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Shawn Sorrels
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, California 92037, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
11
|
Insights into the Use of Phytoremediation Processes for the Removal of Organic Micropollutants from Water and Wastewater; A Review. WATER 2021. [DOI: 10.3390/w13152065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Greater awareness of micropollutants present in water and wastewater motivates the search for effective methods of their neutralization. Although their concentration in waters is measured in micro- and nanograms per liter, even at those levels, they may cause serious health consequences for different organisms, including harmful effects on the functioning of the endocrine system of vertebrates. Traditional methods of wastewater treatment, especially biological methods used in municipal wastewater treatment plants, are not sufficiently effective in removing these compounds, which results in their presence in natural waters. The growing interest in phytoremediation using constructed wetlands as a method of wastewater treatment or polishing indicates a need for the evaluation of this process in the context of micropollutant removal. Therefore, the present work presents a systematic review of the effectiveness in the removal of micropollutants from polluted waters by processes based on plant used. The article also analyzes issues related to the impact of micropollutants on the physiological processes of plants as well as changes in general indicators of pollution caused by contact of wastewater with plants. Additionally, it is also the first review of the literature that focuses strictly on the removal of micropollutants through the use of constructed wetlands.
Collapse
|
12
|
Gu Y, Tobino T, Nakajima F. Determining the Relative Importance of Dietborne and Waterborne Toxicity of 4- tert-Butylphenol and 4- tert-Octylphenol to the Benthic Crustacean, Heterocypris incongruens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7939-7948. [PMID: 34047553 DOI: 10.1021/acs.est.0c08164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic pollutants with high solid-water equilibrium partition coefficients are adsorbed into solid particles and are easily ingested by benthic organisms, potentially causing dietborne toxicity. Whether dietborne toxicity is more important than waterborne toxicity for such chemicals remains to be determined. In this study, we identify the most relevant uptake route for the toxicity of two alkylphenols, 4-tert-butylphenol (4tBP), and 4-tert-octylphenol (4tOP). To achieve this, 6-day toxicity tests under two exposure conditions, namely dietary exposure (clean water + contaminated food) and combined exposure (contaminated water + contaminated food) were conducted on a benthic ostracod, Heterocypris incongruens. The toxicologically important exposure routes were confirmed by the consistency of dietary and aqueous dose-response relationships under different exposure conditions. During the test, frequent renewal of water and food was performed to reduce variability in the exposure conditions. The results showed that, under the equilibrium condition, the dietary exposure route was toxicologically more important than the aqueous route for 4tBP, whereas the waterborne exposure route was more important than the dietary exposure route for 4tOP. This study provides a novel approach to identify the most relevant uptake pathways for chemical toxicity, which better explains the importance of exposure routes in toxicity effects.
Collapse
Affiliation(s)
- Yilu Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Tomohiro Tobino
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fumiyuki Nakajima
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Zheng Q, Wu N, Qu R, Albasher G, Cao W, Li B, Alsultan N, Wang Z. Kinetics and reaction pathways for the transformation of 4-tert-butylphenol by ferrate(VI). JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123405. [PMID: 32659589 DOI: 10.1016/j.jhazmat.2020.123405] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
4-tert-butylphenol (4-tBP) is a phenolic endocrine disrupting chemical that has attracted great attention due to its wide occurrence, environmental persistence, and possible toxic effects. In this study, we systematically investigated the transformation of 4-tBP in ferrate (VI) oxidation process. The second-order reaction rate constant (kapp) of Fe(VI) with 4-tBP decreases with solution pH, and the kapp value was determined as 295 M-1·s-1 at pH 8.0. The removal efficiency of 4-tBP was slightly decreased by Mg2+ and HCO3-, while accelerated at varying degrees by the presence of Cu2+ and humic acid. Product analysis revealed that 4-tBP was mainly transformed into hydroxylation products, benzene-ring cleavage products, dimers and higher polymerization products via oxygen atom transfer, ring-opening of the benzene ring and radical coupling reaction. Furthermore, initial reactions of 4-tBP were rationalized by theoretical analysis of atom partial charges, frontier electron densities, and spin densities. Nearly complete removal of 4-tBP (20 μM) was achieved after 5 min of reaction in both ultrapure water and natural waters, demonstrating the feasibility of this Fe(VI) oxidation method in treating phenols-contaminated waters.
