1
|
Cui T, Zhang C, Quan B, Wang L, Zhang Z, Su P, Tang Y, Zhao G, Qiao P, Guo J, Zhang R. Addressing challenges and advancing solutions: Enhancing semi-coking wastewater treatment for a sustainable prospect. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125796. [PMID: 40388882 DOI: 10.1016/j.jenvman.2025.125796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/23/2025] [Accepted: 05/10/2025] [Indexed: 05/21/2025]
Abstract
During the semi-coke process, the semi-coking wastewater (SCWW) produced contains high concentrations of organic pollutants. This wastewater has the characteristics of abundant coal tar, high ammonia nitrogen content, high phenol concentration, high chemical oxygen demand (COD), and a low B/C ratio. These features make its treatment extremely difficult and bring significant environmental risks. Given that such wastewater is difficult to meet discharge standards, researchers have been actively exploring and applying various physical, chemical and biological treatment technologies, thus forming multiple wastewater treatment processes. This paper systematically and comprehensively studies the current research status and practical application scenarios of SCWW treatment technologies, and summarizes their application effects in practice. In response to the problems and challenges in wastewater treatment, this paper deeply analyzes and proposes feasible improvement paths and future development directions. At the same time, it also comprehensively reviews the current status of resource recovery. Research on the physical-chemical pretreatment stage, biochemical treatment, advanced treatment, and the sustainability characteristics of various treatment technologies for SCWW is conducted. The aim is to provide valuable reference insights for researchers and practitioners in related fields, thereby promoting technological innovation and sustainable development in this field.
Collapse
Affiliation(s)
- Tingting Cui
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Chunhui Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China.
| | - Bingxu Quan
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Liwei Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Zhao Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Peidong Su
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China.
| | - Yuanhui Tang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Guifeng Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Ping Qiao
- Erdos Shengyuan Water Affairs Co Ltd, China
| | | | - Rui Zhang
- Erdos Shengyuan Water Affairs Co Ltd, China
| |
Collapse
|
2
|
Li Y, Wang Q, Chen H, Song C, Zheng Y, Chai Z, Zheng M. Multi-stage oxic biofilm system for pilot-scale treatment of coking wastewater: Pollutants removal performance, biofilm properties and microbial community. BIORESOURCE TECHNOLOGY 2024; 411:131271. [PMID: 39142418 DOI: 10.1016/j.biortech.2024.131271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
A multi-stage oxic biofilm system based on hydrophilic polyurethane foam was established and operated for advanced treatment of coking wastewater, in which distinct gradient variations of pollutants removal, biofilm properties and microbial community in the 5 stages were evaluated. The system rapidly achieved NH4+-N removal efficiency of 97.51 ± 2.29 % within 8 days. The biofilm growing attached on the carriers exhibited high biomass (≥10.29 g/L), which ensured sufficient microbial population. Additionally, the rising extracellular polymeric substance and declining proteins/polysaccharides ratios across stages suggested a dense-to-loose transition in the biofilm's structure, in response to the varying pollutant concentrations. The dominance of Nitrosomonas cluster in the first 3 stages and Nitrospira lineage in the following 2 stages facilitated the complete depletion of high NH4+-N concentration without NO2--N accumulation. Overall, the distinct biofilm property and community at each stage, shaped by the multi-stage configuration, maximized the pollutants removal efficiency.
Collapse
Affiliation(s)
- Yunlong Li
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qingbin Wang
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hongwei Chen
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Chao Song
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yize Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zimin Chai
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
3
|
Zhang M, Lin K. Unintended polyhalogenated carbazole production during advanced oxidation of coking wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134649. [PMID: 38772108 DOI: 10.1016/j.jhazmat.2024.134649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Polyhalogenated carbazoles (PHCZs) are emerging as dioxin-like global pollutants, yet their environmental origins are not fully understood. This study investigates the application of the Fenton process in coking wastewater treatment, focusing on its dual role in carbazole removal and unintended PHCZ formation. The common halide ions (Cl- and Br-) in coking wastewater, especially Br- ions, exerted a notable impact on carbazole removal. Particularly, the influence of Br- ions was more significant, not only enhancing carbazole removal but also shaping the congener composition of PHCZ formation. Elevated halide ion concentrations were associated with the heightened formation of higher halogenated carbazoles. The Fenton reagent dosage ratio was identified as a crucial factor affecting the congener composition of PHCZs and their toxic equivalency value. The coexisting organic substance (i.e., phenol) in coking wastewater was observed to inhibit PHCZ formation, likely through competitive reactions with carbazole. Intriguingly, ammonium (NH4+) facilitated the generation of higher and mixed halogenated carbazoles, possibly due to the generation of nitrogen-containing brominating agents with stronger bromination capacity. This study underscores the importance of a comprehensive assessment, considering both substrate removal and potential byproduct formation, when employing the Fenton process for saline wastewater treatment.
Collapse
Affiliation(s)
- Meng Zhang
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Kunde Lin
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Wang J, Zhang L, He Y, Ji R. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133906. [PMID: 38430590 DOI: 10.1016/j.jhazmat.2024.133906] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The widespread use of phenolic compounds renders their occurrence in various environmental matrices, posing ecological risks especially the endocrine disruption effects. Biodegradation-based techniques are efficient and cost-effective in degrading phenolic pollutants with less production of secondary pollution. This review focuses on phenol, 4-nonylphenol, 4-nitrophenol, bisphenol A and tetrabromobisphenol A as the representatives, and summarizes the current knowledge and future perspectives of their biodegradation and the enhancement strategy of bioaugmentation. Biodegradation and isolation of degrading microorganisms were mainly investigated under oxic conditions, where phenolic pollutants are typically hydroxylated to 4-hydroxybenzoate or hydroquinone prior to ring opening. Bioaugmentation efficiencies of phenolic pollutants significantly vary under different application conditions (e.g., increased degradation by 10-95% in soil and sediment). To optimize degradation of phenolic pollutants in different matrices, the factors that influence biodegradation capacity of microorganisms and performance of bioaugmentation are discussed. The use of immobilization strategy, indigenous degrading bacteria, and highly competent exogenous bacteria are proposed to facilitate the bioaugmentation process. Further studies are suggested to illustrate 1) biodegradation of phenolic pollutants under anoxic conditions, 2) application of microbial consortia with synergistic effects for phenolic pollutant degradation, and 3) assessment on the uncertain ecological risks associated with bioaugmentation, resulting from changes in degradation pathway of phenolic pollutants and alterations in structure and function of indigenous microbial community.
