1
|
Dhaka V, Singh S, Ramamurthy PC, Samuel J, Swamy Sunil Kumar Naik T, Khasnabis S, Prasad R, Singh J. Biological degradation of polyethylene terephthalate by rhizobacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116488-116497. [PMID: 35460002 DOI: 10.1007/s11356-022-20324-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
In view of the growing demand for plastic products, an enormous proportion of plastic waste causing the biological issue is produced. Plants in collaboration with their rhizobacteria partners are also exposed to these contaminants. The study aims to determine the rhizobacterial ability to biodegrade PET plastic. We isolated the rhizobacteria capable of degrading the PET plastic in minimal salt media using it as a sole carbon source. The three rhizospheric isolates, namely Priestia aryabhattai VT 3.12 (GenBank accession No. OK135732.1), Bacillus pseudomycoides VT 3.15 (GenBank accession No. OK135733.1), and Bacillus pumilus VT 3.16 (GenBank accession No. OK1357324.1), showed the highest degradation percentage for PET sheet and powder. The biodegradation end products post 28 days for PET sheet and 18 days of PET powder were studied by Fourier transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC), and scanning electron microscopy (SEM). Our results showed significant biodegradation of PET plastic, and the rate of degradation could account for over 65%. The present study proves soil rhizobacteria's potential and capabilities for efficient degradation of PET plastic occurring at the waste sites. It also implies that rhizobacteria could be beneficial in the remediation of PET waste in future applications.
Collapse
Affiliation(s)
- Vaishali Dhaka
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, 56001, Bangalore, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, 56001, Bangalore, India
| | - Jastin Samuel
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, Punjab, India
- Waste Valorization Research Lab, Lovely Professional University, Phagwara, 144411, Punjab, India
| | | | - Sutripto Khasnabis
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, Punjab, India.
| |
Collapse
|
2
|
Mapelli F, Vergani L, Terzaghi E, Zecchin S, Raspa G, Marasco R, Rolli E, Zanardini E, Morosini C, Anelli S, Nastasio P, Sale VM, Armiraglio S, Di Guardo A, Borin S. Pollution and edaphic factors shape bacterial community structure and functionality in historically contaminated soils. Microbiol Res 2022; 263:127144. [PMID: 35908425 DOI: 10.1016/j.micres.2022.127144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/15/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Studies about biodegradation potential in soils often refer to artificially contaminated and simplified systems, overlooking the complexity associated with contaminated sites in a real context. This work aims to provide a holistic view on microbiome assembly and functional diversity in the model site SIN Brescia-Caffaro (Italy), characterized by historical and uneven contamination by organic and inorganic compounds. Here, physical and chemical analyses and microbiota characterization were applied on one-hundred-twenty-seven soil samples to unravel the environmental factors driving bacterial community assembly and biodegradation potential in three former agricultural fields. Chemical analyses showed a patchy distribution of metals, metalloids and polychlorinated biphenyls (PCB) and allowed soil categorization according to depth and area of collections. Likewise, the bacterial community structure, described by molecular fingerprinting and 16S rRNA gene analyses, was significantly different according to collection site and depth. Pollutant concentrations (i.e., hexachloro-biphenyls, arsenic and mercury), nitrogen content and parameters related to soil texture were identified as main drivers of microbiota assembly, being significantly correlated to bacterial community composition. Moreover, bacteria putatively involved in the aerobic degradation of PCBs were enriched over the total bacterial community in topsoils, where the highest activity was recorded using fluorescein hydrolysis as proxy. Metataxonomic analyses revealed the presence of bacteria having metabolic pathways related to PCB degradation and tolerance to heavy metals and metalloids in the topsoil samples collected in all areas. Overall, the provided dissection of soil microbiota structure and its degradation potential in the SIN Brescia-Caffaro can contribute to target specific areas for rhizoremediation implementation. Metagenomics studies could be implemented in the future to understand if specific degradative pathways are present in historically polluted sites characterized by the co-occurrence of multiple classes of contaminants.
Collapse
Affiliation(s)
- Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, Italy
| | - Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, Italy
| | - Elisa Terzaghi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - Sarah Zecchin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, Italy
| | - Giuseppe Raspa
- Department of Chemical Engineering Materials and Environment, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, Italy
| | - Elisabetta Zanardini
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - Cristiana Morosini
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - Simone Anelli
- Ente Regionale per i Servizi all'Agricoltura e alle Foreste, Via Pola 12, Milan, Italy
| | - Paolo Nastasio
- Ente Regionale per i Servizi all'Agricoltura e alle Foreste, Via Pola 12, Milan, Italy
| | - Vanna Maria Sale
- Ente Regionale per i Servizi all'Agricoltura e alle Foreste, Via Pola 12, Milan, Italy
| | - Stefano Armiraglio
- Municipality of Brescia - Museum of Natural Sciences, Via Ozanam 4, Brescia, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, Italy.