Collapse
Affiliation(s)
- Qing Zheng
- School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224003, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China.
| | - Gadah Albasher
- King Saud University, College of Science, Zoology Department, P.O. Box 2455, 10, Riyadh 11451, Saudi Arabia
| | - Wanming Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Beibei Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Nouf Alsultan
- King Saud University, College of Science, Zoology Department, P.O. Box 2455, 10, Riyadh 11451, Saudi Arabia
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| |
Collapse
|
14
|
Ishizawa H, Kuroda M, Inoue D, Morikawa M, Ike M. Community dynamics of duckweed-associated bacteria upon inoculation of plant growth-promoting bacteria. FEMS Microbiol Ecol 2020; 96:5843272. [DOI: 10.1093/femsec/fiaa101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 05/22/2020] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT
Plant growth-promoting bacteria (PGPB) have recently been demonstrated as a promising agent to improve wastewater treatment and biomass production efficiency of duckweed hydrocultures. With a view to their reliable use in aqueous environments, this study analysed the plant colonization dynamics of PGPB and the ecological consequences for the entire duckweed-associated bacterial community. A PGPB strain, Aquitalea magnusonii H3, was inoculated to duckweed at different cell densities or timings in the presence of three environmental bacterial communities. The results showed that strain H3 improved duckweed growth by 11.7–32.1% in five out of nine experiments. Quantitative-PCR and amplicon sequencing analyses showed that strain H3 successfully colonized duckweed after 1 and 3 d of inoculation in all cultivation tests. However, it significantly decreased in number after 7 d, and similar bacterial communities were observed on duckweed regardless of H3 inoculation. Predicted metagenome analysis suggested that genes related to bacterial chemotactic motility and surface attachment systems are consistently enriched through community assembly on duckweed. Taken together, strain H3 dominantly colonized duckweed for a short period and improved duckweed growth. However, the inoculation of the PGPB did not have a lasting impact due to the strong resilience of the natural duckweed microbiome.
Collapse
Affiliation(s)
- Hidehiro Ishizawa
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University , 2-1 Suita, Osaka, Japan
| | - Masashi Kuroda
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University , 2-1 Suita, Osaka, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University , 2-1 Suita, Osaka, Japan
| | - Masaaki Morikawa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, N10 W5 Sapporo, Hokkaido, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University , 2-1 Suita, Osaka, Japan
| |
Collapse
|
15
|
O'Brien AM, Yu ZH, Luo DY, Laurich J, Passeport E, Frederickson ME. Resilience to multiple stressors in an aquatic plant and its microbiome. AMERICAN JOURNAL OF BOTANY 2020; 107:273-285. [PMID: 31879950 DOI: 10.1002/ajb2.1404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/09/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Outcomes of species interactions, especially mutualisms, are notoriously dependent on environmental context, and environments are changing rapidly. Studies have investigated how mutualisms respond to or ameliorate anthropogenic environmental changes, but most have focused on nutrient pollution or climate change and tested stressors one at a time. Relatively little is known about how mutualisms may be altered by or buffer the effects of multiple chemical contaminants, which differ fundamentally from nutrient or climate stressors and are especially widespread in aquatic habitats. METHODS We investigated the impacts of two contaminants on interactions between the duckweed Lemna minor and its microbiome. Sodium chloride (salt) and benzotriazole (a corrosion inhibitor) often co-occur in runoff to water bodies where duckweeds reside. We tested three L. minor genotypes with and without the culturable portion of their microbiome across field-realistic gradients of salt (3 levels) and benzotriazole (4 levels) in a fully factorial experiment (24 treatments, tested on each genotype) and measured plant and microbial growth. RESULTS Stressors had conditional effects. Salt decreased both plant and microbial growth and decreased plant survival more as benzotriazole concentrations increased. In contrast, benzotriazole did not affect microbial abundance and even benefited plants when salt and microbes were absent, perhaps due to biotransformation into growth-promoting compounds. Microbes did not ameliorate duckweed stressors; microbial inoculation increased plant growth, but not at high salt concentrations. CONCLUSIONS Our results suggest that multiple stressors matter when predicting responses of mutualisms to global change and that beneficial microbes may not always buffer hosts against stress.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Ecology and Evolutionary Biology, University of Toronto