Collapse
Affiliation(s)
- Jiacheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lidan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
5
|
Wang J, Wang S, Hu C. Advanced treatment of coking wastewater: Recent advances and prospects. CHEMOSPHERE 2024; 349:140923. [PMID: 38092162 DOI: 10.1016/j.chemosphere.2023.140923] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Advanced treatment of refractory industrial wastewater is still a challenge. Coking wastewater is one of coal chemical wastewater, which contains various refractory organic pollutants. To meet the more and more rigorous discharge standard and increase the reuse ratio of coking wastewater, advanced treatment process must be set for treating the biologically treated coking wastewater. To date, several advanced oxidation processes (AOPs), including Fenton, ozone, persulfate-based oxidation, and iron-carbon micro-electrolysis, have been applied for the advanced treatment of coking wastewater. However, the performance of different advanced treatment processes changed greatly, depending on the components of coking wastewater and the unique characteristics of advanced treatment processes. In this review article, the state-of-the-art advanced treatment process of coking wastewater was systematically summarized and analyzed. Firstly, the major organic pollutants in the secondary effluents of coking wastewater was briefly introduced, to better understand the characteristics of the biologically treated coking wastewater. Then, the performance of various advanced treatment processes, including physiochemical methods, biological methods, advanced oxidation methods and combined methods were discussed for the advanced treatment of coking wastewater in detail. Finally, the conclusions and remarks were provided. This review will be helpful for the proper selection of advanced treatment processes and promote the development of advanced treatment processes for coking wastewater.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
6
|
Zhang L, Yang Y, Xu X, Deng S, Xiao H, Han X, Xia F, Jiang Y. Efficient utilization of biogenic manganese oxides in bioaugmentation columns for remediation of thallium(I) contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131225. [PMID: 36958163 DOI: 10.1016/j.jhazmat.2023.131225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Little attention has been paid to the in situ-generated biogenic manganese oxides (BMnOx) for practical implementation in continuous groundwater remediation systems. The enrichment effects of manganese oxidizing bacteria (MOB) in bioaugmentation columns and the in situ-generated BMnOx for continuous thallium(I) (Tl(I)) removal from groundwater were investigated. Results indicated that Pseudomonas Putida MnB1 (strain MnB1) attached on the groundwater sediments (GS) can achieve a maximum of 97.37 % Mn(II) oxidation and generate 29.6 mg/L BMnOx, which was superior than that of traditional quartz sand (QS). The in situ-generated BMnOx in MOB_GS column effectively removed 10-100 μg/L Tl(I) under the interference of high concentrations of Fe(II) and Mn(II) in groundwater. Distinctive microbial enrichment effects occurred in the bioaugmentation columns under the competition of indigenous microbes in groundwater. The release of Mn(II) from the BMnOx inhibited with the decrease in Tl(I) removal efficiency. XAFS analysis revealed Tl(I) was effectively adsorbed by BMnOx and Mn-O octahedra with Tl-O tetrahedral coordination existed in BMnOx. This study provides an in-depth understanding of the in situ-generated BMnOx for the Tl(I) removal and contributes to the application of BMnOx in groundwater remediation.
Collapse
Affiliation(s)
- Liangjing Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Han Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fu Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
7
|
Han JC, Ahmad M, Yousaf M, Rahman SU, Sharif HMA, Zhou Y, Yang B, Huang Y. Strategic analysis on development of simultaneous adsorption and catalytic biodegradation over advanced bio-carriers for zero-liquid discharge of industrial wastewater. CHEMOSPHERE 2023; 332:138871. [PMID: 37172628 DOI: 10.1016/j.chemosphere.2023.138871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
With rapid industrial development, millions of tons of industrial wastewater are produced that contain highly toxic, carcinogenic, mutagenic compounds. These compounds may consist of high concentration of refractory organics with plentiful carbon and nitrogen. To date, a substantial proportion of industrial wastewater is discharged directly to precious water bodies due to the high operational costs associated with selective treatment methods. For example, many existing treatment processes rely on activated sludge-based treatments that only target readily available carbon using conventional microbes, with limited capacity for nitrogen and other nutrient removal. Therefore, an additional set-up is often required in the treatment chain to address residual nitrogen, but even after treatment, refractory organics persist in the effluents due to their low biodegradability. With the advancements in nanotechnology and biotechnology, novel processes such as adsorption and biodegradation have been developed, and one promising approach is integration of adsorption and biodegradation over porous substrates (bio-carriers). Regardless of recent focus in a few applied researches, the process assessment and critical analysis of this approach is still missing, and it highlights the urgency and importance of this review. This review paper discussed the development of the simultaneous adsorption and catalytic biodegradation (SACB) over a bio-carrier for the sustainable treatment of refractory organics. It provides insights into the physico-chemical characteristics of the bio-carrier, the development mechanism of SACB, stabilization techniques, and process optimization strategies. Furthermore, the most efficient treatment chain is proposed, and its technical aspects are critically analysed based on updated research. It is anticipated that this review will contribute to the knowledge of academia and industrialist for sustainable upgradation of existing industrial wastewater treatment plants.
Collapse
Affiliation(s)
- Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China; School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuefei Huang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| |
Collapse
|
8
|
Ahmad M, Yousaf M, Han JC, Huang Y, Zhou Y, Tang Z. Development of biocatalytic microbial ecosystem (FPUS@RODMs@In-PAOREs) for rapid and sustainable degradation of various refractory organics. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131514. [PMID: 37150099 DOI: 10.1016/j.jhazmat.2023.131514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The removal of diverse refractory organics from complex industrial wastewater continues to be a challenge. Although biological treatments are commonly employed, only partial degradation and increasing emergence of nitrogenous compounds, i.e., nitrate (NO3) and nitrite (NO2) would pose severe toxicity to the intact microbes. Herein, an efficient biocatalytic microbial ecosystem (BCME) was designed over a porous bio-carrier made of a functional polyurethane sponge (FPUS). The BCME comprised a unique set of organisms (RODMs) with novel metabolism, efficiently degrading highly-concentrated aromatics. Strategic enzyme immobilization was utilized to introduce in-situ production and aggregation of the oxidation and reduction enzymes (In-PAOREs) onto the FPUS, thereby ensuing sustained functions of the RODMs community. The developed FPUS@RODMs@In-PAOREs system was found to enhance the refractory organics removal rate to 4 kg/m3/day, and it would be attributed to the enzymatic catalysis of refractory organics (2000 mg/L) accompanied by the removal of COD (1200 mg/L) and nitrogenous compounds (200 mg/L). Besides, the fluctuating concentration of extra polymeric substances (EPS) played a dual role through enhancing adhesion, promoting the development of a functional microbial ecosystem, and creating an EPS gradient within the FPUS bio-carrier. This differential distribution of enzymes was established to significantly boost biocatalysis activity reaching 400 U/g VSS.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yuefei Huang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhaozhao Tang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Zhang Y, Zhang Q, Peng H, Zhang W, Li M, Feng J, He J, Su J. The changing C/N of aggressive aniline: Metagenomic analysis of pollutant removal, metabolic pathways and functional genes. CHEMOSPHERE 2022; 309:136598. [PMID: 36174730 DOI: 10.1016/j.chemosphere.2022.136598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/06/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
In order to optimize the degradation of high-concentration aniline wastewater, the operation of sequencing batch bioaugmentation reactors with different aniline concentrations (200 mg/L, 600 mg/L, 1000 mg/L) was studied. The results showed that the removal rates of aniline and COD in the three reactors could reach 100%. When the aniline increased to 600 mg/L, the nitrogen removal efficiency reached the peak (51.85%). The increase of aniline inhibited the nitrification, while denitrification was enhanced due to the increase of C/N ratio. But this change was reversed by the toxicity of high concentrations of aniline. The metagenomic analysis showed that when the aniline concentration was 600 mg/L, the abundance distribution of microbial samples was more uniform. The improved of aniline concentration had led to the increase of aromatic compounds degradation metabolic pathways. In addition, the abundance of aniline degradation and nitrogen metabolism genes (dmpB, xylE, norB) was also promoted.