| |
Collapse
|
3
|
Roe RAL, MacFarlane GR. The potential of saltmarsh halophytes for phytoremediation of metals and persistent organic pollutants: An Australian perspective. MARINE POLLUTION BULLETIN 2022; 180:113811. [PMID: 35667258 DOI: 10.1016/j.marpolbul.2022.113811] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/28/2022] [Indexed: 05/22/2023]
Abstract
Persistent organic and inorganic pollutants are among the most concerning pollutants in Australian estuaries due to their persistent, ubiquitous, and potentially toxic nature. Traditional methods of soil remediation often fall short of practical implementation due to high monetary investment, environmental disturbance, and potential for re-contamination. Phytoremediation is gaining traction as an alternative, or synergistic mechanism of contaminated soil remediation. Phytoremediation utilises plants and associated rhizospheric microorganisms to stabilise, degrade, transform, or remove xenobiotics from contaminated mediums. Due to their apparent cross-tolerance to salt, metals, and organic contaminants, halophytes have shown promise as phytoremediation species. This review examines the potential of 93 species of Australian saltmarsh halophytes for xenobiotic phytoremediation. Considerations for the practical application of phytoremediation in Australia are discussed, including mechanisms of enhancement, and methods of harvesting and disposal. Knowledge gaps for the implementation of phytoremediation in Australian saline environments are identified, and areas for future research are suggested.
Collapse
Affiliation(s)
- Rebecca A L Roe
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
4
|
Vasilyeva GK, Kondrashina VS, Strijakova ER, Pinsky DL. Express-phytotest for choosing conditions and following process of soil remediation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:433-445. [PMID: 32979110 DOI: 10.1007/s10653-020-00727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Phyto- and bioremediation are perspective methods for soil recultivation. In spite of resistance of plant-hyperaccumulators and degrading microorganisms to some contaminants, there are soil toxicity limits for their growth and activity. Therefore, simple and express methods are needed to estimate the soil phytotoxicity. This article is devoted to description of an express-phytotest evaluated by germination rate of white clover (Trifolium repens) (PhCG) for estimating phytotoxicity of contaminated soils. This phytotest was developed on the example of grey forest soil contaminated with diesel fuel or copper(II) and approbated during our long-year experiments on adsorptive bioremediation of petroleum-contaminated soils. The sensitivity of the phytotest values PhCG to these contaminants is much higher compared to those phytotests evaluated by germination of larger seeds: cress (Lepidium sativum), and wheat (Triticum vulgare). A significant increase of PhCG in those soils by 10% was already recorded at 50-100 mg of available Cu2+ kg-1 and 1-5 g total petroleum hydrocarbons kg-1, depending on the hydrocarbon composition. The sensitivity of the standard phytotests evaluated by root length of wheat seedlings or by plant (T. vulgare or T. repens) biomass is higher than that of PhCG determination. However, bio- and phytoremediation are mostly applied for heavily contaminated soils. Therefore, use of the simple and cheap express phytotest for choosing optimal conditions of the soil remediation and following the process is quite justified. Besides, measuring an additional parameter-root length of the white clover seedlings may significantly increase the sensitivity of the express phytotest for lower contaminated soils.
Collapse
Affiliation(s)
- Galina K Vasilyeva
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Institutskaya Str., 2, Pushchino, Russian Federation, 142290.
| | - Victoria S Kondrashina
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Institutskaya Str., 2, Pushchino, Russian Federation, 142290
| | - Elena R Strijakova
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Institutskaya Str., 2, Pushchino, Russian Federation, 142290
| | - David L Pinsky
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Institutskaya Str., 2, Pushchino, Russian Federation, 142290
| |
Collapse
|
5
|
Macci C, Peruzzi E, Doni S, Vannucchi F, Masciandaro G. Landfarming as a sustainable management strategy for fresh and phytoremediated sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39692-39707. [PMID: 33761078 DOI: 10.1007/s11356-021-13134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to evaluate the effectiveness of a landfarming process (LP) in recovering sediments at different biodegradation phases: phytoremediated dredged sediments (PDS) and fresh dredged sediments (FDS). The PDS landfarming was applied to (1) reduce residual contamination and (2) improve the biological activities in order to obtain a decontaminated matrix rich in organic matter and enzymatic activity to be reused as agronomic substrate. In 3 months of LP, a microbial activity stimulation (from 7 to 48%) and a decrease in organic contamination (about 15%) were recorded. In addition, no phytotoxicity and the content in total organic carbon and nitrogen make the sediments suitable to be reused in agriculture. The FDS landfarming was carried out to (1) reduce water content, (2) transform the organic matter into a more stable form, and (3) decrease organic contaminant level. Five months of LP led to a considerable reduction in water content (40%) and to the activation of microbial biomass metabolism (from 4 to 50 times higher), which achieved proper mineralization of organic matter and contaminants (polycyclic aromatic hydrocarbons near to zero and a total petroleum hydrocarbon reduction of about 60%). The LP also enhanced the stoichiometric ratios of nutrients and enzymes. In conclusion, the LP was a promising and economical methodology to improve the physical, chemical, and biological properties of polluted sediments at different biodegradation phases, creating a substrate ready for several environmental applications. Notably, the PDS resulted appropriate for agricultural use and FDS for civil applications.