| | - Zhu Hao Yu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto
| | - Dian-Ya Luo
- Department of Ecology and Evolutionary Biology, University of Toronto
| | - Jason Laurich
- Department of Ecology and Evolutionary Biology, University of Toronto
| | - Elodie Passeport
- Department of Chemical Engineering and Applied Chemistry, University of Toronto
- Department of Civil and Mineral Engineering, University of Toronto
| | | |
Collapse
|
16
|
Janousek RM, Müller J, Knepper TP. Combined study of source, environmental monitoring and fate of branched alkylphenols: The chain length matters. CHEMOSPHERE 2020; 241:124950. [PMID: 31605999 DOI: 10.1016/j.chemosphere.2019.124950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/13/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Alkylphenols (APs) are chemicals of largely anthropogenic origin. Longer chain derivatives like 4-nonylphenol (4NP) or 4-tert.-octylphenol (4tOP) are mainly used for the production of alkylphenol ethoxylates, while short chain alkylphenols (SCAPs) can be applied during the production of phenolic or epoxide resins that are used in paint, glue or adhesive formulations. The source, environmental distribution and fate of 4NP and 4tOP were thoroughly demonstrated leading to growing concerns regarding their endocrine properties. Although, SCAPs are also expected to entail risks to the aquatic environment, only few studies dealt with the identification of possible sources or environmental concentrations thereof. In order to evaluate the role of resin-based building materials as a possible source of 4-tert.-butylphenol (4tBP), 4-tert.-pentylphenol (4tPP), 4tOP and 4NP, 18 formulations were tested. Furthermore, AP concentrations of four wastewater treatment plants (WWTPs) and 50 surface waters were analyzed to assess and compare environmental concentrations and the discharge of APs depending on their chain length. 4tBP was the dominant AP in analyzed building materials with concentrations up to 320 g kg-1. Furthermore, APs were detected in all WWTPs and waterbodies. 4NP was the dominant AP in most surface water and WWTP samples ranging from <LOQ-0.5 μg L-1 and <LOQ-2.34 μg L-1, respectively, whereas 4tPP was rarely detected over all samples. Observed detection patterns of 4tBP in surface waters indicated different entrance pathways and hence, different sources compared to 4NP and 4tOP. Furthermore, WWTP samples and accompanying transformation studies pointed towards rapid biotransformation of 4tBP, explaining low environmental concentrations.
Collapse
Affiliation(s)
| | - Jutta Müller
- Hochschule Fresenius, Limburger Str. 2 65510, Idstein, Germany
| | | |
Collapse
|
17
|
Makhatova A, Ulykbanova G, Sadyk S, Sarsenbay K, Atabaev TS, Inglezakis VJ, Poulopoulos SG. Degradation and mineralization of 4-tert-butylphenol in water using Fe-doped TiO 2 catalysts. Sci Rep 2019; 9:19284. [PMID: 31848408 PMCID: PMC6917762 DOI: 10.1038/s41598-019-55775-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/30/2019] [Indexed: 11/25/2022] Open
Abstract
In the present work, the photocatalytic degradation and mineralization of 4-tert-butylphenol in water was studied using Fe-doped TiO2 nanoparticles under UV light irradiation. Fe-doped TiO2 catalysts (0.5, 1, 2 and 4 wt.%) were prepared using wet impregnation and characterized via SEM/EDS, XRD, XRF and TEM, while their photocatalytic activity and stability was attended via total organic carbon, 4-tert-butyl phenol, acetic acid, formic acid and leached iron concentrations measurements. The effect of H2O2 addition was also examined. The 4% Fe/TiO2 demonstrated the highest photocatalytic efficiency in terms of total organic carbon removal (86%). The application of UV/H2O2 resulted in 31% total organic carbon removal and 100% 4-t-butylphenol conversion, however combining Fe/TiO2 catalysts with H2O2 under UV irradiation did not improve the photocatalytic performance. Increasing the content of iron on the catalyst from 0.5 to 4% considerably decreased the intermediates formed and increased the production of carbon dioxide. The photocatalytic degradation of 4-tert-butylphenol followed pseudo-second order kinetics. Leaching of iron was observed mainly in the case of 4% Fe/TiO2, but it was considered negligible taking into account the iron load on catalysts. The electric energy per order was found in the range of 28-147 kWh/m3/order and increased with increasing the iron content of the catalyst.