Collapse
Affiliation(s)
- Yunjie Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qian Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Haojin Peng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wenli Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jing He
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Junhao Su
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| |
Collapse
|
10
|
Jiang Y, Zhang F, Xu S, Yang P, Wang X, Zhang X, Hong Q, Qiu J, Chu C, He J. Biodegradation of Quinoline by a Newly Isolated Salt-Tolerating Bacterium Rhodococcus gordoniae Strain JH145. Microorganisms 2022; 10:797. [PMID: 35456847 PMCID: PMC9029321 DOI: 10.3390/microorganisms10040797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Quinoline is a typical nitrogen-heterocyclic compound with high toxicity and carcinogenicity which exists ubiquitously in industrial wastewater. In this study, a new quinoline-degrading bacterial strain Rhodococcus sp. JH145 was isolated from oil-contaminated soil. Strain JH145 could grow with quinoline as the sole carbon source. The optimum growth temperature, pH, and salt concentration were 30 °C, 8.0, and 1%, respectively. 100 mg/L quinoline could be completely removed within 28 h. Particularly, strain JH145 showed excellent quinoline biodegradation ability under a high-salt concentration of 7.5%. Two different quinoline degradation pathways, a typical 8-hydroxycoumarin pathway, and a unique anthranilate pathway were proposed based on the intermediates identified by liquid chromatography-time of flight mass spectrometry. Our present results provided new candidates for industrial application in quinoline-contaminated wastewater treatment even under high-salt conditions.
Collapse
Affiliation(s)
- Yinhu Jiang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Fuyin Zhang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Siqiong Xu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Pan Yang
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466000, China;
| | - Xiao Wang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Xuan Zhang
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| | - Cuiwei Chu
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466000, China;
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.J.); (F.Z.); (S.X.); (X.W.); (X.Z.); (Q.H.); (J.Q.)
| |
Collapse
|
11
|
Tirkey SR, Ram S, Mitra M, Mishra S. Performance analysis of Pseudomonas sp. strain SA3 in naphthalene degradation using phytotoxicity and microcosm studies. Biodegradation 2022; 33:169-180. [PMID: 35103887 DOI: 10.1007/s10532-022-09972-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
The present study is aimed to develop a microbial system for efficient naphthalene bioremediation. A phytotoxicity study was carried out to check the naphthalene detoxification efficiency of Pseudomonas sp. strain SA3 in mung bean (Vigna radiata). For this, administration of the degraded product (supernatant) of 500 mg L-1 naphthalene by Pseudomonas sp. strain SA3 was studied on V. radiata till 168 h. The growth parameters of mung bean seedlings exposed to treated naphthalene solution were statistically similar to distilled water but a twofold decrease when exposed to untreated naphthalene solution. Further, through the soil microcosm study, the naphthalene degradation by pure colonies of Pseudomonas sp. strain SA3 was 6.8% higher as compared to when the natural microflora was mixed with Pseudomonas sp. strain SA3. Further naphthalene degradation by a microcosm model revealed that with an increased concentration of glucose, the carbon dioxide trap rate decreases.
Collapse
Affiliation(s)
- Sushma Rani Tirkey
- Academy of Scientific and Innovative Research Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India.,Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002, India
| | - Shristi Ram
- Department of Microbiology, School of Basic and Applied Sciences, Dayananda Sagar University, Bengaluru, 560111, India
| | - Madhusree Mitra
- Academy of Scientific and Innovative Research Headquarters, CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India.,Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002, India
| | - Sandhya Mishra
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002, India.
| |
Collapse
|
12
|
Ma H, Zhao Y, Yang K, Wang Y, Zhang C, Ji M. Application oriented bioaugmentation processes: Mechanism, performance improvement and scale-up. BIORESOURCE TECHNOLOGY 2022; 344:126192. [PMID: 34710609 DOI: 10.1016/j.biortech.2021.126192] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Bioaugmentation is an optimization method with great potential to improve the treatment effect by introducing specific strains into the biological treatment system. In this study, a comprehensive review of the mechanism of bioaugmentation from the aspect of microbial community structure, the optimization methods facilitating application as well as feasible approaches of scale-up application has been provided. The different contribution of indigenous and exogenous strains was critically analyzed, the relationship between microbial community variation and system performance was clarified. Operation regulation and immobilization technologies are effective methods to deal with the possible failure of bioaugmentation. The gradual expansion from lab-scale, pilot scale to full-scale, the transformation and upgrading of wastewater treatment plants through the combination of direct dosing and biofilm, and the application of side-stream reactors are feasible ways to realize the full-scale application. The future challenges and prospects in this field were also proposed.
Collapse
Affiliation(s)
- Huilin Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yue Wang
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
13
|
Tamang M, Paul KK. Advances in treatment of coking wastewater - a state of art review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:449-473. [PMID: 35050895 DOI: 10.2166/wst.2021.497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coking wastewater poses a serious threat to the environment due to the presence of a wide spectrum of refractory substances such as phenolic compounds, polycyclic aromatic hydrocarbons and heterocyclic nitrogenous compounds. These toxic substances are difficult to treat using conventional treatment methods alone. In recent years much attention has been given to the effective treatment of coking wastewater. Thus, this review seeks to provide a brief overview of recent developments that have taken place in the treatment of coking wastewater. In addition, this article addresses the complexity and the problems associated with treatment followed by a discussion on biological methods with special focus on bioaugmentation. As coking wastewater is refractory in nature, some of the studies have been related to improving the biodegradability of wastewater. The final section focuses on the integrated treatment methods that have emerged as the best solution for tackling the highly unmanageable coking wastewater. Attention has also been given to emerging microwave technology which has tremendous potential for treatment of coking wastewater.
Collapse
Affiliation(s)
- Markus Tamang
- Civil Engineering Department, National Institute of Technology, Rourkela, India E-mail:
| | - Kakoli Karar Paul
- Civil Engineering Department, National Institute of Technology, Rourkela, India E-mail:
| |
Collapse
|
14
|
Ghosh P, Mukherji S. Environmental contamination by heterocyclic Polynuclear aromatic hydrocarbons and their microbial degradation. BIORESOURCE TECHNOLOGY 2021; 341:125860. [PMID: 34614557 DOI: 10.1016/j.biortech.2021.125860] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Heterocyclic polynuclear aromatic hydrocarbons (PAHs) have been detected in all environmental matrices at few ppb to several ppm concentrations and they are characterized by high polarity. Some heterocyclic PAHs are mutagenic and carcinogenic to humans and various organisms. Despite being potent environmental pollutants, these compounds have received less attention. This paper focuses on the sources and occurrence of these compounds and their microbial degradation using diverse species of bacteria, fungi, and algae. Complete removal of 1.8 to 2614 mg/L of nitrogen heterocyclic PAH (PANH), 0.27 to 184 mg/L of sulfur heterocyclic PAH (PASH), and 0.6 to 120 mg/L of oxygen heterocyclic PAH (PAOH) compounds by various microbial species was observed between 3 h and 18 days, 8 h to 6 days, and 4 h to 250 h, respectively under aerobic condition. Strategies for enhancing the removal of heterocyclic PAHs from aquatic systems are also discussed along with the challenges.