Collapse
Affiliation(s)
- Cristina Macci
- Research Institute on Terrestrial Ecosystems - National Research Council of Italy (CNR-IRET) , Via Moruzzi 1, 56124, Pisa, Italy
| | - Eleonora Peruzzi
- Research Institute on Terrestrial Ecosystems - National Research Council of Italy (CNR-IRET) , Via Moruzzi 1, 56124, Pisa, Italy.
| | - Serena Doni
- Research Institute on Terrestrial Ecosystems - National Research Council of Italy (CNR-IRET) , Via Moruzzi 1, 56124, Pisa, Italy
| | - Francesca Vannucchi
- Research Institute on Terrestrial Ecosystems - National Research Council of Italy (CNR-IRET) , Via Moruzzi 1, 56124, Pisa, Italy
| | - Grazia Masciandaro
- Research Institute on Terrestrial Ecosystems - National Research Council of Italy (CNR-IRET) , Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
6
|
Willows Used for Phytoremediation Increased Organic Contaminant Concentrations in Soil Surface. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11072979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Salix genus includes shrub species that are widely used in phytoremediation and various other phytotechnologies due to their advantageous characteristics, such as a high evapotranspiration (ET) rate, in particular when cultivated in short rotation intensive culture (SRIC). Observations made in past field studies suggest that ET and its impact on soil hydrology can also lead to increases in soil pollutant concentrations near shrubs. To investigate this, sections of a mature willow plantation (seven years old) were cut to eliminate transpiration (Cut treatment). Soil concentrations of polychlorinated biphenyls (PCBs), aliphatic compounds C10–C50, polycyclic aromatic hydrocarbons (PAHs) and five trace elements (Cd, Cr, Cu, Ni and Zn) were compared between the Cut and the uncut plots (Salix miyabeana ‘SX61’). Over 24 months, the results clearly show that removal of the willow shrubs limited the contaminants’ increase in the soil surface, as observed for C10–C50 and of 10 PAHs under the Salix treatment. This finding strongly reinforces a hypothesis that SRIC of willows may facilitate the migration of contaminants towards their roots, thus increasing their concentration in the surrounding soil. Such a “pumping effect” in a high-density willow crop is a prominent characteristic specific to field studies that can lead to counterintuitive results. Although apparent increases of contaminant concentrations contradict the purification benefits usually pursued in phytoremediation, the possibility of active phytoextraction and rhizodegradation is not excluded. Moreover, increases of pollutant concentrations under shrubs following migration suggest that decreases would consequently occur at the source points. Some reflections on interpreting field work results are provided.
Collapse
|
7
|
Bian F, Zhong Z, Zhang X, Yang C, Gai X. Bamboo - An untapped plant resource for the phytoremediation of heavy metal contaminated soils. CHEMOSPHERE 2020; 246:125750. [PMID: 31891850 DOI: 10.1016/j.chemosphere.2019.125750] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Phytoremediation is a green technology used for the remediation of heavy metal soils. However, up to now, very few plants are known to be both hyperaccumulators and fast-growers. In contrast, some non-hyperaccumulators, which possess lower extraction capacities than hyperaccumulators, are fast-growing species with much higher total biomass yields and are potential alternative phytoremediators. Bamboo is a taxonomic group comprised of 1439 species that are mostly distributed in the tropics and subtropics. Although limited studies on bamboo for phytoremediation, recent studies have shown that some bamboo species have high ability to adapt to metalliferous environments and a high capacity to absorb heavy metals. Bamboo tissues in the rhizome and culm can accumulate a large amount of heavy metals that mainly accumulate in the cell wall, vacuole, and cytoplasm. Certain bamboo species such as moso bamboo, Phyllostachys praecox, have been shown to have a high endurance in metal contaminated soils, enabling a considerable uptake and accumulation of heavy metals. However, excessive concentrations of heavy metals may cause oxidative stress and damage bamboo plants. Therefore, several management strategies have been developed to improve the phytoremediation ability of bamboo species, including the selection of tolerant bamboo species, intercropping with hyperaccumulators, fertilization applications, and employment of chelate in soil. This review demonstrates that bamboo species, which have high biomass productivity, short rotation, and high economic value, can be used for phytoremediation. However, the mechanisms of heavy metal uptake, transport, sequestration, and detoxification of different bamboo species require urgent investigation.