Collapse
Affiliation(s)
- Ardak Makhatova
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
- Environmental Science & Technology Group (ESTg), Chemical and Materials Engineering Department, School of Engineering and Digital Sciences, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| | - Gaukhar Ulykbanova
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
- Environmental Science & Technology Group (ESTg), Chemical and Materials Engineering Department, School of Engineering and Digital Sciences, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| | - Shynggys Sadyk
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| | - Kali Sarsenbay
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| | - Timur Sh Atabaev
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| | - Vassilis J Inglezakis
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
- Environmental Science & Technology Group (ESTg), Chemical and Materials Engineering Department, School of Engineering and Digital Sciences, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan
| | - Stavros G Poulopoulos
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, 010000, Nur-Sultan, Kazakhstan.
- Environmental Science & Technology Group (ESTg), Chemical and Materials Engineering Department, School of Engineering and Digital Sciences, Nazarbayev University, 010000, Nur-Sultan, Kazakhstan.
| |
Collapse
|
18
|
Larsen C, Yu ZH, Flick R, Passeport E. Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133772. [PMID: 31425979 DOI: 10.1016/j.scitotenv.2019.133772] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
The widespread distribution of pharmaceuticals and personal care products (PPCPs), particularly in the built environment, has led to increased concern about their effects on both human and ecosystem health. In this research, we investigated the role of algae species Scenedesmus obliquus and Chlorella vulgaris in governing PPCP transfer and transformation mechanisms in algae-containing environments. Lab-scale algal bioreactors were created under various conditions of light, water matrix, and sterilization method to isolate and elucidate reaction mechanisms affecting carbamazepine, ibuprofen, gemfibrozil, and triclosan. The parent compounds and their potential transformation products were analyzed in both the water and algae phases. The results showed that ibuprofen was primarily biotransformed due to synergistic relationships between the algae and the bacteria. Ibuprofen biotransformation products tentatively identified as hydroxy-ibuprofen, carboxy-ibuprofen, and 4-isobutylcatechol were detected in several samples. In all the reactors exposed to light, triclosan underwent both phototransformation and biotransformation. Triclosan biotransformation took place in Scenedesmus obliquus, as demonstrated by the presence of triclosan-O-sulfate in the algae extracts. No evidence of significant carbamazepine and gemfibrozil transfer or transformation was observed under the experimental conditions tested. These results suggest that microalgal-bacterial consortia can facilitate PPCP transformation in algae-based passive water treatment systems.
Collapse
Affiliation(s)
- Christian Larsen
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Zhu Hao Yu
- Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Elodie Passeport
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada; Department of Chemical Engineering & Applied Chemistry, 200 College Street, Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
19
|
Removal of Linear and Branched Alkylphenols with the Combined Use of Polyphenol Oxidase and Chitosan. Polymers (Basel) 2019; 11:polym11060931. [PMID: 31141977 PMCID: PMC6631719 DOI: 10.3390/polym11060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022] Open
Abstract
Removal of linear and branched alkylphenols with different alkyl chain lengths or different branchings (normal, secondary, and tertiary), some of which are suspected as endocrine disrupting chemicals, from an aqueous medium were investigated through quinone oxidation by polyphenol oxidase (PPO) and subsequent quinone adsorption on chitosan beads or powders at pH 7.0 and 40 °C. PPO-catalyzed quinone oxidation increased with an increase in alkyl chain length of the alkylphenols used. Although a higher PPO dose was required for quinone oxidation of branched alkylphenols, they were completely or mostly removed by quinone adsorption on chitosan beads or powders. The apparent activity of PPO increased by a decrease in quinone concentration. On the other hand, in the homogeneous systems with solutions of chitosan and PPO at pH 6.0, longer reaction times were required to generate insoluble aggregates, and a small amount of quinone derivatives were left in the solution even under optimum conditions. These results support that the two-step reaction, that is, PPO-catalyzed quinone oxidation and subsequent quinone adsorption on chitosan beads or powders, in the heterogeneous system is a good procedure for removing linear and branched alkylphenols from aqueous medium.