Collapse
Affiliation(s)
- Prasenjit Ghosh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Department of Civil Engineering, NIT Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India
| | - Suparna Mukherji
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
15
|
Abstract
Biological processes have high removal efficiencies and low operational costs, but the secondary effluent of coking wastewater (CWW), even at a low concentration, is difficult for microorganisms to degrade directly. In this study, glucose was used as a carbon source and co-metabolic substrate for microbial acclimation in order to enhance the advanced treatment of coking wastewater (CWW). The removal performance of the pollutants, especially recalcitrant compounds, was studied and the changes in the microbial community structure after activated sludge acclimation were analyzed. The effect of glucose addition on the secondary biochemical effluent of coking wastewater (SBECW) treatment by the acclimated sludge was further studied by a comparison between the performance of two parallel reactors seeded with the acclimated sludge. Our results showed that the concentrations of chemical oxygen demand (COD), total organic carbon (TOC), and UV absorption at 254 nm (UV254) of the wastewater decreased in the acclimation process. Refractory organic matter, such as polycyclic aromatic hydrocarbons and nitrogen-containing heterocyclics, in the SBECW was effectively degraded by the acclimated sludge. High-throughput sequencing revealed that microbes with a strong ability to degrade recalcitrant compounds were enriched after acclimation, such as Thauera (8.91%), Pseudomonas (3.35%), and Blastocatella (10.76%). Seeded with the acclimated sludge, the reactor with the glucose addition showed higher COD removal efficiencies than the control system without glucose addition (p < 0.05). Collectively, glucose addition enhanced the advanced treatment of coking wastewater (CWW).
Collapse
|
16
|
Biological treatment of coke plant effluents: from a microbiological perspective. Biol Futur 2021; 71:359-370. [PMID: 34554459 DOI: 10.1007/s42977-020-00028-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
During coke production, large volume of effluent is generated, which has a very complex chemical composition and contains several toxic and carcinogenic substances, mainly aromatic compounds, cyanide, thiocyanate and ammonium. The composition of these high-strength effluents is very diverse and depends on the quality of coals used and the operating and technological parameters of coke ovens. In general, after initial physicochemical treatment, biological purification steps are applied in activated sludge bioreactors. This review summarizes the current knowledge on the anaerobic and aerobic transformation processes and describes key microorganisms, such as phenol- and thiocyanate-degrading, floc-forming, nitrifying and denitrifying bacteria, which contribute to the removal of pollutants from coke plant effluents. Providing the theoretical basis for technical issues (in this case the microbiology of coke plant effluent treatment) aids the optimization of existing technologies and the design of new management techniques.
Collapse
|
17
|
Ghosh P, Mukherji S. Elucidation of substrate interaction effects in multicomponent systems containing 3-ring homocyclic and heterocyclic polynuclear aromatic hydrocarbons. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1394-1404. [PMID: 34382630 DOI: 10.1039/d1em00140j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial growth and degradation experiments were conducted on carbazole (CBZ), fluorene (FLU) and dibenzothiophene (DBT) individually and in various mixture combinations using an efficient polynuclear aromatic hydrocarbon (PAH) degrading bacterial strain, Pseudomonas aeruginosa RS1. In single component systems, bacterial growth on CBZ (specific growth rate, μ = 0.99 day-1) was much higher compared to that on FLU (μ = 0.38 day-1) and DBT (μ = 0.33 day-1) and bacterial growth was inhibited in the presence of FLU and DBT in binary (μ = 0.64 day-1) and ternary (μ = 0.75 day-1) mixtures. Multisubstrate additive modelling indicated growth inhibition in all the systems. The degradation of the compounds was significantly inhibited in binary mixtures. While the degradation of the compounds in binary mixtures varied from 35 ± 4% to 73 ± 3%, their degradation varied from 61 ± 5% to 91 ± 4%, when applied as sole substrates and from 77 ± 3% to 96 ± 3%, when applied in a ternary mixture. Degradation experiments were also conducted in ternary mixtures using a 23 full factorial design and the results were examined using analysis of variance (ANOVA) and Tukey's honest significant difference (HSD) tests. At a low concentration of the heterocyclics, CBZ and DBT (5 mg L-1 each), the degradation of the PAH, FLU, was significantly enhanced (from 81 ± 1% to 93 ± 0.3%) when its concentration was increased from 5 to 30 mg L-1. The full factorial design can provide valuable insights into substrate interaction effects in mixtures.
Collapse
Affiliation(s)
- Prasenjit Ghosh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Department of Civil Engineering, National Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India.
| | - Suparna Mukherji
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
18
|
Nguyen LN, Kumar J, Vu MT, Mohammed JAH, Pathak N, Commault AS, Sutherland D, Zdarta J, Tyagi VK, Nghiem LD. Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142753. [PMID: 33121765 DOI: 10.1016/j.scitotenv.2020.142753] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic co-digestion (AcoD) can utilise spare digestion capacity at existing wastewater treatment plants (WWTP) to generate surplus biogas beyond the plant's internal energy requirement. Data from industry reports and the peer-reviewed literature show that through AcoD, numerous examples of WWTPs have become net energy producers, necessitating other high-value applications for surplus biogas. A globally emerging trend is to upgrade biogas to biomethane, which can then be used as town gas or transport fuel. Water, organic solvent and chemical scrubbing, pressure swing adsorption, membrane separation, and cryogenic technology are commercially available CO2 removal technologies for biogas upgrade. Although water scrubbing is currently the most widely applied technology due to low capital and operation cost, significant market growth in membrane separation has been seen over the 2015-2019 period. Further progress in materials engineering and sciences is expected and will further enhance the membrane separation competitiveness for biogas upgrading. Several emerging biotechnologies to i) improve biogas quality from AcoD; ii) accelerate the absorption rate, and iii) captures CO2 in microalgal culture have also been examined and discussed in this review. Through a combination of AcoD and biogas upgrade, more WWTPs are expected to become net energy producers.
Collapse
Affiliation(s)
- Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia.
| | - Jeevan Kumar
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Minh T Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Johir A H Mohammed
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Nirenkumar Pathak
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia
| | - Audrey S Commault
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Donna Sutherland
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Vinay Kumar Tyagi
- Environmental Biotechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology Roorkee, 247887, India
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2220, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
19
|
Tomei MC, Mosca Angelucci D, Clagnan E, Brusetti L. Anaerobic biodegradation of phenol in wastewater treatment: achievements and limits. Appl Microbiol Biotechnol 2021; 105:2195-2224. [PMID: 33630152 DOI: 10.1007/s00253-021-11182-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 11/30/2022]
Abstract
Anaerobic biodegradation of toxic compounds found in industrial wastewater is an attractive solution allowing the recovery of energy and resources but it is still challenging due to the low kinetics making the anaerobic process not competitive against the aerobic one. In this review, we summarise the present state of knowledge on the anaerobic biodegradation process for phenol, a typical target compound employed in toxicity studies on industrial wastewater treatment. The objective of this article is to provide an overview on the microbiological and technological aspects of anaerobic phenol degradation and on the research needs to fill the gaps still hindering the diffusion of the anaerobic process. The first part is focused on the microbiology and extensively presents and characterises phenol-degrading bacteria and biodegradation pathways. In the second part, dedicated to process feasibility, anaerobic and aerobic biodegradation kinetics are analysed and compared, and strategies to enhance process performance, i.e. advanced technologies, bioaugmentation, and biostimulation, are critically analysed and discussed. The final section provides a summary of the research needs. Literature data analysis shows the feasibility of anaerobic phenol biodegradation at laboratory and pilot scale, but there is still a consistent gap between achieved aerobic and anaerobic performance. This is why current research demand is mainly related to the development and optimisation of powerful technologies and effective operation strategies able to enhance the competitiveness of the anaerobic process. Research efforts are strongly justified because the anaerobic process is a step forward to a more sustainable approach in wastewater treatment.Key points• Review of phenol-degraders bacteria and biodegradation pathways.• Anaerobic phenol biodegradation kinetics for metabolic and co-metabolic processes.• Microbial and technological strategies to enhance process performance.