Collapse
Affiliation(s)
- Fangyuan Bian
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou, 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou, 310012, PR China
| | - Zheke Zhong
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou, 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou, 310012, PR China.
| | - Xiaoping Zhang
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou, 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou, 310012, PR China
| | - Chuanbao Yang
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou, 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou, 310012, PR China
| | - Xu Gai
- China National Bamboo Research Center, Key Laboratory of State Forestry Administration on Bamboo Resources and Utilization, Hangzhou, 310012, PR China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Zhejiang, Hangzhou, 310012, PR China
| |
Collapse
|
8
|
Macci C, Peruzzi E, Doni S, Masciandaro G. Monitoring of a long term phytoremediation process of a soil contaminated by heavy metals and hydrocarbons in Tuscany. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:424-437. [PMID: 31797270 DOI: 10.1007/s11356-019-06836-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to monitor and model indicators of soil contamination, organic matter evolution and biochemical processes involved in a long-term phytoremediation process. Populus nigra L., Paulownia tomentosa Steud., Cytisus scoparius L. and natural vegetation were used in differently contaminated areas (high, medium and low levels of contamination). Parameters indicating contamination (total petroleum hydrocarbons (TPH) and heavy metals) and agronomic (C, N and P) and functional (enzyme activities) soil recovery were monitored for 3.5 years. Three subareas with different levels of contamination (high, medium and low) were identified according to the Nemerow Index. A considerable decrease in TPH (52% on average) over time in the whole site was measured, while the metal reduction was only of about 22% at surface level. A stimulation in metabolic soil processes and improvement in the chemical quality of the soil was also observed throughout the experimental site. Statistical analysis modelling showed that the contaminant content decreased following a one-phase decay model, while the dramatic increase in enzyme activities could be represented by an exponential growth equation. On the basis of our data, it is possible to conclude that the initial contamination level affected neither the decontamination process nor the improvement in soil quality, which occurred similarly in the three different contaminated areas.
Collapse
Affiliation(s)
- Cristina Macci
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Via Moruzzi 1, 56124, Pisa, Italy.
| | - Eleonora Peruzzi
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Via Moruzzi 1, 56124, Pisa, Italy
| | - Serena Doni
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Via Moruzzi 1, 56124, Pisa, Italy
| | - Grazia Masciandaro
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
9
|
Suman J, Uhlik O, Viktorova J, Macek T. Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment? FRONTIERS IN PLANT SCIENCE 2018; 9:1476. [PMID: 30459775 PMCID: PMC6232834 DOI: 10.3389/fpls.2018.01476] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/20/2018] [Indexed: 05/19/2023]
Abstract
Pollution by heavy metals (HM) represents a serious threat for both the environment and human health. Due to their elemental character, HM cannot be chemically degraded, and their detoxification in the environment mostly resides either in stabilization in situ or in their removal from the matrix, e.g., soil. For this purpose, phytoremediation, i.e., the application of plants for the restoration of a polluted environment, has been proposed as a promising green alternative to traditional physical and chemical methods. Among the phytoremediation techniques, phytoextraction refers to the removal of HM from the matrix through their uptake by a plant. It possesses considerable advantages over traditional techniques, especially due to its cost effectiveness, potential treatment of multiple HM simultaneously, no need for the excavation of contaminated soil, good acceptance by the public, the possibility of follow-up processing of the biomass produced, etc. In this review, we focused on three basic HM phytoextraction strategies that differ in the type of plant species being employed: natural hyperaccumulators, fast-growing plant species with high-biomass production and, potentially, plants genetically engineered toward a phenotype that favors efficient HM uptake and boosted HM tolerance. Considerable knowledge on the applicability of plants for HM phytoextraction has been gathered to date from both lab-scale studies performed under controlled model conditions and field trials using real environmental conditions. Based on this knowledge, many specific applications of plants for the remediation of HM-polluted soils have been proposed. Such studies often also include suggestions for the further processing of HM-contaminated biomass, therefore providing an added economical value. Based on the examples presented here, we recommend that intensive research be performed on the selection of appropriate plant taxa for various sets of conditions, environmental risk assessment, the fate of HM-enriched biomass, economical aspects of the process, etc.
Collapse
Affiliation(s)
- Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | | | | | | |
Collapse
|
10
|
Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q, Rahman MM, Wang F, Shaheen S, Syed JH, Reichenauer TG. Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1582-1599. [PMID: 30045575 DOI: 10.1016/j.scitotenv.2018.02.037] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 05/18/2023]
Abstract
Environmental problems such as the deterioration of groundwater quality, soil degradation and various threats to human, animal and ecosystem health are closely related to the presence of high concentrations of organic xenobiotics in the environment. Employing appropriate technologies to remediate contaminated soils is crucial due to the site-specificity of most remediation methods. The limitations of conventional remediation technologies include poor environmental compatibility, high cost of implementation and poor public acceptability. This raises the call to employ biological methods for remediation. Bioremediation and microbe-assisted bioremediation (phytoremediation) offer many ecological and cost-associated benefits. The overall efficiency and performance of bio- and phytoremediation approaches can be enhanced by genetically modified microbes and plants. Moreover, phytoremediation can also be stimulated by suitable plant-microbe partnerships, i.e. plant-endophytic or plant-rhizospheric associations. Synergistic interactions between recombinant bacteria and genetically modified plants can further enhance the restoration of environments impacted by organic pollutants. Nevertheless, releasing genetically modified microbes and plants into the environment does pose potential risks. These can be minimized by adopting environmental biotechnological techniques and guidelines provided by environmental protection agencies and other regulatory frameworks. The current contribution provides a comprehensive overview on enhanced bioremediation and phytoremediation approaches using transgenic plants and microbes. It also sheds light on the mitigation of associated environmental risks.