Collapse
|
20
|
Aziz A, Agamuthu P, Fauziah SH. Effective removal of p-tert-Butylphenol and Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)- from landfill leachate using locust bean gum. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2018; 36:1146-1156. [PMID: 30067147 DOI: 10.1177/0734242x18789062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The widespread distribution of persistent organic pollutants (POPs) in landfill leachate is problematic due to their acute toxicity, carcinogenicity and genotoxicity effects, which could be detrimental to public health and ecological systems. The objective of this study was to evaluate the effective removal of POPs - namely, p-tert-Butylphenol and Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)- - from landfill leachate using locust bean gum (LBG), and in comparison with commonly used alum. The response surface methodology coupled with a Box-Behnken design was employed to optimize the operating factors for optimal POPs removal. A quadratic polynomial model was fitted into the data with the R2 values of 0.97 and 0.96 for the removal of p-tert-Butylphenol and Pyridine, 3-(1-methyl-2-pyrrolidinyl), (S)-, respectively. The physicochemical characteristics of the flocs produced by LBG and alum were evaluated with Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). The infrared spectra of LBG-treated floc were identical with LBG powder, but there was some variation in the peaks of the functional groups, signifying the chemical interactions between flocculants and pollutant particles resulting from POPs removal. The results showed that p-tert-Butylphenol and Pyridine, 3-(1-methyl-2-pyrrolidinyl)-, (S)- obtained 96% and 100% removal using 500 mg/L of LBG at pH 4. pH have a significant effect on POPs removal in leachate. It is estimated that treating one million gallons of leachate using alum (at 1 g/L dosage) would cost US$39, and using LBG (at 500 mg/L dosage) would cost US$2. LBG is eco-friendly, biodegradable and non-toxic and, hence, strongly recommended as an alternative to inorganic coagulants for the treatment of POPs in landfill leachate.
Collapse
Affiliation(s)
- A Aziz
- 1 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- 2 Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
- 3 Center for Research in Waste Management, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - P Agamuthu
- 1 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- 3 Center for Research in Waste Management, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - S H Fauziah
- 1 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- 3 Center for Research in Waste Management, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Draft Genome Sequence of Sphingobium fuliginis OMI, a Bacterium That Degrades Alkylphenols and Bisphenols. GENOME ANNOUNCEMENTS 2017; 5:5/47/e01323-17. [PMID: 29167253 PMCID: PMC5701478 DOI: 10.1128/genomea.01323-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sphingobium fuliginis OMI is a bacterium that can degrade a variety of recalcitrant alkylphenols and bisphenols. This study reports the draft genome sequence of S. fuliginis OMI.
Collapse
|
22
|
Reddy MV, Yajima Y, Choi D, Chang YC. Biodegradation of toxic organic compounds using a newly isolated Bacillus sp. CYR2. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0117-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
A D, Fujii D, Soda S, Machimura T, Ike M. Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 578:566-576. [PMID: 27836343 DOI: 10.1016/j.scitotenv.2016.10.232] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Lab-scale vertical flow constructed wetlands (CWs) were used to remove phenol, bisphenol A (BPA), and 4-tert-butylphenol (4-t-BP) from synthetic young and old leachate. Removal percentages of phenolic compounds from the CWs were in the following order: phenol (88-100%)>4-t-BP (18-100%)≥BPA (9-99%). In all CWs, phenol was removed almost completely from leachate. Results show that BPA and 4-t-BP were removed more efficiently from CWs planted with Phragmites australis than from unplanted CWs, from old leachate containing lower amounts of acetate and propionate as easily degradable carbon sources than from young leachate, and in the dry season mode with long retention time than in the wet season mode with short retention time. Adsorption by initial removal and subsequent biodegradation processes might be major removal processes for these phenolic compounds. The presence of plant is beneficial for enrichment of BPA-degrading and 4-t-BP-degrading bacteria and for the carbon source utilization potential of microbes in CWs.