Collapse
Affiliation(s)
- M Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione Rome, Italy.
| | - Domenica Mosca Angelucci
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015, Monterotondo Stazione Rome, Italy
| | - Elisa Clagnan
- Ricicla Group - DiSAA, University of Milan, Via Celoria 2, 20133, Milano, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bozen - Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| |
Collapse
|
20
|
Zhu G, Zhang Y, Chen S, Wang L, Zhang Z, Rittmann BE. How bioaugmentation with Comamonas testosteroni accelerates pyridine mono-oxygenation and mineralization. ENVIRONMENTAL RESEARCH 2021; 193:110553. [PMID: 33271145 DOI: 10.1016/j.envres.2020.110553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/02/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Pyridine is a common heterocycle found in industrial wastewaters. Its biodegradation begins with a mono-oxygenation reaction, and bioaugmentation with bacteria able to carry out this mono-oxygenation is one strategy to improve pyridine removal and mineralization. Although bioaugmentation has been used to enhance the biodegradation of recalcitrant organic compounds, the specific role played by the bioaugmented bacteria usually has not been addressed. We acclimated activated-sludge biomass for pyridine biodegradation and then isolated a strain -- Comamonas testosteroni -- based on its ability to biodegrade and grow on pyridine alone. Pyridine was removed faster by C. testosteroni, compared to pyridine-acclimated biomass, but pyridine mineralization was slower. Pyridine biodegradation and mineralization rates were accelerated when C. testosteroni was bioaugmented into the acclimated biomass, which increased the amount of C. testosteroni, but otherwise had minimal effects on the microbial community. The key role of C. testosteroni was to accelerate the first step of pyridine biodegradation, mono-oxygenation to 2-hydroxylpyridine (2HP), and the acclimated biomass was better able to complete downstream reactions leading to mineralization. Thus, bioaugmentation increased the rates of pyridine mono-oxygenation and subsequent mineralization through the synergistic roles of C. testosteroni and the main community in the acclimated biomass.
Collapse
Affiliation(s)
- Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China.
| | - Songyun Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Lu Wang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Zhichun Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA
| |
Collapse
|
21
|
Ghosh P, Mukherji S. Modeling growth kinetics and carbazole degradation kinetics of a Pseudomonas aeruginosa strain isolated from refinery sludge and uptake considerations during growth on carbazole. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140277. [PMID: 32806351 DOI: 10.1016/j.scitotenv.2020.140277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Although bacterial degradation of polynuclear aromatic hydrocarbons (PAH) have been studied using various pure cultures, only a few studies have explored the degradation kinetics and uptake mechanism of nitrogen heterocyclic PAHs (PANH) with three or more rings. This work explored growth kinetics of a PAH degrading bacterial strain, Pseudomonas aeruginosa RS1 on carbazole (CBZ) and concomitant degradation kinetics of CBZ over the concentration range 25 to 500 mg/L. For CBZ acclimatized strain, the specific growth rate (μ) and specific CBZ uptake rate (q) varied from 0.96 ± 0.05 to 2 ± 0.15 day-1 and from 0.002 ± 0.001 to 0.02 ± 0.01 mg CBZ mg VSS-1 day-1, respectively. The Moser and Monod model provided best fits to the μ vs CBZ concentration and q vs CBZ concentration profiles, respectively. Biosurfactant activity did not play a role in CBZ uptake. However, elevation in cell surface hydrophobicity as revealed through the water contact angle values on bacterial cell mat indicated the possible role of direct interfacial uptake in facilitating CBZ uptake over and above uptake after dissolution. Elevated catechol 1,2-dioxygenase enzyme activity was observed during CBZ degradation. Interestingly, the specific activity of this enzyme was higher in the culture supernatant than in the cell extract. However, during CBZ degradation, accumulation of some toxic metabolites in the aqueous phase was revealed through increase in TOC of the aqueous phase and Kirby-Bauer disc diffusion study performed using a E. coli strain. Both aqueous phase TOC and toxicity decreased beyond the log growth phase indicating further utilization of the degradation intermediates.
Collapse
Affiliation(s)
- Prasenjit Ghosh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suparna Mukherji
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
22
|
Analysis of the Bioaugmentation Potential of Pseudomonas putida OR45a and Pseudomonas putida KB3 in the Sequencing Batch Reactors Fed with the Phenolic Landfill Leachate. WATER 2020. [DOI: 10.3390/w12030906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment of landfill leachate could be challenging for the biological wastewater treatment systems due to its high toxicity and the presence of poorly biodegradable contaminants. In this study, the bioaugmentation technology was successfully applied in sequencing batch reactors (SBRs) fed with the phenolic landfill leachate by inoculation of the activated sludge (AS) with two phenol-degrading Pseudomonas putida OR45a and Pseudomonas putida KB3 strains. According to the results, the SBRs bioaugmented with Pseudomonas strains withstood the increasing concentrations of the leachate. This resulted in the higher removal efficiency of the chemical oxygen demand (COD) of 79–86%, ammonia nitrogen of 87–88% and phenolic compounds of 85–96% as compared to 45%, 64%, and 50% for the noninoculated SBR. Simultaneously, the bioaugmentation of the AS allowed to maintain the high enzymatic activity of dehydrogenases, nonspecific esterases, and catalase in this ecosystem, which contributed to the higher functional capacity of indigenous microorganisms than in the noninoculated AS. Herein, the stress level experienced by the microorganisms in the SBRs fed with the leachate computed based on the cellular ATP measurements showed that the abundance of exogenous Pseudomonas strains in the bioreactors contributed to the reduction in effluent toxicity, which was reflected by a decrease in the stress biomass index to 32–45% as compared to the nonbioaugmented AS (76%).
Collapse
|
23
|
Liu Y, Wu ZY, Peng P, Xie HB, Li XY, Xu J, Li WH. A pilot-scale three-dimensional electrochemical reactor combined with anaerobic-anoxic-oxic system for advanced treatment of coking wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:110021. [PMID: 31929062 DOI: 10.1016/j.jenvman.2019.110021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Coking wastewater is highly concentrated and extremely toxic, greatly challenging the treatment technologies. Conventional biological technology such as anaerobic-anoxic-oxic (A2O) system is inefficient, since various biological reactions are inhibited by toxicants in coking wastewater. In this work, a pilot-scale three-dimensional electrochemical reactor (3DER) is integrated into the A2O system as a pretreatment unit to improve the treatment efficiency of coking wastewater. The results indicate that 3DER pretreatment increased the biodegradability of coking wastewater, promoting the degradation of coking wastewater in A2O system. The integrated 3DER-A2O system can remove 94.4% of COD and 76.2% of TN from coking wastewater, and the energy consumption was only 0.22 kWh/kg COD and 4.69 kWh/kg TN. The components of coking wastewater were significantly simplified and the acute toxicity was reduced from 99% to 12% after the treatment. The integrated 3DER-A2O system provides a new solution for coking wastewater treatment, showing a promising application potential.