Collapse
Affiliation(s)
- Imran Hussain
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria; Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Austria
| | - Gajender Aleti
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Markus Puschenreiter
- Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shahida Shaheen
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS Institute of Information Technology, Park Road Tarlai Kalan 45550, Islamabad, Pakistan; Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong.
| | - Thomas G Reichenauer
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria.
| |
Collapse
|
11
|
Pittarello M, Busato JG, Carletti P, Dobbss LB. Possible developments for ex situ phytoremediation of contaminated sediments, in tropical and subtropical regions - Review. CHEMOSPHERE 2017; 182:707-719. [PMID: 28531837 DOI: 10.1016/j.chemosphere.2017.04.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/23/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
The growing problem of remediation of contaminated sediments dredged from harbor channels needs to be resolved by a cost effective and sustainable technology. Phytoremediation, by ex situ remediation plants, seems to have the potential to replace traditional methods in case of moderately contaminated sediments. On the other side, the need to mix sediments with soil and/or sand to allow an easier establishment of most employed species causes an increase of the volume of the processed substrate up to 30%. Moreover the majority of phytoremediating species are natives of temperate climate belt. Mangroves, with a special focus on the genus Avicennia - a salt secreting species - should represent an effective alternative in terms of adaptation to salty, anoxic sediments and an opportunity to develop ex situ phytoremediation plants in tropical and subtropical regions. The use of humic acid to increase root development, cell antioxidant activity and the potential attenuation of the "heavy metals exclusion strategy" to increase phytoextraction potentials of mangroves will be reviewed.
Collapse
Affiliation(s)
- Marco Pittarello
- University of Vila Velha, Ecology of Organic Matter Laboratory, Biopraticas Compound, Vila Velha, ES, Brazil.
| | - Jader Galba Busato
- University of Brasilia, Faculty of Agronomy and Veterinary Medicine, University Campus Darcy Ribeiro, Sciences Central Institute, Federal District, Brazil
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Leonardo Barros Dobbss
- Federal University of Vales do Jequitinhonha e Mucuri, Institute of Agricultural Sciences, Unaí, MG, Brazil
| |
Collapse
|
12
|
Gerhardt KE, Gerwing PD, Greenberg BM. Opinion: Taking phytoremediation from proven technology to accepted practice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:170-185. [PMID: 28167031 DOI: 10.1016/j.plantsci.2016.11.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 05/22/2023]
Abstract
Phytoremediation is the use of plants to extract, immobilize, contain and/or degrade contaminants from soil, water or air. It can be an effective strategy for on site and/or in situ removal of various contaminants from soils, including petroleum hydrocarbons (PHC), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), solvents (e.g., trichloroethylene [TCE]), munitions waste (e.g., 2,4,6-trinitrotoluene [TNT]), metal(loid)s, salt (NaCl) and radioisotopes. Commercial phytoremediation technologies appear to be underutilized globally. The primary objective of this opinion piece is to discuss how to take phytoremediation from a proven technology to an accepted practice. An overview of phytoremediation of soil is provided, with the focus on field applications, to provide a frame of reference for the subsequent discussion on better utilization of phytoremediation. We consider reasons why phytoremediation is underutilized, despite clear evidence that, under many conditions, it can be applied quite successfully in the field. We offer suggestions on how to gain greater acceptance for phytoremediation by industry and government. A new paradigm of phytomanagement, with a specific focus on using phytoremediation as a "gentle remediation option" (GRO) within a broader, long-term management strategy, is also discussed.
Collapse
Affiliation(s)
- Karen E Gerhardt
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Perry D Gerwing
- Earthmaster Environmental Strategies Inc., Calgary, AB, Canada
| | - Bruce M Greenberg
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
13
|
Mohammad AH. Importance of soil physical characteristics for petroleum hydrocarbons phytoremediation: A review. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajest2016.2169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Luo J, Qi S, Gu XWS, Wang J, Xie X. An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:646-654. [PMID: 26846211 DOI: 10.1007/s10646-016-1623-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Previous studies have shown that phytoremediation usually requires soil amendments, such as chelates, to mobilize low bioavailability heavy metals for better plant absorption and, consequently, for remediation efficiency. A total dry biomass of 3.39 and 0.0138 kg per plant was produced by a phytoremediator, Eucalyptus globulus, and a nitrogen fixing crop, Cicer arietinum (chickpea), respectively. The accumulation of Pb in E. globulus and chickpea reached 1170.61 and 1.33 mg per plant (700 and 324 mg kg(-1)), respectively, under an ethylene diamine tetraacetic acid (EDTA) treatment, which was a five and sixfold increase over the value in untreated experiments, respectively. EDTA enhanced the phytoremediation efficiency and increased the heavy metal concentration in the soil solution. In pot experiments, approximately 27 % of the initial Pb leached from the spiked soil after EDTA and 25 mm artificial precipitation additions into soil without plants, which was considerably larger than the value under the same conditions without EDTA application (7 %). E. globulus planted in a mixed culture had higher water use efficiency than monocultures of either species in field experiments, and E. globulus intercepted almost all of the artificial precipitation in the pot experiments. This study demonstrates that E. globulus can maximize the potential of EDTA for improving the phytoremediation efficiency and minimizing its negative effects to the environment simultaneously by absorbing the metal-rich leachate, especially in a mixed culture of E. globulus and chickpeas.