Collapse
Affiliation(s)
- Dan A
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daiki Fujii
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Soda
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takashi Machimura
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Wu Y, Shi J, Chen H, Zhao J, Dong W. Aqueous photodegradation of 4-tert-butylphenol: By-products, degradation pathway and theoretical calculation assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:86-92. [PMID: 27213674 DOI: 10.1016/j.scitotenv.2016.05.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 05/17/2023]
Abstract
4-tert-butylphenol (4-t-BP), an endocrine disrupting chemical, is widely distributed in natural bodies of water but is difficult to biodegrade. In this study, we focused on the transformation of 4-t-BP in photo-initiated degradation processes. The steady-state photolysis and laser flash photolysis (LFP) experiments were conducted in order to elucidate its degradation mechanism. Identification of products was performed using the GC-MS, LC-MS and theoretical calculation techniques. The oxidation pathway of 4-t-BP by hydroxyl radical (HO) was also studied and H2O2 was added to produce HO. 4-tert-butylcatechol and 4-tert-butylphenol dimer were produced in 4-t-BP direct photolysis. 4-tert-butylcatechol and hydroquinone were produced by the oxidation of HO. But the formation mechanism of 4-tert-butylcatechol in the two processes was different. The benzene ring was fractured in 4-t-BP oxidation process and 29% of TOC was degraded after 16h irradiation.
Collapse
Affiliation(s)
- Yanlin Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jin Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Hongche Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
25
|
Venkateswar Reddy M, Mawatari Y, Yajima Y, Seki C, Hoshino T, Chang YC. Poly-3-hydroxybutyrate (PHB) production from alkylphenols, mono and poly-aromatic hydrocarbons using Bacillus sp. CYR1: A new strategy for wealth from waste. BIORESOURCE TECHNOLOGY 2015; 192:711-717. [PMID: 26101960 DOI: 10.1016/j.biortech.2015.06.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 06/04/2023]
Abstract
In the present study five different types of alkylphenols, each of the two different types of mono and poly-aromatic hydrocarbons were selected for degradation, and conversion into poly-3-hydroxybutyrate (PHB) using the Bacillus sp. CYR1. Strain CYR1 showed growth with various toxic organic compounds. Degradation pattern of all the organic compounds at 100 mg/l concentration with or without addition of tween-80 were analyzed using high pressure liquid chromatography (HPLC). Strain CYR1 showed good removal of compounds in the presence of tween-80 within 3 days, but it took 6 days without addition of tween-80. Strain CYR1 showed highest PHB production with phenol (51 ± 5%), naphthalene (42 ± 4%), 4-chlorophenol (32 ± 3%) and 4-nonylphenol (29 ± 3%). The functional groups, structure, and thermal properties of the produced PHB were analyzed. These results denoted that the strain Bacillus sp. CYR1 can be used for conversion of different toxic compounds persistent in wastewaters into useable biological polyesters.
Collapse
Affiliation(s)
- M Venkateswar Reddy
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585, Japan
| | - Yasuteru Mawatari
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
| | - Yuka Yajima
- Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan
| | - Chigusa Seki
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585, Japan
| | - Tamotsu Hoshino
- Biomass Refinery Research Center, National Institute of Advanced Industrial, Sciences and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Sciences, and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Young-Cheol Chang
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585, Japan.