Collapse
Affiliation(s)
- Yang Liu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Zhen-Yu Wu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Pin Peng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Hong-Bo Xie
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiu-Yan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), No.20 Cuiniao Road, ChenJiazhen, Shanghai, 202162, China.
| | - Wei-Hua Li
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| |
Collapse
|
24
|
Bai Y, Hu W, Jian Z, Qi W, Chang Y, Huo Y, Liao K, Qu J. Combining KMnO4 pre-oxidation and bioaugmented sand filtration to simultaneously treat cyanobacterial bloom lake water and released Mn(II). Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Tang H, Zhang Y, Hu J, Li Y, Li N, Wang M. Mixture of different Pseudomonas aeruginosa SD-1 strains in the efficient bioaugmentation for synthetic livestock wastewater treatment. CHEMOSPHERE 2019; 237:124455. [PMID: 31376694 DOI: 10.1016/j.chemosphere.2019.124455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 05/30/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Strains selection for inoculation is the key to the successful construction of a bioaugmentation system, a promising strategy for specific pollutant removal. Pseudomonas aeruginosa SD-1 wild-type (WT) strain exhibited high capacity for biofilm formation but low efficiency for nitrate (NO3-) removal. Meanwhile, quorum sensing deficient strain ΔlasR showed excellent efficiency for NO3- removal but poor capability for colonization in activated sludge. The opposite effect of biofilm formation and NO3- removal exist in WT or ΔlasR, which limits the construction of bioaugmentation system of strain SD-1 and its application. To solve this issue, a mixture of WT and ΔlasR (v/v = 1:1) was used to construct a bioaugmentation system. Compared with the inoculation of WT or ΔlasR alone, the mixed inoculation not only was beneficial for activated sludge development but also for pollutant removal. The indicators for activated sludge including the abundance of P. aeruginosa, the sludge volume index and the average particle size in mixed inoculated reactors were close to those of reactors with single and repeated inoculation of WT. The effluent of chemical oxygen demand (COD) and NO3--N were stable at 3.9-22.6 mg L-1 and 0-5.53 mg L-1 after d 3, respectively. This study presents a detailed case on the ecological tradeoff of colonization and pollutant removal of inoculated strains during bioaugmentation. The results provide information on the appropriate conditions for application of P. aeruginosa SD-1 for livestock wastewater treatment and further enrich our ecological understanding of bioaugmentation.
Collapse
Affiliation(s)
- Huiming Tang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Yunyun Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Jingming Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Yue Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Na Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China.
| |
Collapse
|
26
|
Fernandez M, Pereira PP, Agostini E, González PS. How the bacterial community of a tannery effluent responds to bioaugmentation with the consortium SFC 500-1. Impact of environmental variables. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 247:46-56. [PMID: 31229785 DOI: 10.1016/j.jenvman.2019.06.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/17/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Bioaugmentation with the consortium SFC 500-1 is a promising alternative to remediate wastewaters, such as tannery effluents. With the aim of assessing the changes produced in response to bioaugmentation, bacterial 16S rDNA genes were sequenced with Illumina MiSeq Platform. Additionally, bacterial and fungal groups were analyzed through standard culture dependent methods. The impact of diverse physico-chemical and microbiological parameters on the prokaryotic diversity was also evaluated throughout. Bacteroidetes, Firmicutes and Proteobacteria, represented together up to 91% of the total number of sequences obtained from the tannery effluent. Diversity decreased immediately after inoculation, due to an increase in the representation of the taxa to which the added consortium belongs. However, bioaugmentation produced no greater variations since only a 10% of unique operational taxonomic units were found in the inoculated treatment. An increase in the abundance of Myroides and a reduction in the representation of Proteiniclasticum and Halomonas were major observed variations. On the other hand, pH and dissolved oxygen constituted main environmental factors affecting the structure of the prokaryotic communities. In all treatments yeasts increased over time, to the detriment of filamentous fungi. Together, data from this report may contribute to the development of improved bioremediation strategies of industrial wastewaters.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina; CONICET, UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| | - Paola P Pereira
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina; CONICET, UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina; CONICET, UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina; CONICET, UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
27
|
Chen Y, Wang C, Dong S, Jiang L, Shi Y, Li X, Zou W, Tan Z. Microbial community assembly in detergent wastewater treatment bioreactors: Influent rather than inoculum source plays a more important role. BIORESOURCE TECHNOLOGY 2019; 287:121467. [PMID: 31121447 DOI: 10.1016/j.biortech.2019.121467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
In this study, three sequencing batch reactors Ra, Rb, Rc with different inoculum sources (activated sludge; activated sludge plus detergent degrading consortium; detergent degrading consortium) were used to treat detergent wastewater [consisting of sodium dodecyl sulfate, polyoxyethylene lauryl ether and tetrasodium ethylenediamine tetraacetate (Na4EDTA)]. Fast start-up and highest performance in phase I and II (organic loading rate were 0.28, 0.39 kgCOD/kgMLSS/d, respectively) were observed in Rc. In contrast, Rb showed highest impact resistance to the increase of EDTA concentration in phase III. High-throughput sequencing analysis showed that inoculum sources led to significant differences on microbial community in phase I. However, regardless of the influent variation in phases II and III, the differences on microbial community among three SBRs were diminished along long-term operation. Pseudomonas, Sphingopyxis, Luteimonas, Pseudoxanthomonas and SM1A02 were found to be the core taxa, they might contribute to the excellent performance of detergent wastewater treatment.
Collapse
Affiliation(s)
- Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Chen Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Shiyang Dong
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China
| | - Lian Jiang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China
| | - Yan Shi
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China
| | - Wantong Zou
- Chengdu No. 20 Middle School, Chengdu 610036, PR China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, PR China.
| |
Collapse
|
28
|
Zhang Y, Zhang Y, Xiong J, Zhao Z, Chai T. The enhancement of pyridine degradation byRhodococcusKDPy1 in coking wastewater. FEMS Microbiol Lett 2018; 366:5184456. [DOI: 10.1093/femsle/fny271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/13/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuxiu Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Beijing 100083, China
| | - Yiming Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Beijing 100083, China
| | - Jie Xiong
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Beijing 100083, China
| | - Zhehui Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Beijing 100083, China
| | - Tuanyao Chai
- College of Life Science, University of Chinese Academy of Sciences, A19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
29
|
Li R, Wang J, Li H. Isolation and characterization of organic matter-degrading bacteria from coking wastewater treatment plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:1517-1524. [PMID: 30427792 DOI: 10.2166/wst.2018.427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As a step toward bioaugmentation of coking wastewater treatment 45 bacteria strains were isolated from the activated sludge of a coking wastewater treatment plant (WWTP). Three strains identified as Bacillus cereus, Pseudomonas synxantha, and Pseudomonas pseudoaligenes exhibited high dehydrogenase activity which indicates a strong ability to degrade organic matter. Subsequently all three strains showed high naphthalene degradation abilities. Naphthalene is a refractory compound often found in coking wastewater. For B. cereus and P. synxantha the maximum naphthalene removal rates were 60.4% and 79.8%, respectively, at an initial naphthalene concentration of 80 mg/L, temperature of 30 °C, pH of 7, a bacteria concentration of 15% (V/V), and shaking speed of 160 r/min. For P. pseudoaligenes, the maximum naphthalene removal rate was 77.4% under similar conditions but at 35 °C.