Collapse
Affiliation(s)
- Jie Luo
- China University of Geosciences, Wuhan, 430074, China.
- Guangdong Hydrogeology Battalion, Guangzhou, 510510, China.
| | - Shihua Qi
- China University of Geosciences, Wuhan, 430074, China
| | - X W Sophie Gu
- The University of Melbourne, Victoria, VIC, 3010, Australia
| | - Jinji Wang
- Guangdong Hydrogeology Battalion, Guangzhou, 510510, China
| | - Xianming Xie
- Guangdong Hydrogeology Battalion, Guangzhou, 510510, China
| |
Collapse
|
15
|
Macci C, Peruzzi E, Doni S, Poggio G, Masciandaro G. The phytoremediation of an organic and inorganic polluted soil: A real scale experience. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:378-386. [PMID: 26555402 DOI: 10.1080/15226514.2015.1109595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A phytoremediation process with horse manure, plants (Populus alba, Cytisus scoparius, Paulownia tomentosa) and naturally growing vegetation was carried out at a real-scale in order to phytoremediate and functionally recover a soil contaminated by metals (Zn, Pb, Cd, Ni, Cu, Cr), hydrocarbons (TPH) and polychlorobiphenyls (PCB). All the plants were effective in two years in the reclamation of the polluted soil, showing an average reduction of about 35%, 40%, and 70% in metals, TPH and PCB content, respectively. As regards the plants, the poplar contributed the most to organic removal. In fact, its ability to take up and detoxify organic pollutants is well known. Paulownia tomentosa, instead, showed high metal removal. The Cytisus scoparius was the least effective plant in soil decontamination. The recovery of soil functionality was followed by enzyme activities, expressing the biochemical processes underway, and nutrient content useful for plant growth and development. Throughout the area, an enhancement of metabolic processes and soil chemical quality was observed. All the enzymatic activities showed a general increase over time (until 3-4 fold than the initial value for urease and β-glucosidase). Moreover, Cytisus scoparius, even though it showed a lower decontamination capability, was the most effective in soil metabolic stimulation.
Collapse
Affiliation(s)
- C Macci
- a Consiglio Nazionale delle Ricerche (CNR) , Istituto per lo Studio degli Ecosistemi (ISE) , Pisa , Italy
| | - E Peruzzi
- a Consiglio Nazionale delle Ricerche (CNR) , Istituto per lo Studio degli Ecosistemi (ISE) , Pisa , Italy
| | - S Doni
- a Consiglio Nazionale delle Ricerche (CNR) , Istituto per lo Studio degli Ecosistemi (ISE) , Pisa , Italy
| | - G Poggio
- a Consiglio Nazionale delle Ricerche (CNR) , Istituto per lo Studio degli Ecosistemi (ISE) , Pisa , Italy
| | - G Masciandaro
- a Consiglio Nazionale delle Ricerche (CNR) , Istituto per lo Studio degli Ecosistemi (ISE) , Pisa , Italy
| |
Collapse
|
16
|
Luo J, Qi S, Peng L, Wang J. Phytoremediation efficiency OF CD by Eucalyptus globulus transplanted from polluted and unpolluted sites. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:308-14. [PMID: 26458117 DOI: 10.1080/15226514.2015.1094446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The capacity of plants to uptake heavy metals from contaminated soils has shown great phytoremediation potential. The development, resistibility and Cd extraction of Eucalyptus globulus individuals from metalliferous and clean sites in different years were analyzed under a specific environment. Eucalyptus globulus planted in Guiyu for phytoremediation or cultivated in an uncontaminated, natural environment for economic purposes were transplanted to Yuecheng town, which, in recent years, has been involved in the e-waste dismantling and recycling business, to compare the phytoremediation efficiency of Eucalyptus globulus trees grown in different environments. Trees cultivated in polluted areas can remove far more Cd and Hg from the contaminated soil than the individuals from clean soils because metalliferous Eucalyptus globulus can produce more biomass and uptake more heavy metals than nonmetalliferous plants per year. As polluted environments negatively affect the growth of plants, we speculated that the phytoremediation efficiency of metalliferous Eucalyptus globulus should decrease over time and that nonmetalliferous trees should adapt to the local environment.