| |
Collapse
|
26
|
Ma W, Nie C, Chen B, Cheng X, Lun X, Zeng F. Adsorption and biodegradation of three selected endocrine disrupting chemicals in river-based artificial groundwater recharge with reclaimed municipal wastewater. J Environ Sci (China) 2015; 31:154-163. [PMID: 25968269 DOI: 10.1016/j.jes.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/01/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
Endocrine disrupting chemical (EDC) pollution in river-based artificial groundwater recharge using reclaimed municipal wastewater poses a potential threat to groundwater-based drinking water supplies in Beijing, China. Lab-scale leaching column experiments simulating recharge were conducted to study the adsorption, biodegradation, and transport characteristics of three selected EDCs: 17β-estradiol (E2), 17α-ethinylestradiol (EE2) and bisphenol A (BPA). The three recharge columns were operated under the conditions of continual sterilization recharge (CSR), continual recharge (CR), and wetting and drying alternative recharge (WDAR). The results showed that the attenuation effect of the EDCs was in the order of WDAR>CR>CSR system and E2>EE2>BPA, which followed first-order kinetics. The EDC attenuation rate constants were 0.0783, 0.0505, and 0.0479 m(-1) for E2, EE2 and BPA in the CR system, respectively. The removal rates of E2, EE2, and BPA in the CR system were 98%, 96% and 92%, which mainly depended on biodegradation and were affected by water temperature. In the CR system, the concentrations of BPA, EE2, and E2 in soil were 4, 6 and 10 times higher than in the WDAR system, respectively. According to the DGGE fingerprints, the bacterial community in the bottom layer was more diverse than in the upper layer, which was related to the EDC concentrations in the water-soil system. The dominant group was found to be proteobacteria, including Betaproteobacteria and Alphaproteobacteria, suggesting that these microbes might play an important role in EDC degradation.
Collapse
Affiliation(s)
- Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Chao Nie
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Bin Chen
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Xiang Cheng
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaoxiu Lun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Fangang Zeng
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| |
Collapse
|
27
|
Xu XJ, Sun JQ, Nie Y, Wu XL. Spirodela polyrhiza stimulates the growth of its endophytes but differentially increases their fenpropathrin-degradation capabilities. CHEMOSPHERE 2015; 125:33-40. [PMID: 25655443 DOI: 10.1016/j.chemosphere.2014.12.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/19/2014] [Accepted: 12/28/2014] [Indexed: 06/04/2023]
Abstract
In situ remediation of organic contaminants via physical, chemical, and biological approaches is a practical technique for cleansing contaminated water and soil. In the present study, we showed that the three bacterial strains Pseudomonas sp. E1, Klebsiella terrigena E42, and Pseudomonas sp. E46, which can infect and colonize the aquatic plant Spirodela polyrhiza, utilize fenpropathrin as the sole carbon source for growth. S. polyrhiza helped enhance fenpropathrin degradation by E46 by 17.5%, only slightly improved fenpropathrin degradation by E42, and had no effect on strain E1. The application of plant exudates and extracts from fenpropathrin-unexposed/induced plants stimulated bacterial growth of the three strains, but resulted in differential fenpropathrin degradation, suggesting that not all plants and their endophytic bacteria are suitable for coupling phytoremediation and microbial-remediation. Moreover, addition of soil sediments to a microcosm not only stimulated the growth of strain E46 but also increased the rate of fenpropathrin degradation.
Collapse
Affiliation(s)
- Xing-Jian Xu
- College of Engineering, Peking University, Beijing 100871, PR China; Shenzhen Techand Ecology & Environment Co., Ltd., 518040, PR China
| | - Ji-Quan Sun
- College of Engineering, Peking University, Beijing 100871, PR China
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100871, PR China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
28
|
Wang Z, Yang Y, Sun W, Dai Y, Xie S. Variation of nonylphenol-degrading gene abundance and bacterial community structure in bioaugmented sediment microcosm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2342-2349. [PMID: 25277711 DOI: 10.1007/s11356-014-3625-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/16/2014] [Indexed: 06/03/2023]
Abstract
Nonylphenol (NP) can accumulate in river sediment. Bioaugmentation is an attractive option to dissipate heavy NP pollution in river sediment. In this study, two NP degraders were isolated from crude oil-polluted soil and river sediment. Microcosms were constructed to test their ability to degrade NP in river sediment. The shift in the proportion of NP-degrading genes and bacterial community structure in sediment microcosms were characterized using quantitative PCR assay and terminal restriction fragment length polymorphism analysis, respectively. Phylogenetic analysis indicated that the soil isolate belonged to genus Stenotrophomonas, while the sediment isolate was a Sphingobium species. Both of them could almost completely clean up a high level of NP in river sediment (150 mg/kg NP) in 10 or 14 days after inoculation. An increase in the proportion of alkB and sMO genes was observed in sediment microcosms inoculated with Stenotrophomonas strain Y1 and Sphingobium strain Y2, respectively. Moreover, bioaugmentation using Sphingobium strain Y2 could have a strong impact on sediment bacterial community structure, while inoculation of Stenotrophomonas strain Y1 illustrated a weak impact. This study can provide some new insights towards NP biodegradation and bioremediation.