Collapse
Affiliation(s)
- Riqiang Li
- College of Environmental & Resources Sciences, Shanxi University, 92 Wu-cheng Road, Taiyuan 030006, China E-mail:
| | - Jianxing Wang
- College of Environmental & Resources Sciences, Shanxi University, 92 Wu-cheng Road, Taiyuan 030006, China E-mail:
| | - Hongjiao Li
- College of Environmental & Resources Sciences, Shanxi University, 92 Wu-cheng Road, Taiyuan 030006, China E-mail:
| |
Collapse
|
30
|
Zhu J, Chen L, Zhang Y, Zhu X. Revealing the anaerobic acclimation of microbial community in a membrane bioreactor for coking wastewater treatment by Illumina Miseq sequencing. J Environ Sci (China) 2018; 64:139-148. [PMID: 29478633 DOI: 10.1016/j.jes.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/29/2017] [Accepted: 06/01/2017] [Indexed: 06/08/2023]
Abstract
The dynamic change of microbial community during sludge acclimation from aerobic to anaerobic in a MBR for coking wastewater treatment was revealed by Illumina Miseq sequencing in this study. The diversity of both Bacteria and Archaea showed an increase-decrease trajectory during acclimation, and exhibited the highest at the domestication interim. Ignavibacteria changed from a tiny minority (less than 1%) to the dominant bacterial group (54.0%) along with acclimation. The relative abundance of Betaproteobacteria kept relatively steady, as in this class some species increased coupled with some other species decreased during acclimation. The dominant Archaea shifted from Halobacteria in initial aerobic sludge to Methanobacteria in the acclimated anaerobic sludge. The dominant bacterial and archaeal groups in different acclimation stages were indigenous microorganisms in the initial sludge, though some of them were very rare. This study supported that the species in "rare biosphere" might eventually become dominant in response to environmental change.
Collapse
Affiliation(s)
- Jiadi Zhu
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing 100084, China; Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environmental Technology and Ecology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314050, China
| | - Yan Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Xiaobiao Zhu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
31
|
Joshi DR, Zhang Y, Zhang H, Gao Y, Yang M. Characteristics of microbial community functional structure of a biological coking wastewater treatment system. J Environ Sci (China) 2018; 63:105-115. [PMID: 29406094 DOI: 10.1016/j.jes.2017.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater.
Collapse
Affiliation(s)
- Dev Raj Joshi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingxin Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Na C, Zhang Y, Quan X, Chen S, Liu W, Zhang Y. Evaluation of the detoxification efficiencies of coking wastewater treated by combined anaerobic-anoxic-oxic (A 2O) and advanced oxidation process. JOURNAL OF HAZARDOUS MATERIALS 2017; 338:186-193. [PMID: 28554110 DOI: 10.1016/j.jhazmat.2017.05.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Coking wastewater contains many types of toxic and hazardous pollutants that have serious toxic effects on human beings as well as aquatic organisms. However, few studies have evaluated the detoxification efficiencies of the treatment processes that are extensively performed in operational coking wastewater treatment plants (WWTPs). This study investigates the detoxification efficiencies of a combined anaerobic-anoxic-oxic (A2O)-ozonation and A2O-Fenton oxidation process in two coking WWTPs using an acute immobilization test for Daphnia magna, acute toxicity test for adult zebrafish, embryo toxicity test for zebrafish and the comet assay. The raw coking wastewaters displayed high acute daphnia and fish toxicity, zebrafish embryo toxicity and genotoxicity. The A2O processing unit effectively removed acute and embryo toxicity, but not genotoxicity. In addition, the A2O effluent quality did not meet the integrated wastewater discharge standard in China (GB18918-2002). The ozonation and Fenton oxidation units used as post-treatments in these two plants not only treated the coking wastewater to the discharge standard but also reduced the genotoxicity. However, the final effluents still showed potential genotoxicity after high dilution. The results suggest that the discharge of treated coking wastewater probably poses potential risks to human health and the environment even if it met regulatory standards.
Collapse
Affiliation(s)
- Chunhong Na
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ying Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
33
|
Chen Y, Lan S, Wang L, Dong S, Zhou H, Tan Z, Li X. A review: Driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems. CHEMOSPHERE 2017; 174:173-182. [PMID: 28161518 DOI: 10.1016/j.chemosphere.2017.01.129] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
The performance and stabilization of biological wastewater treatment systems 1are closely related to the microbial community structure and dynamics. In this paper, the effects and mechanisms of influent composition, process configuration, operating parameters (dissolved oxygen [DO], pH, hydraulic retention time [HRT] and sludge retention time [SRT]) and environmental condition (temperature) to the change of microbial community structure and process performance (nitrification, denitrification, biological phosphorus removal, organics mineralization and utilization, etc.) are critically reviewed. Furthermore, some strategies for microbial community structure regulation, mainly bioaugmentation, process adjustment and operating parameters optimization, applied in the current wastewater treatment systems are also discussed. Although the recent studies have strengthened our understanding on the relationship between microbial community structure and wastewater treatment process performance, how to fully tap the microbial information, optimize the microbial community structure and maintain the process performance in wastewater treatment systems are still full of challenges.
Collapse
Affiliation(s)
- Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Longhui Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Shiyang Dong
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Houzhen Zhou
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China.
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| |
Collapse
|
34
|
Xue L, Liu J, Li M, Tan L, Ji X, Shi S, Jiang B. Enhanced treatment of coking wastewater containing phenol, pyridine, and quinoline by integration of an E-Fenton process into biological treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9765-9775. [PMID: 28251539 DOI: 10.1007/s11356-017-8644-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
In this study, the pyridine and quinoline could be cometabolically degraded by phenol-cultivated Comamonas sp. strain JB(strain JB). The integration of magnetically immobilized cells of JB and an E-Fenton process into one entity has been designed to prepare a novel integration system to improve the treatment efficiency of phenol, pyridine, and quinoline in coking wastewater. The optimal pH for the integration system was 3.5. Degradation rates of phenol, pyridine, quinoline, and COD by the integration system were significantly exceeded the sum degradation rates of the single E-Fenton process and magnetically immobilized cells at the optimal voltage of 1 V. During the 6 cycles, the integration system still showed higher degradation rates than that by the single magnetically immobilized cells for all the compounds. These findings demonstrated that a synergistic effect existed between the biological treatment and the E-Fenton process, and the applied voltage in the integration system played the key roles in the synergistic effect, which not only electrogenerated H2O2 but also improved the activity of phenol hydroxylase and strain JB concentration.
Collapse
Affiliation(s)
- Lanlan Xue
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Jiaxin Liu
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Meidi Li
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Liang Tan
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Xiangyu Ji
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian, 116081, China.
| | - Bei Jiang
- School of Life Science, Liaoning Normal University, Dalian, 116081, China.