Collapse
Affiliation(s)
- Jie Luo
- a China University of Geosciences , Wuhan , China
- b Guangdong Hydrogeology Battalion , Guangzhou , China
| | - Shihua Qi
- a China University of Geosciences , Wuhan , China
| | - Li Peng
- b Guangdong Hydrogeology Battalion , Guangzhou , China
| | - Jinji Wang
- b Guangdong Hydrogeology Battalion , Guangzhou , China
| |
Collapse
|
17
|
Macci C, Peruzzi E, Doni S, Iannelli R, Masciandaro G. Ornamental plants for micropollutant removal in wetland systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2406-2415. [PMID: 24798922 DOI: 10.1007/s11356-014-2949-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
The objective of this paper was to evaluate the efficiency of micropollutant removal, such as Cu, Zn, carbamazepine, and linear alkylbenzene sulfonates (LAS), through the use of a subsurface vertical flow constructed wetland system with ornamental plants. Zantedeschia aethiopica, Canna indica, Carex hirta, Miscanthus sinensis, and Phragmites australis were selected and planted in lysimeters filled up with gravel. The lysimeters were completely saturated with synthetic wastewater (N 280 mg L(-1), P 30 mg L(-1), Cu 3.6 mg L(-1), Zn 9 mg L(-1), carbamazepine 5 μg L(-1), linear alkylbenzene sulfonates 14 mg L(-1)), and the leaching water was collected for analysis after 15, 30, and 60 days in winter-spring and spring-summer periods. Nutrients (N and P) and heavy metals decreased greatly due to both plant activity and adsorption. C. indica and P. australis showed the highest metal content in their tissues and also the greatest carbamazepine and LAS removal. In these plants, the adsorption/degradation processes led to particularly high oxidative stress, as evidenced by the significantly high levels of ascorbate peroxidase activity detected. Conversely, Z. aethiopica was the less efficient plant in metal and organic compound removal and was also less stressed in terms of ascorbate peroxidase activity.
Collapse
Affiliation(s)
- Cristina Macci
- National Research Council - Institute of Ecosystem Study (CNR-ISE), 56124, Pisa, Italy,
| | | | | | | | | |
Collapse
|
18
|
Stoin U, Mojon A, Sasson Y. Fast and complete in situ mineralization of contaminated soils using a novel method for superoxide generation. RSC Adv 2015. [DOI: 10.1039/c4ra08015g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our remediation technology is by far superior to any previous technologies for soil purification from hydrocarbons and petroleum products.
Collapse
Affiliation(s)
- Uri Stoin
- Institute of Chemistry
- Casali Centre of Applied Chemistry
- The Hebrew University of Jerusalem
- Jerusalem
- 91904 Israel
| | - Alex Mojon
- Petroleum Research Geologist
- CH-3043 Uettligen
- Switzerland
| | - Yoel Sasson
- Institute of Chemistry
- Casali Centre of Applied Chemistry
- The Hebrew University of Jerusalem
- Jerusalem
- 91904 Israel
| |
Collapse
|
19
|
Kidd P, Mench M, Álvarez-López V, Bert V, Dimitriou I, Friesl-Hanl W, Herzig R, Janssen JO, Kolbas A, Müller I, Neu S, Renella G, Ruttens A, Vangronsveld J, Puschenreiter M. Agronomic Practices for Improving Gentle Remediation of Trace Element-Contaminated Soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:1005-1037. [PMID: 25581041 DOI: 10.1080/15226514.2014.1003788] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The last few decades have seen the rise of Gentle soil Remediation Options (GRO), which notably include in situ contaminant stabilization ("inactivation") and plant-based (generally termed "phytoremediation") options. For trace element (TE)-contaminated sites, GRO aim to either decrease their labile pool and/or total content in the soil, thereby reducing related pollutant linkages. Much research has been dedicated to the screening and selection of TE-tolerant plant species and genotypes for application in GRO. However, the number of field trials demonstrating successful GRO remains well below the number of studies carried out at a greenhouse level. The move from greenhouse to field conditions requires incorporating agronomical knowledge into the remediation process and the ecological restoration of ecosystem services. This review summarizes agronomic practices against their demonstrated or potential positive effect on GRO performance, including plant selection, soil management practices, crop rotation, short rotation coppice, intercropping/row cropping, planting methods and plant densities, harvest and fertilization management, pest and weed control and irrigation management. Potentially negative effects of GRO, e.g., the introduction of potentially invasive species, are also discussed. Lessons learnt from long-term European field case sites are given for aiding the choice of appropriate management practices and plant species.