Collapse
Affiliation(s)
- Zhao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
29
|
OGATA Y, GODA S, TOYAMA T, SEI K, IKE M. Degradation Pathway of Bisphenol S by Sphingobium fuliginis OMI and Removal Properties of Metabolites by Activated Sludge. ACTA ACUST UNITED AC 2015. [DOI: 10.2965/jswe.38.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yuka OGATA
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies
| | - Shohei GODA
- Graduate School of Engineering, Osaka University
| | - Tadashi TOYAMA
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Kazunari SEI
- School of Allied Health Sciences, Kitasato University
| | | |
Collapse
|
30
|
Yang Y, Wang Z, Xie S. Aerobic biodegradation of bisphenol A in river sediment and associated bacterial community change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:1184-1188. [PMID: 24246941 DOI: 10.1016/j.scitotenv.2013.10.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/25/2013] [Accepted: 10/27/2013] [Indexed: 06/02/2023]
Abstract
Bisphenol A (BPA) is one of the commonly detected endocrine-disrupting chemicals in the environment. Biodegradation plays a major role in elimination of BPA pollution in the environment. However, information on the structure of BPA-degrading microbial community is still lacking. In this study, microcosms with different treatments were constructed to investigate the microbial community structure in river sediment and its shift during BPA biodegradation. BPA could be quickly depleted in the BPA-spiked sediment. BPA amendment had a significant impact on sediment bacterial community, influenced by dosage levels. Gammaproteobacteria and Alphaproteobacteria were the predominant bacterial groups in BPA-degrading sediment microcosm. A consortium of microorganisms from different bacterial genera might be involved in BPA biodegradation in river sediment. This study provides some new insights towards BPA biodegradation and microbial ecology in BPA-degrading environment.
Collapse
Affiliation(s)
- Yuyin Yang
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Zhao Wang
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Shuguang Xie
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China.
| |
Collapse
|
31
|
Kristanti RA, Toyama T, Hadibarata T, Tanaka Y, Mori K. Bioaugmentation involving a bacterial consortium isolated from the rhizosphere of Spirodela polyrhiza for treating water contaminated with a mixture of four nitrophenol isomers. RSC Adv 2014. [DOI: 10.1039/c3ra44892d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
32
|
Ogata Y, Goda S, Toyama T, Sei K, Ike M. The 4-tert-butylphenol-utilizing bacterium Sphingobium fuliginis OMI can degrade bisphenols via phenolic ring hydroxylation and meta-cleavage pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:1017-1023. [PMID: 23215053 DOI: 10.1021/es303726h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recently, we showed that Sphingobium fuliginis OMI utilizes 4-tert-butylphenol as a sole carbon and energy source via phenolic ring hydroxylation followed by a meta-cleavage pathway, and that this strain can degrade various alkylphenols. Here, we showed that strain OMI effectively degrades bisphenol A (BPA) via the pathway in which one or two of the phenolic rings of BPA is initially hydroxylated without any modification of the alkyl group that binds the two phenolic rings, and then the aromatic ring is cleaved via a meta-cleavage pathway. Strain OMI also degraded other bisphenols, including bis(4-hydroxyphenyl)methane, bis(4-hydroxyphenyl)sulfone (BPS), 2,2-bis(4-hydroxyphenyl)butane, bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 4,4'-thiodiphenol (TDP), and 4,4'-dihydroxybenzophenone via phenolic ring hydroxylation and meta-cleavage pathway. To our knowledge, this is the first report to describe the aerobic biodegradation of BPS and TDP. The bisphenols degradation pathway of strain OMI is completely different from the known degradation pathways of BPA or bisphenols, and unique in that it does not appear to be influenced by the chemical structure that binds the two phenolic rings. This newly found pathway may play a certain part in the environmental fate of bisphenols and biotreatment/bioremediation of various bisphenols.
Collapse
Affiliation(s)
- Yuka Ogata
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|