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| |
Collapse
|
35
|
Hailei W, Ping L, Ying W, Lei L, Jianming Y. Metagenomic insight into the bioaugmentation mechanism of Phanerochaete chrysosporium in an activated sludge system treating coking wastewater. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:820-829. [PMID: 27720470 DOI: 10.1016/j.jhazmat.2016.09.072] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/31/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Phanerochaete chrysosporium was seeded to a sequencing batch reactor treating phenol wastewater. Compared to the contrast reactor (R1), the bioaugmented reactor (R2) exhibits better performance in sludge settling ability, as well as biomass and phenol removal, even though the added fungus is not persistently surviving in the reactor. Bioaugmentation improved bacterial population, growing up to 10,000 times higher than that of eukaryotes. Metagenomic sequencing results show the bioaugmentation finally increases bacterial and eukaryotic richness, but reduces their community diversity. In contrast to R1, bacterial distribution in R2 is more concentrated in Proteobacteria. The relative abundances of filamentous fungi, yeast and microalgae in R2 are all higher than those in R1 at different treatment phases, and two reactors are finally dominated by different protozoan and metazoan. In conclusion, P. chrysosporium improves reactor performances by influencing microbial community structure, and this phenomenon might be attributed to the ecological competition in sludge and toxicity reduction of phenol wastewater. The novelty of this study emphasizes why a species which is not persistently active in bioreactor still plays a crucial role in enhancing reactor performance. Results obtained here impact the conventional criteria for selection of bioaugmentation microbes used in activated sludge systems.
Collapse
Affiliation(s)
- Wang Hailei
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Li Ping
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wang Ying
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Liu Lei
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yao Jianming
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
36
|
Bai Y, Chang Y, Liang J, Chen C, Qu J. Treatment of groundwater containing Mn(II), Fe(II), As(III) and Sb(III) by bioaugmented quartz-sand filters. WATER RESEARCH 2016; 106:126-134. [PMID: 27705818 DOI: 10.1016/j.watres.2016.09.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
High concentrations of iron (Fe(II)) and manganese (Mn(II)) often occur simultaneously in groundwater. Previously, we demonstrated that Fe(II) and Mn(II) could be oxidized to biogenic Fe-Mn oxides (BFMO) via aeration and microbial oxidation, and the formed BFMO could further oxidize and adsorb other pollutants (e.g., arsenic (As(III)) and antimony (Sb(III))). To apply this finding to groundwater remediation, we established four quartz-sand columns for treating groundwater containing Fe(II), Mn(II), As(III), and Sb(III). A Mn-oxidizing bacterium (Pseudomonas sp. QJX-1) was inoculated into two parallel bioaugmented columns. Long-term treatment (120 d) showed that bioaugmentation accelerated the formation of Fe-Mn oxides, resulting in an increase in As and Sb removal. The bioaugmented columns also exhibited higher overall treatment effect and anti-shock load capacity than that of the non-bioaugmented columns. To clarify the causal relationship between the microbial community and treatment effect, we compared the biomass of active bacteria (reverse-transcribed real-time PCR), bacterial community composition (Miseq 16S rRNA sequencing) and community function (metagenomic sequencing) between the bioaugmented and non-bioaugmented columns. Results indicated that the QJX1 strain grew steadily and attached onto the filter material surface in the bioaugmented columns. In general, the inoculated strain did not significantly alter the composition of the indigenous bacterial community, but did improve the relative abundances of xenobiotic metabolism genes and Mn oxidation gene. Thus, bioaugmentation intensified microbial degradation/utilization for the direct removal of pollutants and increased the formation of Fe-Mn oxides for the indirect removal of pollutants. Our study provides an alternative method for the treatment of groundwater containing high Fe(II), Mn(II) and As/Sb.
Collapse
Affiliation(s)
- Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yangyang Chang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
37
|
Zhou X, Zhang Z, Li Y. Ammonium removal from coking wastewater in a pilot-scale two-stage aerobic biofilm system: Biokinetic analysis. CAN J CHEM ENG 2016. [DOI: 10.1002/cjce.22719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Zhou
- College of Environmental Science and Engineering; Taiyuan University of Technology; Taiyuan 030024 P. R. China
- Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture); Ministry of Education; Beijing 100044 P. R. China
- Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province; Xi'an 710064 P. R. China
| | - Zeqian Zhang
- College of Environmental Science and Engineering; Taiyuan University of Technology; Taiyuan 030024 P. R. China
| | - Yaxin Li
- College of Environmental Science and Engineering; Taiyuan University of Technology; Taiyuan 030024 P. R. China
| |
Collapse
|
38
|
Bioaugmentation: An Emerging Strategy of Industrial Wastewater Treatment for Reuse and Discharge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13090846. [PMID: 27571089 PMCID: PMC5036679 DOI: 10.3390/ijerph13090846] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/09/2016] [Accepted: 07/09/2016] [Indexed: 11/17/2022]
Abstract
A promising long-term and sustainable solution to the growing scarcity of water worldwide is to recycle and reuse wastewater. In wastewater treatment plants, the biodegradation of contaminants or pollutants by harnessing microorganisms present in activated sludge is one of the most important strategies to remove organic contaminants from wastewater. However, this approach has limitations because many pollutants are not efficiently eliminated. To counterbalance the limitations, bioaugmentation has been developed and consists of adding specific and efficient pollutant-biodegrading microorganisms into a microbial community in an effort to enhance the ability of this microbial community to biodegrade contaminants. This approach has been tested for wastewater cleaning with encouraging results, but failure has also been reported, especially during scale-up. In this review, work on the bioaugmentation in the context of removal of important pollutants from industrial wastewater is summarized, with an emphasis on recalcitrant compounds, and strategies that can be used to improve the efficiency of bioaugmentation are also discussed. This review also initiates a discussion regarding new research areas, such as nanotechnology and quorum sensing, that should be investigated to improve the efficiency of wastewater bioaugmentation.
Collapse
|
39
|
Chen C, Lei W, Lu M, Zhang J, Zhang Z, Luo C, Chen Y, Hong Q, Shen Z. Characterization of Cu(II) and Cd(II) resistance mechanisms in Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and their potential application in the bioremediation of heavy metal-phenanthrene co-contaminated sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6861-6872. [PMID: 26670028 DOI: 10.1007/s11356-015-5926-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Soil that is co-contaminated with heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) is difficult to bioremediate due to the ability of toxic metals to inhibit PAH degradation by bacteria. We demonstrated the resistance mechanisms to Cu(II) and Cd(II) of two newly isolated strains of Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and further tested their potential application in the bioremediation of HM-phenanthrene (PhA) co-contaminated sites. The PHE-SPH and PHE-OCH strains tolerated 4.63 and 4.34 mM Cu(II) and also showed tolerance to 0.48 and 1.52 mM Cd(II), respectively. Diverse resistance patterns were detected between the two strains. In PHE-OCH cells, the maximum accumulation of Cu(II) occurred in the cell wall, while the maximum accumulation was in the cytoplasm of PHE-SPH cells. This resulted in a sudden suppression of growth in PHE-OCH and a gradual inhibition in PHE-SPH as the concentration of Cu(II) increased. Organic acid production was markedly higher in PHE-OCH than in PHE-SPH, which may also have a role in the resistance mechanisms, and contributes to the higher Cd(II) tolerance of PHE-OCH. The factors involved in the absorption of Cu(II) or Cd(II) in PHE-SPH and PHE-OCH were identified as proteins and carbohydrates by Fourier transform infrared (FT-IR) spectroscopy. Furthermore, both strains showed the ability to efficiently degrade PhA and maintained this high degradation efficiency under HM stress. The high tolerance to HMs and the PhA degradation capacity make Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH excellent candidate organisms for the bioremediation of HM-PhA co-contaminated sites.
Collapse
Affiliation(s)
- Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wenrui Lei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Min Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jianan Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhou Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qing Hong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|