Collapse
Affiliation(s)
- Petra Kidd
- a Instituto de Investigaciones Agrobiológicas de Galicia (IIAG) , Consejo Superior de Investigaciones Científicas (CSIC) , Santiago de Compostela , Spain
| | - Michel Mench
- b INRA, UMR BIOGECO, Cestas , France; University of Bordeaux, UMR BIOGECO , Pessac , France , France
| | - Vanessa Álvarez-López
- a Instituto de Investigaciones Agrobiológicas de Galicia (IIAG) , Consejo Superior de Investigaciones Científicas (CSIC) , Santiago de Compostela , Spain
| | - Valérie Bert
- c INERIS, Technologies and Sustainable and Clean Processes , Verneuil en Halatte , France
| | - Ioannis Dimitriou
- d Swedish University of Agriculture Sciences , Department of Crop Production Ecology , Uppsala , Sweden
| | - Wolfgang Friesl-Hanl
- e AIT Austrian Institute of Technology GmbH , Health and Environment Department , Tulln , Austria
| | - Rolf Herzig
- f Phytotech Foundation (PT-F), and AGB-Bioindikation , Umweltbeobachtung und oekologische Planung Quartiergasse , Bern , Switzerland
| | - Jolien Olga Janssen
- g Hasselt University , Centre for Environmental Sciences , Diepenbeek , Belgium
| | - Aliaksandr Kolbas
- b INRA, UMR BIOGECO, Cestas , France; University of Bordeaux, UMR BIOGECO , Pessac , France , France
- h Brest State University named after A.S. Pushkin , Brest , Belarus
| | - Ingo Müller
- i Saxon State Office for Environment , Agriculture and Geology , Dresden , Germany
| | - Silke Neu
- i Saxon State Office for Environment , Agriculture and Geology , Dresden , Germany
| | - Giancarlo Renella
- j University of Florence , Department of Agrifood Production and Environmental Sciences , Florence , Italy
| | - Ann Ruttens
- g Hasselt University , Centre for Environmental Sciences , Diepenbeek , Belgium
| | - Jaco Vangronsveld
- g Hasselt University , Centre for Environmental Sciences , Diepenbeek , Belgium
| | - Markus Puschenreiter
- k University of Natural Resources and Life Sciences Vienna - BOKU , Department of Forest and Soil Sciences , Tulln , Austria
| |
Collapse
|
20
|
Madejón P, Xiong J, Cabrera F, Madejón E. Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 144:176-185. [PMID: 24950211 DOI: 10.1016/j.jenvman.2014.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/02/2014] [Accepted: 05/09/2014] [Indexed: 06/03/2023]
Abstract
The use of fast growing trees could be an alternative in trace element contaminated soils to stabilize these elements and improve soil quality. In this study we investigate the effect of Paulownia fortunei growth on trace element contaminated soils amended with two organic composts under semi-field conditions for a period of 18 months. The experiment was carried out in containers filled with tree different soils, two contaminated soils (neutral AZ and acid V) and a non contaminated soil, NC. Three treatments per soil were established: two organic amendments (alperujo compost, AC, and biosolid compost, BC) and a control without amendment addition. We study parameters related with fertility and contamination in soils and plants. Paulownia growth and amendments increased pH in acid soils whereas no effect of these factors was observed in neutral soils. The plant and the amendments also increased organic matter and consequently, soil fertility. Positive results were also found in soils that were only affected by plant growth (without amendment). A general improvement of "soil biochemical quality" was detected over time and treatments, confirming the positive effect of amendments plus paulownia. Even in contaminated soils, except for Cu and Zn, trace element concentrations in leaves were in the normal range for plants. Results of this mid-term study showed that Paulownia fortunei is a promising species for phytoremediation of trace element polluted soils.
Collapse
Affiliation(s)
- P Madejón
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, P.O. Box 1052, 41080 Sevilla, Spain.
| | - J Xiong
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, P.O. Box 1052, 41080 Sevilla, Spain
| | - F Cabrera
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, P.O. Box 1052, 41080 Sevilla, Spain
| | - E Madejón
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avenida Reina Mercedes 10, P.O. Box 1052, 41080 Sevilla, Spain
| |
Collapse
|
21
|
Cameselle C, Chirakkara RA, Reddy KR. Electrokinetic-enhanced phytoremediation of soils: status and opportunities. CHEMOSPHERE 2013; 93:626-636. [PMID: 23835413 DOI: 10.1016/j.chemosphere.2013.06.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Phytoremediation is a sustainable process in which green plants are used for the removal or elimination of contaminants in soils. Both organic and inorganic contaminants can be removed or degraded by growing plants by several mechanisms, namely phytoaccumulation, phytostabilization, phytodegradation, rhizofiltration and rhizodegradation. Phytoremediation has several advantages: it can be applied in situ over large areas, the cost is low, and the soil does not undergo significant damages. However, the restoration of a contaminated site by phytoremediation requires a long treatment time since the remediation depends on the growth and the biological cycles of the plant. It is only applicable for shallow depths within the reach of the roots, and the remediation efficiency largely depends on the physico-chemical properties of the soil and the bioavailability of the contaminants. The combination of phytoremediation and electrokinetics has been proposed in an attempt to avoid, in part, the limitations of phytoremediation. Basically, the coupled phytoremediation-electrokinetic technology consists of the application of a low intensity electric field to the contaminated soil in the vicinity of growing plants. The electric field may enhance the removal of the contaminants by increasing the bioavailability of the contaminants. Variables that affect the coupled technology are: the use of AC or DC current, voltage level and mode of voltage application (continuous or periodic), soil pH evolution, and the addition of facilitating agents to enhance the mobility and bioavailability of the contaminants. Several technical and practical challenges still remain that must be overcome through future research for successful application of this coupled technology at actual field sites.
Collapse
Affiliation(s)
- Claudio Cameselle
- Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain.
| | | | | |
Collapse
|